
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Automatic I/O Hint Generation Through Speculative Execution

Fay Chang, Garth A. Gibson
Carnegie Mellon University

Automatic I/O Hint Generation through Speculative Execution

Fay Chang Garth A. Gibson

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
ffwc,garth g@cs.cmu.edu

Abstract
Aggressive prefetching is an effective technique for reducing
the execution times of disk-bound applications; that is, appli-
cations that manipulate data too large or too infrequently used
to be found in file or disk caches. While automatic prefetch-
ing approaches based on static analysis or historical access
patterns are effective for some workloads, they are not as ef-
fective as manually-driven (programmer-inserted) prefetching
for applications with irregular or input-dependent access pat-
terns. In this paper, we propose to exploit whatever processor
cycles are left idle while an application is stalled on I/O by
using these cycles to dynamically analyze the application and
predict its future I/O accesses. Our approach is to specula-
tively pre-execute the application’s code in order to discover
and issue hints for its future read accesses. Coupled with an
aggressive hint-driven prefetching system, this automatic ap-
proach could be applied to arbitrary applications, and should
be particularly effective for those with irregular and, up to a
point, input-dependent access patterns.

We have designed and implemented a binary modification
tool, called “SpecHint”, that transforms Digital UNIX applica-
tion binaries to perform speculative execution and issue hints.
TIP [Patterson95], an informed prefetching and caching man-
ager, takes advantage of these application-generated hints to
better use the file cache and I/O resources. We evaluate our de-
sign and implementation with three real-world, disk-bound ap-
plications from the TIP benchmark suite. While our techniques
are currently unsophisticated, they perform surprisingly well.
Without any manual modifications, we achieve 29%, 69% and
70% reductions in execution time when the data files are striped
over four disks, improving performance by the same amount as
manually-hinted prefetching for two of our three applications.
We examine the performance of our design in a variety of con-
figurations, explaining the circumstances under which it falls
short of that achieved when applications were manually mod-
ified to issue hints. Through simulation, we also estimate how
the performance of our design will be affected by the widening
gap between processor and disk speeds.

This research is sponsored by DARPA/ITO through DARPA Or-
der D306, and issued by Indian Head Division, NSWC under contract
N00174-96-0002. Additional support was provided by an ONR grad-
uate fellowship, and by the member companies of the Parallel Data
Consortium, including: Hewlett-Packard Laboratories, Intel, Quantum,
Seagate Technology, Storage Technology, Wind River Systems, 3Com
Corporation, Compaq, Data General/Clariion, and Symbios Logic.

1 Introduction

Many applications, ranging from simple text search
utilities to complex databases, issue large numbers of
file access requests that cannot always be serviced by
in-memory caches. Due to the disparity between pro-
cessor speeds and disk access times, the execution times
of these applications are often dominated by I/O latency.
Furthermore, since disk access times are improving only
slowly, these applications are receiving decreasing bene-
fits from the rapid advance of processor technology, and
I/O latency is accounting for an increasing proportion of
their execution times.

File systems can automatically hide disk latency
during file writes by performing write-behind buffer-
ing [Powell77], in which they inform the application
that the write request has completed before propagat-
ing the data to disk. Automatically hiding the disk la-
tency of file reads is more complicated since, in most
applications, the requested data is used as soon as the
read returns. Prefetching, requesting data before it is
needed in order to move it from a high-latency locale
(e.g. disk) to a low-latency locale (e.g. memory), is
a well-known technique for hiding read latency. To
be effective, prefetching requires that the I/O system
provide more bandwidth than the application already
consumes. Fortunately, we can construct cost-efficient
I/O systems capable of providing adequate bandwidth
by striping data across an array of disks [Patterson88]
or, to facilitate sharing of I/O resources, across mul-
tiple higher-level entities like file servers or network
disks [Cabrera91, Hartman94, Gibson98].

