
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

An NFS Configuration Management System
and its Underlying Object-Oriented Model

Fabio Q. B. da Silva, Juliana Silva da Cunha, Danielle M. Franklin,
Luciana S. Varejao, and Rosalie Belian

Federal University of Pernambuco

An NFS Configuration
Management System and its
Underlying Object-Oriented

Model
Fabio Q. B. da Silva, Juliana Silva da Cunha, Danielle M. Franklin, Luciana S. Varejão, and

Rosalie Belian – Federal University of Pernambuco

ABSTRACT

This paper describes an NFS configuration and management system for large and
heterogeneous computer environments. It also shows how this system can be extended to
address other services in the network. The solution is composed of a process that describes
service configuration and management life-cycle, a modular architecture and an objected
oriented model. The system supports multiple features, including: automatic host and service
installation, service dependency inference and analysis, performance analysis, configuration
optimization as well as service functioning monitoring and problem correction.

Introduction

The installation and configuration of hosts and
services are two very common tasks in the administra-
tion of any computer network. Even small and homo-
geneous networks offer several different services that
must be consistently configured on server and client
computers. Furthermore, configuration management
becomes a very complex problem when large and het-
erogeneous systems, together with their Internet con-
nection, are taken into account. According to several
authors [2,3], some of the reasons for this increase in
complexity are [1]:

• Configuration of each service must be uniform
over the network, requiring update on every
host anytime a configuration change is re-
quired;

• In general, there are great differences in the
actual format and location of the configuration
files of a service for each platform. Therefore,
to configure a service in a heterogeneous net-
work amounts to configure the service in each
platform separately;

• Each operating system provides its own set of
non-standard configuration parameters for the
common network services. In most cases, it is
necessary to learn and use these non-standard
features to achieve optimal performance of the
service in each platform.

• Usually, large networks are managed by a team
of system administrators. Configuration rules
and parameters must be effectively communi-
cated among team members to avoid inconsis-
tencies that can arise due to personal prefer-
ences during the configuration process.

• It is difficult to detect and correct services mis-
function before any damage to the users;

• It is also difficult to see dependencies between
the services.

The configuration of hosts and services have dra-
matic influence on network performance, resilience
and safety, and therefore are among the most critical
tasks in system administration. For instance, it is
widely known that a large percentage of security prob-
lems on networks connected to the Internet are due to
bad Internet services (like HTTP and FTP) configura-
tion.

Therefore, more systematic and structured pro-
cesses of service configuration are necessary for the
administration of today’s networks and, in particular,
those that are connected to the Internet. Furthermore,
to achieve high levels of consistency and safety, any
such process must be supported by automated tools
which must possess three fundamental properties:

• efficient, robust and user friendly operation on
large networks (hundreds of servers and thou-
sands of clients);

• transparent support of heterogeneous platforms;
• consistent support of different services across

every supported platform, and the possibility of
co-relating them for analysis purposes.

This article presents a service and configuration
management system that supports NFS configuration
and monitoring on large and heterogeneous networks.
The system is based on a formal model that describes
hosts, network components and services in a generic
and abstract way. This model allows the system to be
extended to support several different services in a vari-
ety of platforms.

The next section will present the service configu-
ration problem, the related work and how our solution
extends the state of the art. Subsequently, we will
show the process that describes an NFS service

1998 LISA XII – December 6-11, 1998 – Boston, MA 121

An NFS Configuration Management System . . . Silva, et al.

configuration and management life-cycle. The next
section will present the system architecture. Then we
will demonstrate the generalization of our solution for
the other network services. Finally, we will present
our conclusions.

Service Configuration and Related Work

Typically, the configuration of a service is com-
posed of several interconnected tasks: planning, con-
sistency checking, deployment, and management. In
each task, a number of critical issues must be
addressed, including:

• capacity of servers to offer the required service;
• the placement of the server with respect to the

network topology, to avoid network perfor-
mance problems and bottlenecks;

• dependency relation among hosts, with respect
to different services, to avoid many single
points of failure on the network;

• configuration consistency on all servers and
clients, for ease maintenance and crash recov-
ery;

• documentation of the entire process to allow
consistent and efficient administration.

