
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

A U T O M AT E D C L I E N T - S I D E I N T E G R AT I O N O F
D I S T R I B U T E D AP P L I C AT I O N S E R V E R S

Conrad E. Kimball, Vincent D. Skahan, Jr.,
David J. Kasik, and Roger L. Droz

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Automated Client-side Integration of
Distributed Application Servers

Conrad E. Kimball, Vincent D. Skahan, Jr., David J. Kasik – The Boeing Company
Roger. L. Droz – Analysts International

ABSTRACT

From the Single Glass Program Plan, dated August 18, 1997:

Vision: Provide BCAG users access to all applications and data needed to perform
their respective jobs from a single desktop environment with acceptable levels of
function, performance, and reliability.

The Single Glass program in the Boeing Commercial Airplane Group (BCAG) provides
Engineering UNIX users the ability to access all required UNIX and PC applications and
associated data via a standardized Common Desktop Environment (CDE) desktop.

The goal is to do this with enough performance, reliability, and transparency so that each
engineer only needs one computer (i.e., a ‘‘Single piece of Glass’’) on their desk, thereby
reducing the number of desktop devices required per engineer. There is an additional process
benefit by increasing the amount of concurrent design and analysis possible.

The Single Glass desktop provides unified access to over 350 locally executed applications
previously provided in a number of separate legacy environments from the shell and also within
a common CDE look-and-feel developed through formal usability studies done in Seattle and
Wichita. Currently running on over 5000 IBM RS6000 workstations worldwide for over 6000
users, Single Glass is designed to support IBM, HP, Sun, and SGI UNIX and NT workstations.

This paper describes some of the design decisions and project constraints that led Single
Glass to decide to deliver a unified logical namespace to the clients that spans multiple physical
servers. This was accomplished by automating creation of the required symbolic links to the
many distributed file servers rather than simply building one monolithic ‘‘union of all the
supplier trees’’.

This implementation has been proven to work consistently on AIX, HP-UX, Solaris, and
Linux platforms.

Name Space

Reliable delivery of applications that have been
developed in multiple organizations is a key Single
Glass problem.

Boeing-written applications are organized via a
standardized Boeing Common Directory Structure
(CDS) analogous to many of the various file system
naming standards in place elsewhere. A similar nam-
ing convention is in place for commercial-off-the-shelf
(COTS) software.

The intent of CDS is to standardize the Boeing
internal name space presented to the users, and to pro-
vide guidance to the software developers regarding
where (and how) to install their software. Single Glass
considers CDS to be the combination of public and
private areas under one /boeing namespace [Figure 1].

In general, CDS requires the public namespace
to consist solely of symbolic links to software compo-
nents in the private namespace of that component’s
supplier. In addition, there are common directories to
contain application configuration and log files.

The actual files that implement an application are
encapsulated in a sub-tree of arbitrary complexity
under /boeing/sw/<product>. Applications expose
their public interface by installing symbolic links in
known directories such as /boeing/bin, /boeing/man,
and /boeing/lib.

Users include the stable set of public directories
in $PATH, $MANPATH, and the like, and the sym-
bolic links present there take care of providing access
to the default (or specified) version of the application
they wish to run from within the ‘‘private’’ portion of
the /boeing tree.

A common script automates installing applica-
tions into the private namespace in the /boeing tree
and modifying the appropriate public links so the ‘‘sta-
ble public path’’ delivers the current default version of
the applications to the user.

Typical Software Installation

Figure 2 shows a minimal installation of version
a02 of a hypothetical product ‘‘foo’’ consisting of one
executable with a corresponding manual page.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 275

Automated Client-side Integration of Distributed Application Servers Kimball, et al.

The common installer tool installs the actual
software in the private directory of the application
supplier, and creates the appropriate links in the public
directories which are referenced in every user’s
$PATH and $MANPATH.

Figure 1: Boeing common directory structure (excerpt).

Figure 2: Typical product installation in common directory structure.

Both version dependent and independent links
are present in the public directories under /boeing to
permit the users to run either the default version or a
user-specified version of each product. The products
are compiled and configured to use the version-depen-
dent paths so that multiple versions of any product
may be present at the same time. Users reference the
‘‘stable’’ path /boeing/bin/foo for the current default
version of the product, or can choose to reference an
absolute version-specific path of /boeing/bin/foo_a02
to get to version a02 of the product (for example).

Similarly, they can view the manual page for the
product by specifying the default product name ‘‘man
foo’’ or the version-specific name ‘‘man foo_a02’’.