The difficulty with prefetching lies in knowing how
to accurately determine what and when to prefetch.
Prefetching consumes processor, cache and I/O re-
sources; if unneeded data is prefetched, or data is
prefetched prematurely, I/O requests for more immedi-
ately needed data may be delayed and/or more immedi-
ately needed data may be displaced from the file cache.
One effective alternative is to manually modify applica-
tions so that they explicitly control I/O prefetching. Un-
fortunately, as we will discuss in the next section, this
can be a difficult optimization problem for the program-

mer. Automatic prefetching, however, can significantly
reduce execution time without increasing programming
effort, provided that the automatic methods are suffi-
ciently accurate, timely and careful with resource usage.
In this paper, we present a novel approach to automatic
prefetching that is potentially applicable to virtually all
disk-bound applications and should be much more effec-
tive than existing automatic approaches for disk-bound
applications with irregular and input-dependentaccess
patterns.

Our approach arises from the observation that the cy-
cles during which an application is stalled waiting for
the I/O system to service a read request are often wasted.
This situation occurs commonly both in desktop com-
puting environments and where disk-bound applications
are important enough to acquire exclusive use of a high-
performance server machine. Even high-performance
disk systems currently have at least 10 millisecond ac-
cess latencies, so that processors may be wastingmillions
of cycles during each I/O stall. We propose that a wide
range of disk-bound applications can use these cycles to
dynamically discover their own future readaccesses by
performingspeculative execution, a possibly erroneous
pre-execution of their code.

We present a design for automatically transform-
ing applications to perform speculative execution and
issue hints for their future read accesses. Our de-
sign takes advantage of TIP [Patterson95], an informed
prefetching and caching manager that uses application-
generated hints to better exploit the file cache and I/O
resources. We have implemented a binary modification
tool, SpecHint, that performs this transformation. Using
SpecHint, we obtain substantial reductions (29%, 69%
and 70%) in the execution times of three real-world ap-
plications from the TIP benchmark suite [Patterson95]
when the data is striped over four disks. For two of
the three applications, we automatically obtain the same
benefit as was obtained by manually modifying the ap-
plications to issue hints. We examine the performance
of our design in a variety of configurations, explain-
ing the circumstances under which it falls short of the
performance achieved by manually-hinted prefetching.
Through simulation, we also estimate how the perfor-
mance of our design will be affected by the widening
gap between processor and disk speeds.

This paper is organized as follows. In Section 2, we
discuss previous prefetching mechanisms. In Section 3,
we present our new automatic approach and our design
for transforming applications. In Section 4, we describe
our experimental framework and results. Finally, in Sec-
tions 5, 6, and 7, we present future work, related work,
and conclusions.

2 Prefetching background
As mentioned in the introduction, applications can be

manually modified to control I/O prefetching. For ex-
ample, programmers can explicitly separate a request for
data from the requirement that the data be available by
issuing an asynchronous I/O call. However, there is a se-
rious drawback to using asynchronous I/O. The size of
the file cache, the latency and bandwidth of the I/O sys-
tem, and the level of contention for the file cache and
I/O system all affect the ideal scheduling of I/O requests.
Issuing an asynchronous read call, however, causes the
operating system to immediately issue a disk request for
any uncached data specified by the call. Therefore, in re-
designing an application to issue asynchronous I/O calls,
a programmer implicitly makes assumptions about the
characteristics of the systems on which the application
will be executed.

Programmers can address this issue by using more
sophisticated prefetching mechanisms, e.g. by mod-
ifying applications to issue hints for future read re-
quests to a module that considers the dynamic I/O and
caching behavior of the system before acting on the
hint [Patterson94] (discussed further in Section 2.1).
However, this does not avoid the higher-level problems
with manual modification. First, manual modification
requires that source code be available. Second, man-
ual modification can involve formidable programming
effort, both in understanding how the code currently gen-
erates read requests and in determining how the code
should be modified so that the application will benefit
from I/O prefetching. While some applications will only
require the insertion of a few lines of code in a few strate-
gic locations, other applications may require significant
structural reorganization to supportaccurate and timely
I/O prefetching [Patterson97]. Accordingly, we expect
such modifications to be made only by a small fraction
of programmers on a small fraction of programs. There-
fore, automatic approaches are desirable.