These are only a few of the issues that must be
addressed in the process of host and service configura-
tion. Hardware vendor’s specific tools, like the
AdminTool from Sun Microsystems Inc. and Smit
from IBM Inc., do not provide satisfactory solutions to
deal with heterogeneous system.

According to Evard [20], ‘‘the general approach
taken by the administrative community over this time
period has been to develop a host cloning process and
then to distribute updates directly to hosts from a cen-
tral repository.’’ In a large and heterogeneous network,
this cloning process is not satisfactory because each
machine has its own characteristics.

In most solutions, the central repository is a col-
lection of ASCII files, like in LCFG [1], GeNUAdmin
[2], Syslogd [4] and Fisk’s system [5]. This leads to
the problem of keeping the consistency and the
integrity of the information. Some tools have changed
this approach by using DBMSs, like UHA [14],
Aurora [19], Finke’s system [13].

The swatch [16] and pong [15] systems are
designed to monitor the network and some services.
However, neither addresses the complete life-cycle of
service configuration and monitoring, and, therefore,
does not support integrated service management.

None of the above cited approaches are based on
a formal and generic conceptual model of the network
and its services. Such a model is the basis of commer-
cial tools like TME10([17] and Unicenter TNG([18],
and are essential to support the inclusion of new ser-
vices and to keep the overall integration of the system.
These two market leaders offer extensive features to
manage heterogeneous networks, but do not offer built
in facilities for high level configuration management.

Use actual
configuration?

Network

Configuration

NoYes

Yes

No

Actuate?

Reverse
Engineering

Actuation

Yes

No

No

Yes

Is it
consistent?

Planning

Verification

Deployment

Monitoring

Is it
correct?

Diagnosis

Figure 1: The Process.

In this paper we present a solution dedicated to
address the problem of configuring and managing net-
work services in heterogeneous environments. This
system presents the following features:

• it allows service configuration to be carried out
in an abstracted away from hardware and oper-
ating system details;

• service configuration is performed on a central
database and is distributed automatically over
the network. This enforces consistency and uni-
formity of the configurations on all hosts that
use that service;

• since configuration distribution is performed
automatically, the system scales up to deal with
large number of hosts;

• it allows new services and platforms to be eas-
ily added;

• it supports reconfiguration, service dependency
inference and analysis, performance analysis
and configuration optimization in a single
framework;

122 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silva, et al. An NFS Configuration Management System . . .

• it supports service monitoring, trouble shooting
and problem correction.

An NFS Configuration and Management Process

The configuration and management of the NFS
service follows a process that is common to most ser-
vices, and is graphically depicted in Figure 1. Follow-
ing this process, the administrator should perform a
number of tasks in a coherent and consistent form:

• Planning: to define the filesystems exported by
the servers and imported by the clients, as well
as their access and security characteristics. This
task should abstract away from platform spe-
cific features. In most cases, a service plan is
constructed from the configuration information
currently in use on the network. To extract this
information, a Reverse Engineering stage is
necessary. Therefore, the Planning stage in the
process can start either with fresh configuration
information or with information extracted from
the network.

Figure 2: The Architecture.

• Consistency checking: the planning of the ser-
vice must be carefully checked for consistency.
For instance, in large networks it is fairly easy
for the system administrator to lose control
over the import and export relationship among
hosts. If this happens, servers may ending up
exporting filesystems that are not used by any
client and clients may try to import filesystems
that are not exported by the server. Moreover,
clients may try to mount a read-write filesystem
that is exported as read-only, leading to an
error.

• Deployment: the deployment of a service con-
figuration is composed of three sub-phases:

• Generation of configuration files: from
a consistent service plan, the NFS export
and import files should be generated. At
this stage, platform specific features
must be used to create files on the right
format for each supported operating sys-
tem and hardware platform.