The installer always uses fully qualified (rather
than relative) pathnames when creating symbolic links
in order to permit the physical implementation of a
/boeing tree to span multiple filesystems (glued with
automounter or the like) if necessary.

Multiple Fileservers

Rather than split a single /boeing tree onto multi-
ple fileservers, Single Glass does essentially the oppo-
site. We automate assembly of a single logical tree on
the client side from multiple whole application file-
server trees provided by a number of organizations
within Boeing [Figure 3].

276 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Kimball, et al. Automated Client-side Integration of Distributed Application Servers

Single Glass currently supports applications
coming from at least seven different application
providers, many of whom supply their own fileserver
capacity to be mounted by the clients. There is no
(current) effective way to pool these servers (and bud-
gets), nor is this considered wise strategically as scale
increases.

x

/bin /lib

/boeing

/a

Client

Content of /bin

Directory: series of

links to /boeing / sw /

. . .

/. . ./sw

/bin

/lib

/a

a

b/b

/bin

/lib

/b

/mnt

/server1 /server2

/boeing

Server1

/boeing

Server2

mount of /boeing mount of /boeing

w

y

z

/w

/bin

/lib

/w

/x

/bin

/lib

/x

/y

/bin

/lib

/y

/z

/bin

/lib

/z

Figure 3: Client-side view of application servers.

Traditionally, the Single Glass project would
have assembled a monolithic union of the various
application provider unique /boeing trees and pre-
sented that unified tree to the clients through one pro-
ject-wide /boeing mount of that assembled tree. This
was impractical for a number of reasons.

• There are limits related to ‘‘how big a fileserver
is possible or wise’’.

• Our implementation is being done in a staged
manner over a long period of time rather than
as a ‘‘big bang’’ event, and procurement of
interim fileservers to provide sufficient capacity
during the transition period of over 24 months
was impractical.

• The very act of performing an integration into
one physical /boeing tree structure tends to
induce territorial and process conflict among
the contributing application communities with
respect to managing application content and
versioning.

• We assume a heterogeneous audience that uses
multiple versions of the same application. Our
distributed user community has diverse views

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 277

Automated Client-side Integration of Distributed Application Servers Kimball, et al.

regarding the need to standardize on one ver-
sion of each product or not, and agreeing on a
single version of any application is difficult to
implement.

• Our application suppliers are used to a great
deal of autonomy in how they develop, test, and
deliver their software. Each supplier tends to
have their own unique installer tool that installs
the software into /boeing in a CDS compliant
manner. This autonomy led us to a solution
where we would need to assemble an integrated
union of multiple independently ‘‘valid’’ sup-
plier-provided /boeing trees.

Figure 4: Layered application servers.

• The requirement to support the legacy Boeing
Common Directory Structure (which mandates
extensive use of symbolic links) made a simple
automounter solution impossible.
Automounter would have been a fine solution
for assembling the private portions of the /boe-
ing tree (each of the subdirectories under /boe-
ing/sw) but it cannot assemble the extensive
sets of symbolic links in the public portions of
the tree.
By creating a local composite /boeing/bin on
the client, we also tend to avoid multiple net-
work transits by having a local /boeing/bin in
$PATH rather than multiple NFS mounted
directories.

• Our design allows locally installed /boeing tree
software to blend with /boeing tree software
from multiple NFS servers. This required the
assembly of the /boeing tree to be moved to the
client-side so that each client can have its own
unique local content if required.

Client-side assembly minimizes disk space and soft-
ware distribution headaches involved with maintaining
the entire /boeing tree locally on the client system,
while permitting some clients to have local installa-
tions if required. It also provides some caching effect
as all the items in $PATH, $MANPATH, and the like
are resident locally as symbolic links.

Accordingly, the decision was made to perform
client-side assembly of whole /boeing trees with auto-
mated tools.

Automating the Client-side Assembly Process

Single Glass builds a composite client-site /boe-
ing tree consisting of (generally minimal) client-side
local content and many symbolic links pointing to the
various remote servers mounted under /boeing/mnt.

This is done on a first come, first served basis
(alphabetically), under a local /boeing/mnt, with local
content having the highest precedence [Figure 4].

The easiest way to understand this process is to
imagine laying several CDS trees on top of each other.
Ideally, the contributing trees will merge with no con-
flict. In practice, when conflicts do occur, they are
resolved in favor of the first contributor. The local
workstation takes highest priority, followed by the
servers as they appear in alphabetical order in the
/boeing/mnt directory.