The most widespread form of automatic I/O prefetch-
ing is the sequential read-ahead performed by most
operating systems [Feiertag71, McKusick84] that ex-
ploits the preponderance of sequential whole-file
reads [Ousterhout85, Baker91]. However, sequential
read-ahead has limited utility when files are small. Fur-
thermore, sequential read-ahead will not help, and may
hurt, when access patterns arenonsequential.

In a more sophisticated history-based approach for au-
tomating I/O prefetching, the operating system gathers
information about past fileaccesses and uses it to in-
fer future file requests [Kotz91, Curewitz93, Griffioen94,
Kroeger96, Lei97]. History-based prefetching is partic-
ularly well-suited for discovering and exploitingaccess
patterns that span multiple applications. For example,
it may implicitly recognize the edit-compile-run cycle

and prefetch the appropriate compiler, object files, or li-
braries while a user is editing a source file. When ap-
plied to disk-bound applications such as those used in our
experiments, however, history-based approaches are less
appropriate. These approaches are inherently limited by
the tradeoff between the amount of history information
retained and the achievable resolution in prefetching de-
cisions. High resolution prediction – the ability to antici-
pate irregular block accesses in long-running disk-bound
applications, for example – could require prohibitively
large traces of prior executions. By whatever measures
a particular history-based prefetching system reduces the
amount of information it retains – e.g. by tracking only
certain types of events or only the most frequently oc-
curring events – the system will also sacrifice its ability
to predict the accesses of applications whose access pat-
terns vary widely between runs and/or applications that
heavily exercise the I/O system but recur infrequently.

For these types of applications, we need a different ap-
proach for automating I/O prefetching. We would like an
approach that considers precisely the factors which de-
termine a specific application’s stream of read requests,
without burdening the operating system by requiring it
to maintain long-term application-specific information.
One such approach is for a tool, generally a compiler,
to statically analyze an application in order to determine
how read requests will be generated, and then transform
the application so that the appropriate I/O prefetching
will occur [Mowry96, Trivedi79, Cormen94, Thakur94,
Paleczny95]. Such static approaches have proven ex-
tremely effective at reducing execution times for loop-
intensive, array-based applications. However, these ap-
proaches are limited by hard interprocedural static anal-
ysis problems, especially because I/O is often an ”outer
loop” activity separated from the core computation by
many layers of abstraction (procedure calls and jump ta-
bles, for example).

Our approach is based on having applications perform
speculative execution, which is essentially a form of dy-
namic self-analysis. As with static approaches, we are
able to capture application-specific factors which are ex-
pensive for history-based prefetching systems to extract
and retain. Unlike static approaches, however, we do not
require detailed understanding of the control and data
flow of the application. Instead, our approach requires
only a few simple static analyses and transformations. In
addition, by relying on dynamic analysis, our approach
can easily take advantage of input data values as they be-
comes available during the course of execution.

2.1 TIP
In the last section, we discussed why prefetching and

caching decisions should depend on the dynamic state
of the system. Patterson [Patterson94] and Cao [Cao94]

Benchmark Improvement Description

Agrep 72% text search
Gnuld 66% object code linker
XDataSlice 70% scientific visualization
Davidson 12% computational physics
Postgres, 20% 48% database join,
Postgres, 80% 69% % tuples resulting
Sphinx 21% speech recognition

Table 1: Reductions in execution times using applicationsmanu-
ally modified to issue hints for future accesses, as reported by Patter-
son [Patterson97]. These results were obtained on a 175MHz Digital
3000/600 with 128MB of memory running Digital UNIX 3.2c when
the data was striped over four HP2247 disks with a 64KB striping unit.

have argued that this issue should be addressed by sep-
arating accessunderstanding from resource allocation.
Specifically, Patterson proposed that applications issue
informing hints that disclose their future accesses as a se-
quence, allowing the underlying system to make optimal
global decisions about what and when to prefetch, and
what to eject from memory to make space for prefetched
data. By issuing informing hints, applications would
be both portable to other machines and sensitive to the
changing conditions on any given machine.