• Configuration propagation: the export
and import files must then be distributed
to the corresponding hosts.

• Configuration activation: the necessary
actions must be performed on each host
to activate the new configuration. This
involves rebooting the host.

• Management: he service must be monitored
and controlled during execution, and problems
must be identified and corrected. During the
Management sub-process, current service
behavior is compared to the planned behavior
described in the configuration specification.
Any deviation is detected and actions are fired
to bring the service back to normal operation. If
necessary, system administrator is notified for
action.

The Architecture of the System

The NFS Configuration and Management Sys-
tem was implemented according to the architecture
showed in Figure 2. This architecture was presented
by Franklin in [11].

The architecture implements the process showed
in Figure 1, which is based in the following stages:
planning, deployment, monitoring, diagnosis and actu-
ation.

1998 LISA XII – December 6-11, 1998 – Boston, MA 123

An NFS Configuration Management System . . . Silva, et al.

The architecture has four components: the
DBMS, the Agents Society, the Manager and the Inter-
face.

The DBMS
The DBMS is the central element of the architec-

ture and it is partitioned into two components:
• The Configuration Component: this is the

implementation of the conceptual model
described later on. It stores the NFS configura-
tion definition and other information about its
behavior in the network. The information
resulting from the planning stage is stored in
the DBMS using the Interface.

• The Monitoring Component: this has two func-
tionalities: (1) it mirrors the configuration com-
ponent, keeping monitoring information
obtained from the network; (2) it supports the
monitoring process, keeping monitoring param-
eters like, for instance, monitoring time inter-
vals and agents status. The information is
updated in the monitoring component by the
monitoring agents, either as a result of the mon-
itoring or the reverse engineering processes.
This component is fully described in [21].

The configuration and monitoring components of the
database have been implemented in ORACLE
RDBMS.

Agents Society
The Agents Society, based on the intelligent

agent paradigm described in [12], is composed of
three types of agents, with complementary functionali-
ties:

• The Monitoring Agents perceive the environ-
ment and collect information about the actual
behavior of the NFS service on the network.
There are two kinds of monitoring agents for
NFS: one that searches configuration files and
another that verifies the running daemons.
These agents travel from the monitoring host to
the target hosts, execute the scripts that collect
information, receive the result from the scripts
and deliver to the manager. The latter feeds the
information to the monitoring database. For
example, they collect information about which
filesystems are imported and exported by the
hosts. The monitoring agents are responsible
for the Monitoring Stage in Figure 1.

• The Reasoning Agents compare the actual
behavior of the service and the planned behav-
ior stored in the DBMS, looking for inconsis-
tencies. Based on predefined rules, these
agents infer the actions that must be executed to
correct possible problems. For example, they
verify whether the filesystems imported by the
client host are correctly exported by the corre-
sponding server host. Currently, the agents pro-
vide the system administrator with a possible
action, and he/she is responsible for its

execution. Examples of some of the rules used
by the reasoning agents are presented below:

• If imported filesystems are not correctly
exported by the corresponding servers,
then either servers or clients must be
reconfigured.

• If the server’s daemons are not running,
then start them.

• If there is a difference between the con-
figuration and monitoring databases,
then the system must be reconfigured in
order to maintain the consistency
between network and planning.

• If a client can’t mount a filesystem, then
verify the server’s status and inform the
administrator.

These informal rules are coded into the system
as sets of formal rules that may activate one or
more actions.
The reasoning agents implement the diagnosis
stage in Figure 1. The automatic execution of
actions by the agents (without system adminis-
tration intervention) and learning capabilities
are under development using the IBM ABE
[22] and the knowledge base construction lan-
guage KIF [23].