The various /boeing trees are dynamically ‘‘lay-
ered’’ on a first-come-first-served basis by a Single
Glass-provided perl program that ‘‘integrates’’ the
multiple server trees into a consistent client-side view.

This process takes between 90-180 seconds and
creates approximately 5200 required symbolic links
on the client-side. Virtually all the actual time is spent
calculating what directories and symbolic links to add,
delete, or modify locally on the client.

Since server-side changes are (hopefully) rela-
tively infrequent, the integration script is only run
once nightly via cron on all workstations or at the end
of the system boot sequence. In this way, a simple
reboot will restore the client to ‘‘last known-good’’
configuration.

The integration script adds, deletes, and modifies
the appropriate links on the client so the workstation
can reference the combination of locally installed soft-
ware and software residing on several code servers
through a single unified /boeing.

278 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Kimball, et al. Automated Client-side Integration of Distributed Application Servers

The integration script:
• Reads the master automounter map and identi-

fies all trees that could be (auto)mounted under
/boeing/mnt.

Figure 5: Client-side view after integration.

• Reads a pre-computed inventory file (a com-
pressed ‘‘ls -AlRc’’) from each of those servers
for efficiency reasons.
If no inventory file is available, it walks the tree
to calculate an inventory, with considerable net-
work and server load due to the size of the
/boeing trees.

• Compares the local /boeing tree with the union
of the remote tree inventories.

• Adds, deletes, modifies the appropriate links
and directories to create the combined union of
all the trees on the local client /boeing filesys-
tem.

• Cleans up any obsolete links, removes any local
/boeing tree subdirectories that are empty.

This assembly process takes place at the individual
workstation level, so that all users of a particular
workstation have an identical view of the available
applications.

Similarly, since workstations use the same auto-
mounter maps, each workstation in a particular NIS

domain is integrated identically, yielding identical
client-side configurations on each workstation.

Users can of course choose to alter their personal
defaults by customizing (at their own risk) their per-
sonal dot files. In case the user’s customizations make
their account unusable or unstable, we provide a CDE
action to quickly move their modifications aside and
reset the account to a known good initial configura-
tion.

How the Script Works Internally

CDS is organized around ‘‘products’’ and ‘‘port-
folios’’, which are essentially collections of products
developed by one organization.

The integration script first identifies and builds
symbolic links to all ‘‘products’’ and ‘‘portfolios’’
located under /boeing/sw [Figure 5 – item 1]. The
client can now see the ‘‘private’’ or ‘‘physical’’ instal-
lation tree of all software packages in the network.

Next, the script merges the ‘‘public interface
directories.’’ The corresponding directories are
searched on each contributing tree. Links that point
into the private directory structure of a ‘‘product’’ con-
tributed by a given server are reproduced in the
client’s public interface directory [Figure 5 – item 2].

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 279

Automated Client-side Integration of Distributed Application Servers Kimball, et al.

The script recursively descends the public inter-
face, reproducing links to files, until a link to a direc-
tory in the private namespace is encountered.

Last, the script, if requested, will delete local
links that did not come from one of the contributing
/boeing tree servers unless they meet one of the fol-
lowing conditions:

• are located in /boeing/netinfo on the local
workstation

• are located in /boeing locally, and also listed in
the /boeing/netinfo/preserve.aix file (so called
‘‘precious’’ files as mentioned in the actual perl
code)

When the client is unable to integrate a particular tree
due to a remote server-down situation, the pre-existing
links from that server are assumed to still be appropri-
ate and are left intact. Links pointing to a server that
returns a permission-denied message on the auto-
mounter attempt to mount are considered no longer
valid and are deleted.

In addition, the integration script will log, but not
create, any links that are calculated to be ‘‘dangling’’,
so that the client-side configuration only reflects appli-
cations that will (presumably) be functional after the
integration is complete.

STDOUT and STDERR are captured to log files
in /tmp on the local workstation that can be used for
debugging purposes.

It is important to note that the integration script
is indeed an integrator, not an installer. It blindly
believes that the application provider has ensured that
their software installs so that the public/private direc-
tory separation is in place, and equally blindly copies
the link values present in those remote trees to the
client side.

While the integration script has some knowledge
of the requirements of the CDS standard and can log
discrepancies it finds, it has no knowledge of what the
link values in the public directories should be. That is
the responsibility of the application provider’s installer
tool.