To validate his proposal, Patterson designed and built
TIP, an informed prefetching and caching manager that
replaces the Unified Buffer Cache manager in the Dig-
ital UNIX 3.2 kernel. TIP attempts to improve use of
the file cache and I/O resources by performing a cost-
benefit analysis. Roughly speaking, TIP estimates the
benefit of prefetching in response to a hint based on the
accuracy of previous hints from the application and the
immediacy of the hint. It balances this estimated ben-
efit against an estimated cost of prefetching, which is
composed of the estimated cost of ejecting a block from
the cache and the estimatedopportunity cost of using
the I/O system. On a benchmark suite that included a
range of applications, informed prefetching and caching
reduced execution times by 12-72% when data files were
striped over four disks (see Table 1), clearly demonstrat-
ing that application-level hints for future read accesses
can be effectively used to guide intelligent prefetching
and caching decisions that take advantage of the band-
width provided by a parallel I/O system.

These results are impressive, but the applications had
to be manually modified to issue hints. For some of the
applications, such as Gnuld and Sphinx, this involved
significantly restructuring the code so that hints could be
issued earlier and obtain more benefit from prefetching.
The purpose of our research is to make the demonstrated
benefits of prefetching readily accessible by automating
the generation of informing hints.

Our design and implementation of speculative execu-
tion for automatic hint generation assumes that TIP is
the underlying prefetching system (but could be retar-
getted to other prefetching systems). As shown in Table

Ioctl Parameters Description

TIPIO SEG batch of (filename, offset, length) hints one or more segments from a named file
TIPIO FD SEG batch of (file descriptor, offset, length) hints one or more segments from an open file
TIPIO CANCELALL none cancels all outstanding hints from the issuing process

Table 2:Relevant portion of the hinting interface exported by TIP. We do not exercise the capability for batching hints as speculative execution
discovers reads one at a time. Recall that the standard UNIX read call takes a file descriptor, a pointer to a buffer, and a length as its parameters.

2, TIP’s hint interface includes calls which are almost
directly analogous to the basic UNIX read calls. Our
only modification of TIP was the addition of a CAN-
CEL ALL HINTS call, which was accomplished with a
few lines of code. The CANCELALL HINTS call will
only cancel hints; once issued, prefetch requests cannot
be cancelled.

3 Speculative execution

We propose that applications continue executing spec-
ulatively after they have issued a read request that misses
in the file cache; that is, when they would ordinarily stall
waiting for a disk read to complete. During this specula-
tive execution, applications should issue the appropriate
(non-blocking) hint call whenever they encounter a read
request in order to inform the underlying prefetching sys-
tem that the data specified by that request may soon be
required. If the hinted data is not already cached and the
prefetching system believes that prefetching the hinted
data is the best use of disk and cache resources, then it
should issue an I/O request for the hinted data. If the I/O
system can parallelize fetching hinted data with its ser-
vicing of the outstanding read request, then the latency
of fetching the data may be partially or completely hid-
den from the application.

Figure 1 depicts the intuition as to why speculative ex-
ecution works. Consider an application which issues four
read requests for uncached data and processes for a mil-
lion cycles before each of these read requests. Assume
that the data is distributed over three disks, that the disk
access latency is three million cycles, and that there are
sufficient cache resources to store all of the data used by
this application once fetched. If we assume that specu-
lative execution proceeds at the same pace as normal ex-
ecution, then, while normal execution is stalled waiting
for the first read request to complete, speculative execu-
tion may be able to issue hints for the remaining three
read requests. If the data layout allows the hinted data
to be fetched in parallel with service of the outstanding
read request and the subsequent processing, then all of
the subsequent read requests will hit in the cache, and the
application’s execution time will be more than halved.