• The Execution Agents perform actions on the
network. That is, they change the configuration
on the hosts in the network to eliminate a prob-
lem in the NFS functioning, according to what
was defined by the Diagnosis Agent, or only to
modify the actual configuration of the NFS ser-
vice. For example, it corrects the inconsistency
between the imported and exported files from
clients and servers. This agent implements the
deployment and actuation stages in Figure 1.

The agents have been implemented in Java,
using the IBM Aglets Workbench API [24]. This API
supports the construction of mobile multi-agents sys-
tems.

The Manager
The Manager controls the agents and interaction

process between the architecture modules, activating,
deactivating and creating the agents when necessary.
When a set of agents is activated, it is not necessary to
wait for all agents to finish their tasks to record infor-
mation on the database. The manager records incom-
plete information and controls the time-out interval
(defined by the system administrator) of all running
agents. Incomplete information is dealt with by the
reasoning agents. The manager has been implemented
using the same technology as the agents.

Interface
The Interface allows the interaction between the

system and the administrators. It provides the follow-
ing functionalities: the DBMS front-end, visualization
of all management processes, the NFS status in the
network and visualization of the service planning.

124 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silva, et al. An NFS Configuration Management System . . .

The system interface has been developed using
HTML embedded into ORACLE PL/SQL stored pro-
cedures. The use of HTML pages allows greater porta-
bility and easy of access through any web browser.

Figure 3: NFS configuration management systems interface.

Figure 4: Planning subsystem.

Furthermore, the use of stored procedures facilitates
the interaction with the database. However, it makes
the interface dependent on the ORACLE database. A
more portable solution using JAVA and ServLets to
communicate with the DBMS is under construction.

The planning and verification stages are also
implemented in PL/SQL and accessed directly through
the interface. The remaining stages are implemented
by the agents society, as described above.

Communication Protocols
A set of communication protocols are needed:

between the agents of the same category, between
agents of distinct categories, between the agents and

1998 LISA XII – December 6-11, 1998 – Boston, MA 125

An NFS Configuration Management System . . . Silva, et al.

the DBMS, between the agents and the network com-
ponents. The latter implements the propagation and
activation phases of the process described in Section
III and is the subject of another paper [9].

The Use of the System

The navigational model follows the cycle
defined in Figure 1. Each stage has been implemented
as a separate subsystem, and are reached through the
first page of the interface, as shown in Figure 3.

Figure 5: Planning subsystem – second interface.

Planning and Validation Subsystems
This subsystem allows the definition of NFS

clients and servers. Only hosts that can be servers
appear in the list box of Figure 4 (e.g., those that have
disks). Similarly for clients.

The following step is to configure the selected
server and client hosts. As shown in Figure 5, once a
host running Solaris 2.5.1 is selected, only the plat-
form specific parameters for this version of the operat-
ing system appear in the configuration interface.

Once the NFS planning is finished, that is, all
servers and clients are selected and configured, it is
necessary to check and validate the configuration.
This checking is perform by the validation subsystem,
which is a PL/SQL procedure that either requests the
system administrator to modify any inconsistencies
found in the configuration or stores the configuration
in the database if it is correct.

Deployment and Actuation Subsystems
To deploy or modify an NFS configuration, the

manager verifies what needs to be updated (a deploy-
ment or modification may only affects a subset of the
hosts) and schedules the process. The start of the pro-
cess can be immediate or in a pre-schedule time
defined by the administrator, as shown in Figure 6. At
the deployment time, the agents and the configuration
protocol are activated.

Monitoring Subsystem
In this subsystem, the manager queries the moni-

toring database looking for monitoring information.
The system administrator tells the manager, through
the interface, which agents need to be activated, which
hosts to monitor and the time intervals of the monitor-
ing processes, as shown in Figure 7.

At the defined time, the manager activates the
monitoring agents, which travel to the target hosts and
start the monitoring scripts, as discussed above. Once
the monitoring process is finished the manager inserts
the information in the monitoring database.