Caching Server Inventory To Reduce Clock Time
And Network Load

Early in the integration phase of Single Glass, we
identified that there can be a tremendous amount of
traffic generated to inventory a large application server
once, let alone 5000 times in parallel.

Pre-computing a compressed inventory of the
fileservers, and having the clients ‘‘quickly read a
remote file then work totally locally’’ mitigates this
cost.

The inventory script only writes a new inventory
file into place if there have been changes made that
the integrate script ‘‘cares about’’. This permits the
served inventory files to be used as timestamp sen-
tinels for comparison to permit ‘‘lazy (i.e., do it only if
needed) integration’’ client-side.

This pre-computed inventory eliminated over
99% of the network load and 50% of the clock time
needed to synchronize the Single Glass clients with
the /boeing tree servers (vs. our initial implementa-
tion).

Total NFS load for a full integration is currently
approximately 1300 NFS operations as follows:

Nfsstat(1M) call Number of Calls

Getattr 27
Lookup 501
Access 75

Readlink 2
Read 671

Readdir+ 11
Fsinfo 5

Integration takes 90-180 seconds depending on
client CPU speed (IBM model 42T and 43P worksta-
tions).

Randomized ‘‘Lazy’’ Integration

In all cases, the integration script only integrates
the clients when there are changes to be made (so-
called ‘‘lazy’’ integration).

This is established by examining the timestamps
on the local log files versus the inventory files on each
of the servers.

If any of the remote server inventories is newer
than the local log file, the client does a full integration
to synchronize itself to the union of the remote server
configurations.

Since the integration script is called from an
identical crontab entry on 5000 clients that have syn-
chronized clocks, a client-side ksh script and accom-
panying C program serve as a randomizer to ensure
that all the systems don’t ‘‘wake up at once’’ and over-
load the file servers or networks. Both files are stored
locally in on the workstation to minimize network
load and are the only local content required to make
the integration occur.

The compiled program determines, based on the
TCP address of the local system, how many seconds
to sleep before calling the integration script with the
proper options.

The current settings are intended to have all sys-
tems sleep for no more than one hour before waking
up and doing the actual /boeing tree integration, but
this value is also configurable at run-time if needed.

Lastly, client-side integration can be ‘‘forced’’ to
supersede a calculated answer of ‘‘no integration
required’’.

Ensuring The Clients Are Up To Date After Reboot

Frequently workstations are relocated, or are
booted from alternate drives for special beta testing

280 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Kimball, et al. Automated Client-side Integration of Distributed Application Servers

and the like, and thus miss their once-per day sched-
uled cron-based integration. To ensure that the sys-
tems are always in the most up-to-date possible state
after a reboot, the integrate script is called out of the
client boot sequence after automounter is up.

Non-technical Challenges Of Client-side Integra-
tion

There are of course downsides to client-side inte-
gration that tend to be more cultural (Fear-Uncer-
tainty-Doubt) than technical in nature.

• There is the need to synchronize multiple
server installations across many sites (but of
course doing so on 25 fileservers is better than
doing so on 5000 clients).

• The traditional approach to providing content
consisting of a large number of applications is
to provide an equally large file server rather
than our distributed logical approach.
Management, especially when migrating from a
mainframe model, often questions the reliabil-
ity and availability of such a distributed
approach.
Fortunately, recent problem report call analysis
shows average measurable downtime of less
than one unscheduled hour per month per
workstation.

• Our distributed customer base has widely vary-
ing definitions of ‘‘acceptable risk’’, ‘‘required
testing’’, and ability to be the recipient of
change in their computing environments.
Our distributed logical file server model per-
mits application versions to be updated asyn-
chronously to each other at each application
user community’s own pace. This causes cer-
tain ‘‘culture collisions’’ among the different
user communities regarding how many combi-
nations of versions need to be tested against
each other.

• Client-side integration introduces one more
(final) step in the client workstation
build/bringup procedure. This has required
some changes to the workstation system assem-
bly procedures and training. Conclusions

The architecture and tools described above have
permitted us to logically layer a number of existing
large application fileserver implementations into a
consistent client-side view of the union of the possible
applications available for use on over 5000 worksta-
tions worldwide.

This has been done within a well-defined com-
mon directory structure and associated delivery sys-
tem implementation constraints and rules. Our
approach has succeeded in not affecting the imple-
mentation of the legacy systems or requiring change in
the existing software installation tools used by the
internal software developers.