Of course this is an oversimplification. Speculative
execution will incur some run-time overhead. In addi-
tion, the pre-execution may be incorrect because some
of the data values used during speculation may be incor-
rect (for example, those in the buffer into which data for

Disk 1
Disk 2
Disk 3

Speculative

0 1 2 3 5 6 7 10 11 12 13 14 15 164 8 9
Time (million cycles)

(b)

Normal

Disk 1
Disk 2
Disk 3

Normal R RR R

R R RR

H H H

R = read call H = hint call

(a)

Figure 1:Simplified example of how speculative execution reduces
stall time: (a) shows how execution would normally proceed for a hy-
pothetical application, and (b) shows how execution might proceed for
the application if it performs speculative execution during I/O stalls in
order to generate I/O hints. Performing speculative execution could
more than halve the execution time of this example.

the outstanding read request is being placed). Incorrect
hints may lead the prefetching system to make erroneous
prefetching and caching decisions. For example, they
may result in the disks being busy reading unneeded data
instead of servicing requests that are stalling the applica-
tion, in keeping data in the cache that will not be needed
but was identified by an incorrect hint, or in ejecting data
from the cache that will be needed but was not identified
by a hint. Furthermore, performing speculative execu-
tion will increase contention for other machine resources.
This may result in normal (non-speculative) execution
experiencing additional page faults, TLB misses and/or
processor cache misses. Finally, if there is contention for
the processor or the I/O system as, for example, with a
multithreaded server or in a multiprogrammed environ-
ment, then speculative execution will have less opportu-
nity to improve performance.

3.1 Design goals
We identify three basic design goals for how applica-

tions should be transformed to use speculative execution.
Specifically, the transformation should be:

� Correct– the results of executing a transformed ap-
plication should match those of executing the origi-
nal application;

� Free – a transformed application should, at worst,
be slower than the original application by an in-
significant amount; and

� Effective– as many as possible of the application’s
requests for uncached data should be hinted in a
timely fashion, with the minimum possible impact
on machine resources.

3.2 Our design
Our design currently requires no specialized operat-

ing system support (other than the prefetching system
and strictly prioritized kernel threads) and is appropriate
for single-threaded applications. The basic element in
our current design is the addition of a new kernel thread
to the application. We call this thread thespeculating
thread, and its purpose is to perform speculative execu-
tion while the “original” application thread is stalled. We
ensure that the speculating thread only executes when
the original thread is stalled by assigning the speculating
thread a low priority and selecting a preemptive schedul-
ing policy which time-slices amongst only the highest
priority runnable threads. A hint call is issued by the
speculating thread whenever it encounters a read call.

3.2.1 Ensuring program correctness

There are three ways in which performing speculative
execution could potentially change the behavior of the
application. First, since the speculating thread shares an
address space with the original thread, it could distort
normal execution by changing code or data values that
will be used by the original thread. Second, the spec-
ulating thread could produce side-effects visible outside
the process, changing the impact of the application on
the system. Finally, the speculating thread may inadver-
tently use inappropriate data values, like dividing by 0 or
accessing anillegal address, that disrupt the execution of
the application.

We ensure the correctness of our transformation by
avoiding these potential problems. We prevent the specu-
lating thread from producing side-effects visible outside
the process by not allowing the speculating thread to is-
sue any system calls except the hint calls (described in
Table 2), and thefstat() andsbrk() calls.1 We pre-
vent the use of inappropriate data values from disturbing
normal execution by installing signal handlers to catch
any exceptions generated by the speculating thread, halt-
ing speculative execution until the original thread blocks
on a new read call. Finally, we prevent the speculating
thread from changing code or data values used by the
original thread throughsoftware-enforced copy-on-write.