Diagnosis Subsystem
The diagnosis is also started through the man-

ager, by a system administrator’s request. However, it
can also be automatically triggered every time new
information from the monitoring process is stored in
the database.

126 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silva, et al. An NFS Configuration Management System . . .

The manager starts the diagnosis agents which
will compare the configuration and monitoring
database, looking for possible inconsistencies, and
will notify the manager with two possible results:

Figure 6: Deployment/actuation subsystem.

Figure 7: Monitoring subsystem.

• an OK sign, indicating that no inconsistencies

have been found;
• the failure points and possible solutions and

actions to bring the network back to a consis-
tent state.

1998 LISA XII – December 6-11, 1998 – Boston, MA 127

An NFS Configuration Management System . . . Silva, et al.

The manager is responsible to format the result
and send messages to the system administrator.

Reverse Engineering Subsystem
This subsystem is implemented by the monitor-

ing agents already defined and by specific agents
capable of collecting more detailed information about
the network hosts. The reverse engineering is similar
to the monitoring process, but in this case the col-
lected information about the network will be stored in
the configuration database. This process has to be
authorized by the system administrator, since it
changes the network configuration.

Generalization

The generalization depends on a conceptual
model, specially designed to support all the necessary
components and characteristics to configure and man-
age services in an heterogeneous network. This model,
described in [10], uses object oriented paradigm that
allows abstract descriptions of hosts, platform, ser-
vices and configuration parameters, and dependencies
among them. In this model, it is possible to construct a
platform independent specification of a given service,
which when combined with the specification of a
given platform, produces the instantiation of the ser-
vice for that platform. The inclusion of a new service
is easily performed only by class instantiation.

Figure 8: The conceptual model.

The model showed in Figure 8 has seven classes,
described as follows.

The class Service contains the description of the
service (e.g., filesystem sharing services). This class is
useful when there are several products that imple-
ments the same service. In this case, each implementa-
tion is modeled as a separate product and all versions
belong to the same service.

The class Product contains product specific
information, like, for instance, version and supported
platforms (e.g., SunOS 4.1 version of NFS). This class
has a self relationship permitting the dependency rep-
resentation among services.

Each instance of the class Parameter represents
a configuration parameter (e.g., filesystem access
type). New parameters can be added through class
instantiation. Each instance of the class Product refers
to one or more instances of the class Parameter,
therefore representing the information that is neces-
sary to install product of a given service on the net-
work hosts.

Each configuration parameter associated with a
service has a set of restrictions. Different implementa-
tions of a service for distinct platforms have different
set of restrictions. The restrictions are captured by the
class Parameter Restriction, where each parameter
connected to a service and a platform has well defined
rules for its correct use during the configuration pro-
cess (e.g., the filesystem access type parameter can
only assume the values ro – read-only or rw – read-
write).

128 1998 LISA XII – December 6-11, 1998 – Boston, MA

Silva, et al. An NFS Configuration Management System . . .

The class Configured Value holds the actual
configuration values for each parameter of a given
host (e.g., on host host1, the filesystem access type
parameter has value ro to filesystem1). The class Host
represents all hosts of a computer network and each
instance of this class represents an actual host. (e.g.,
host1).

The class Platform captures the heterogeneous
features of the hardware and operating system plat-
forms on the networks (e.g., host IBM RS/6000 run-
ning AIX 4.1). A new platform can be easily added
through class instantiation.

This model is independent of any implementa-
tion decision. So, it can be implemented in ASCII files
or in any desired DBMS. In our case, we used ORA-
CLE DBMS.

This object-oriented conceptual model specifies
the database that holds network configuration infor-
mation, it represents the DBMS component of the
architecture showed on Figure 2. From this database,
the configuration information is distributed to every
host on the network using a distribution protocol. This
protocol is described in [9].