Rather than increasing total project cost, this
implementation has lowered the cost of entry into Sin-
gle Glass for a new application provider, as we can

avoid the costs (and potential battles) of requiring
potential application providers to be ‘‘assimilated’’
into the project.

The result of our implementation is an architec-
ture that has proven to be portable, extensible, reliable,
and supportable worldwide at a 5000 workstation
scale.

Futures

Given our heavy reliance on NFS, we need to
investigate NFS caching to improve performance and
minimize traffic.

Our cached inventory files on the fileservers con-
tain quite a bit more information than the integrate
script actually needs. We believe shrinking the pre-
computed inventories to the minimum needed for the
integrate script to do the job would result in load and
time improvements.

While the various links created by the integration
script are resident client-side, CDE reads through the
symbolic links at user login time when building the
application manager desktop, causing a several second
delay in logging in as each fileserver providing pieces
of the assembled /boeing/dt is automounted. Bringing
the CDE tree assembly process fully client-side by
copying the CDE related files (rather than just links)
into the more traditional /etc/dt directory during the
integration process on the workstation should speed up
login time noticeably.

The users always expect their systems to be
always ‘‘up’’ and always ‘‘up-to-date’’. In a world-
wide 24x7x365 company, this is a major long-term
issue to overcome.

Any fileserver-side changes do not take effect
until the server is re-inventoried, and the client is re-
integrated (which normally happens just on reboot, or
nightly via cron). Re-integrating the client while a user
is logged in can have adverse affects to the user’s ses-
sion (i.e., changing the default version of ‘‘foo’’ while
they have a session of the old version running).

We need to be able to have the clients check
‘‘should I catch up’’ more often (or be notified auto-
matically) and have them integrate ‘‘on the fly’’ with-
out affecting any logged in users or running jobs in
any way.

Author Information

Conrad Kimball <Conrad.Kimball@boeing.
com> is an Associate Technical Fellow of the Boeing
Company. He is a co-architect for the Puget Sound
Single Glass program, and is a member of the Boeing-
wide computing delivery system Technical Leadership
Team and Technical Planning Board. Conrad holds a
Master of Software Engineering degree from Seattle
University.

Vince Skahan <Vince.Skahan@boeing.com> is a
System Design & Integration Specialist at the Boeing

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 281

Automated Client-side Integration of Distributed Application Servers Kimball, et al.

Company. He holds a B.S. in Chemical Engineering
from Drexel University, and has been doing large
scale heterogeneous unix administration since 1987.

David J. Kasik <David.J.Kasik@boeing.com> is
a Technical Fellow of the Boeing Company. He is a
co-architect for the Puget Sound Single Glass program
and acts as the Geometry and Visualization architect
for Boeing Commercial Airplanes.

Roger Droz’ <Roger.Droz@seaslug.org> career
has spanned a broad range of computing environments
as a designer and programmer – from 8 bit embedded
systems to the enterprise scale of Single Glass; from
operating system kernel and device drivers to scien-
tific and commercial applications. Roger holds a Mas-
ters degree in Electrical Engineering from Washington
State University.

References

Linux filesystem standard online at http://www.pathname.
com/fhs/ .

Common Directory Structure and Supporting Environ-
ments for BCAG Unix Systems, Boeing internal
document D6-81580 dated 3/10/95.

Kasik, D., Kimball, C., Felt, J., Frazier, K. A Flexible
Approach to Alliances of Complex Applications,
presented at ICSE’99, http://sunset.usc.edu/icse99.
html .

Bell, John D., A Simple Caching File System for
Application Serving, http://www.usenix.org/
publications/library/proceedings/lisa96/full_papers/
jbell4.html .

Hauser, C., Speeding Up UNIX Login by Caching
the Initial Environment, http://www.usenix.org/
publications/library/proceedings/lisa94/hauser.html .

Ph. Defert, E. Fernandez, M. Goossens, O. Le
Moigne, A. Peyrat, I. Reguero, Managing and
Distributing Application Software, http://www.
usenix.org/publications/library/proceedings/lisa96/
full_papers/reguero/reguero.txt .

Furlani, John L., Osel, Peter W., Abstract Yourself
Wi t h Modules, http://www.usenix.org/publications/
library/proceedings/lisa96/pwo.html .

Wong, Walter C., Local Disk Depot – Customizing the
Software Environment, http://www.usenix.org/
publications/library/proceedings/lisa93/wong.html .

282 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