Inspired by software fault isolation [Wahbe93],
software-enforced copy-on-write involves adding checks

1We add a set of memory allocation routines for use by the speculat-
ing thread to prevent speculative execution from introducing memory
leaks. Notice that the behavior of an application could be inadvertently
altered if it depends on its dynamic state (e.g. on the location of its sbrk
pointer) or on the last access time of a file. We expect these types of
applications to be uncommon.

before each load and store instruction executed by the
speculating thread, and adding a data structure to keep
track of which memory regions have been copied and
where their copies reside. Before each store instruc-
tion executed by the speculating thread, a check is added
which accesses the data structure to discover whether the
targetted memory region has already been copied. If so,
the store is redirected to access the copy. If not, the mem-
ory region is copied, the data structure is updated, and the
store is redirected to the newly created copy. Similarly,
before each load instruction, a check is added which ac-
cesses the data structure to discover whether the refer-
enced memory region has already been copied and, if so,
redirects the load to obtain the value stored in the copy,
which is the “current” value with respect to speculative
execution.

Since load and store instructions comprise approxi-
mately 30% of the average instruction mix, software-
enforced copy-on-write could be an expensive solution.
For example, it may appear that the original thread would
need to execute many additional branching instructions
to avoid performing the checks. We avoid this over-
head by making a complete copy of the binary’s text sec-
tion and constraining the speculating thread to only ex-
ecute within the copy, which we call theshadow code.
This permits us to add copy-on-write checks only around
loads and stores in the shadow code, so that the original
thread does not need to execute any additional instruc-
tions to support software-enforced copy-on-write.

Minimizing additional instructions in the original
thread’s code path is an example of our effort to mini-
mize theobservable overheadof supporting speculative
execution. The checking necessary to perform software-
enforced copy-on-write does not add directly to the exe-
cution time of the application; it simply causes specula-
tive execution to proceed more slowly than normal exe-
cution; that is, it isnonobservable overhead. In general,
we prefer design choices that incur nonobservable over-
head to those that incur observable overhead since they
seem less likely to affect worst-case performance.

We ensure that the speculating thread only executes
shadow code by statically and/or dynamically checking
and redirecting all control transfers (that is, possibilities
for non-sequential changes in execution address). All
control transfers that can be statically resolved are stati-
cally redirected to the appropriate address in the shadow
code. Control transfers that cannot be statically re-
solved include those dynamically calculated using jump
tables, corresponding to switch statements. Our binary
modification tool only recognizes a few of the possible
compiler-dependent jump table formats, so it can only
statically handle switch statement control transfers that
rely on jump tables in a recognized format. All other
control transfers are statically redirected to call a special

handling routine with the originally intended target ad-
dress as an argument. During runtime, if the originally
intended target address is in the shadow code, the han-
dling routine allows the speculating thread to proceed to
that address. If the address is not in the shadow code but
can be mapped to an address in the shadow code, then the
handling routine redirects the speculating thread.2 Other-
wise, the handling routine simply prevents the speculat-
ing thread from leaving the shadow code (by preventing
further progress until a new speculation is started, as dis-
cussed in the next section). Notice that, for applications
with self-modifying code, this scheme will not allow the
speculating thread to execute any newly created code, or
to modify the existing shadow code.

One potential advantage of using software-enforced
copy-on-write is the flexibility it permits in choosing
the size of copy-on-write memory regions. However,
when we explored this flexibility by varying the copy-
on-write region size from 128B to 8192B, we discovered
that it generally made no significant difference to the per-
formance improvements obtained – the only difference
larger than 5% was a 9% reduction in performance for
Gnuld with a region size of 8192B. All of the results pre-
sented in this paper were obtained using 1024B regions.