Some features offered by this model are listed as
follows:

• network service configuration planning;
• support to include new services and related net-

work components;
• support of heterogeneous network;
• consistent and integrated view of the network;
• creation, alteration and visualization of host

configuration even if it is down;
• visualization of the service topology, that is, the

relations between servers and clients of the
same service, and also the visualization and
analysis of the services dependency graph,
showing the relations among services;

• support to the monitoring and diagnosis phases
to avoid failures, redundancies, inefficiencies
and inconsistencies.

Conclusions

The service configuration and management sys-
tem presented in this article has several important and
desirable features:

• Consistency and uniformity of the configura-
tions: achieved through the verification of con-
figuration information stored in the database,
according to rules also coded in the system.

• Automatic host and service reconfiguration:
enforced by the configuration stored in the
database that stays available even when the host
is down.

• Scalability to deal with large networks: accom-
plished by the possibility of configuration repli-
cation and automatic propagation of configura-
tion information to an arbitrary number of tar-
get hosts.

• Easy inclusion of new services and platforms:
supported by the capability of defining meta-
level configuration information in the database,
as described in the previous section.

The solution presented in this article, uses sev-
eral technologies from the design and implementation
of a complex system, capable of support the planning,
configuration and pro-active management of services
in heterogeneous networks. The NFS prototype was
used to validate the process, architecture and concep-
tual model.

The possibility of supporting other services,
coherently integrated in the framework, is a clear
advantage of this solution when compared to manag-
ing the services isolated and by hand. Currently,
HTTP, NIS and DNS services are being included in
the system. This will allow not only the configuration
management of these systems separately, but also the
correlation of information among all supported ser-
vices.

Acknowledgements

The FLASH project is co-funded by the Brazil-
ian Government agency CNPq, through the ProTeM-
CC Program (Phase III) and by the Center for
Advanced Studies and Systems at Recife (CESAR).

Availability

The prototype implementation, together with a
configuration distribution system [9], has been used to
assist the administration of laboratories of the Depart-
ment of Informatics, UFPE. However, the system will
only be available for distribution after the inclusion of
the above mentioned services.

Author Information

Fabio Q. B. da Silva is an Associated Professor
of the Department of Informatics at the Federal Uni-
versity of Pernambuco, Brazil, where he coordinates
the FLASH Project. He holds a Ph.D. in Computer
Science from the University of Edinburg, Scotland. He
is also the Finance Director of the Center for
Advanced Studies and Systems at Recife (CESAR), a
not-for-profit organization dedicated to promote
Industry/University interaction (http://www.cesar.org.
br). Reach him electronically at fabio@di.ufpe.br.

Juliana Silva da Cunha is a Phd Student of the
Department of Informatics at the Federal University of
Pernambuco, Brazil and a member of The FLASH
Team. She holds a master degree in Computer Science
at Federal University of Ceará, Brazil. You can reach
Juliana electronically at jsc@di.ufpe.br.

Danielle M. Franklin is currently a member of
The FLASH Team and a system management consul-
tant at CESAR. She holds a master degree in Com-
puter Science. You can reach Danielle at dmf@di.
ufpe.br.

1998 LISA XII – December 6-11, 1998 – Boston, MA 129

An NFS Configuration Management System . . . Silva, et al.

Luciana S. Varejao is currently a master student
in Federal University of Pernambuco’s Infomatics
Department and a member of The FLASH Team. She
holds a bachelors degree in Electronic Engineering.
You can reach Luciana at lsv@di.ufpe.br.

Rosalie Belian is a member of The FLASH
Team. She holds a Master Degree in Computer Sci-
ence. You can reach Rosalie electronically at
rbb@di.ufpe.br.

References

[1] Paul Anderson, ‘‘Towards a High-Level Machine
Configuration System,’’ USENIX Systems
Administration (LISA VIII) Conference Proceed-
ings, 1994.

[2] Magnus Harlander, ‘‘Heterogeneous Unix Envi-
ronment: GeNUAdmin,’’ USENIX Systems
Administration (LISA VIII) Conference Proceed-
ings, 1994.

[3] John Rouillard and Richard Martim, ‘‘Config: A
Mechanism for Installing and Tracking System
Configurations,’’ USENIX Systems Administra-
tion (LISA VIII) Conference Proceedings, 1994.

[4] Rex Walters, ‘‘Tracking Hardware Configuration
in a Heterogeneous Network with syslogd,’’
USENIX Systems Administration (LISA IX) Con-
ference Proceedings, 1995.

[5] Michael Fisk, ‘‘Automating the Administration
of Heterogeneous LANs,’’ USENIX Systems
Administration (LISA X) Conference Proceed-
ings, 1996.

[6] Grady Booch, Object-Oriented Analysis and
Design With Applications, Second Edition, Addi-
son-Wesley, 1994.

[7] FLASH Project, <http://www.di.ufpe.br/˜flash>
[8] Hal Stern, Managing NIS and NFS, O’Reilly &

Associates Inc., 1991.
[9] Glêdson E. da Silveira and Fabio Q. B. da Silva,

‘‘A Configuration Distributed System for Het-
erogeneous Networks,’’ USENIX Systems
Administration (LISA XII) Conference, 1998.

[10] Juliana Silva da Cunha, Glêdson E. da Silveira,
Fabio Q. B. da Silva, J. Neuman de Souza, ‘‘An
Object-Oriented Service Configuration Manage-
ment System,’’ International Conference on
Te l e c o m m u n i c a t i o n (ICT-98), Chalkidiki, Greece,
June 1998.

[11] Danielle Franklin. I-DREAM: an Intranet baseD
REsource and Application Monitoring system.
Master Degree Thesis, Federal University of Per-
nambuco, 1997.

[12] Michel Wooldridge, Nicholas R. Jennings,
‘‘Intelligent Agents: Theory and Practice,’’
Knowledge Engineering Review, Cambridge
University Press, 1995.

[13] Jon Finke, ‘‘Automation of Site Configuration
Management,’’ USENIX Systems Administration
(LISA XI) Conference Proceedings, 1997.

[14] Gregory Thomas, James Schroeder, Merilee
Orcutt, Desiree Johnson, Jeffrey Simmelink,
John Moore, ‘‘UNIX Host Administration in a
Heterogeneous Distributed Computing Environ-
ment,’’ USENIX Systems Administration (LISA
X) Conference Proceedings, 1996.

[15] Helen Harrison, Mike Mitchell, Michael Shad-
dock, ‘‘Pong: A flexible network services moni-
toring systems,’’ USENIX Systems Administra-
tion (LISA VIII) Conference Proceedings, 1994.

[16] Stephen Hansen, E. Todd Atkins, ‘‘Automated
system monitoring and notification with
swatch,’’ USENIX Systems Administration (LISA
VII) Conference Proceedings, 1993.

[17] Tivoli Systems Inc., http://www.tivoli.com .
[18] Computer Associates Inc., http://www.cai.com .
[19] Xev Gittler, W. Moore, J. Rambhaskar, ‘‘Morgan

Stanley’s Aurora System: Design a Next Genera-
tion Global Production Unix Environment,’’
USENIX Systems Administration (LISA IX) Con-
ference Proceedings, 1995.

[20] Rémy Evard, ‘‘An Analysis of UNIX System
Configuration,’’ USENIX Systems Administra-
tion (LISA XI) Conference Proceedings, 1997.

[21] Luciana S. Varejao. Sistema de Monitoraçao
para Redes Heterogêneas (A Monitoring System
for Heterogeneous Networks). Master Degree
Thesis (under development), Federal University
of Pernambuco, 1998.

[22] Agent Building Environment, http://www.networking.
ibm.com/iag/iagsoft.htm .

[23] Knowledge Interchange Format (KIF) http://
logic.stanford.edu/kif/ .

[24] IBM Aglets Workbench Homepage http://www.
trl.ibm.co.jp/aglets/ .

130 1998 LISA XII – December 6-11, 1998 – Boston, MA