3.2.2 Generating correct and timely hints

We would like to issue hints for as many of the read
calls as possible so that TIP will have as much infor-
mation as possible on which to base its prefetching and
caching decisions. In addition, we would like to issue
these hints as early as possible so that there will be ample
opportunity to hide the latency of any prefetches. There
are two situations that could obstruct these goals. First,
because the speculating thread is only allowed to execute
when the original thread is blocked, speculative execu-
tion could fall “behind” normal execution. If speculation
is allowed to proceed in this situation, speculative exe-
cution would need to waste many cycles catching up to
normal execution before it would be able to issue useful
hints (that is, hints for read calls that have not already
been issued). For some applications, including those
with a long intermediate processing phase, speculative
execution might never be able to catch up to normal exe-
cution. Second, because the speculating thread proceeds
with incomplete state information, speculative execution
could “stray” from the execution path that will be taken
during normal execution. If speculation is allowed to
proceed in this situation, the speculating thread might not
be able to hint any future read calls. Even worse, it might
generate a stream of incorrect hints, which could signifi-
cantly hurt performance as explained at the beginning of

2Currently, the handling routine can only map function addresses,
so that it can redirect control transfers through function pointers, but
not computed goto statements.

Section 3. We describe speculative execution as beingon
track if the next hint issued would correctly predict the
next unhinted future read call; otherwise, we describe
speculative execution as beingoff track. We attempt to
keep speculative execution on track as much as possible
in order to increase the benefit we will be able to obtain
through prefetching.

A pessimistic approach to keeping speculative execu-
tion on track would be to restart speculation every time
the original thread blocks on a read call, where “restart-
ing speculation” means causing the speculating thread to
execute as if it had just returned from the call on which
the original thread is currently blocked. However, this
bounds how far speculative execution can predict the fu-
ture to the distance it can progress during a single I/O
stall, unnecessarily limiting the potential benefit of spec-
ulative execution. We attempt to increase the number of
correct and timely hints generated by having the specu-
lating and original threads cooperate to restart specula-
tion only when they detect that speculative execution is
off track.

Detecting when speculative execution is off track is
accomplished by having the speculating thread record the
hints it issues in a new data structure, called thehint log.
The original thread maintains an index into the hint log
and, whenever it is about to issue a read request, it checks
the next entry in the hint log. If there is no next entry in
the hint log, then the original thread knows that specu-
lative execution is behind normal execution and is there-
fore off track. If there is an entry but it does not match the
read request, then the original thread knows that specu-
lative execution strayed from the correct execution path
at some point in the past and is therefore off track. On
the other hand, if the next entry matches the read, then,
as far as the original thread can determine, speculative
execution may still be on track.

Upon detecting that speculative execution is off track,
the speculating and original threads also cooperate to
restart speculation. In order to restart speculation,
the speculating thread needs the original thread’s state.
When the original thread detects that speculative execu-
tion is off track, it copies the values of its registers into
a data structure since the speculating thread cannot oth-
erwise acquire their values and sets a “restart” flag to
inform the speculating thread that it is off track. This
work is performed before the original thread issues its
read request because, if the original thread blocks on the
read request, the speculating thread will have the oppor-
tunity to run. The speculating thread polls the restart
flag frequently and, if the flag is set, cleans up its cur-
rent speculation by cancelling any outstanding hints and
clearing the copy-on-write data structure. The speculat-
ing thread then restarts speculation by loading the origi-
nal thread’s saved register values, making a copy of the

original thread’s stack3, and jumping to the instruction
which immediately follows the read system call in the
shadow code.

Through this cooperation, we ensure that the speculat-
ing thread will not waste many cycles executing behind
the original thread. We also ensure that the speculating
thread will not waste cycles restarting speculative execu-
tion unless there is reason to believe that it is off track.
While we cannot ensure that the speculating thread will
not perform incorrect speculation and issue erroneous
hints, we address this situation when it is detected by the
original thread. Finally, we require the original thread to
perform little additional work (at most, checking an en-
try in the hint log and saving its registers once per read)
so that observable overhead is small.

3.3 Transforming applications
We use binary modification to automatically transform

applications so that they will perform speculative execu-
tion. We chose to use binary modification because it does
not require source code and can be both language- and
compiler-independent. Of course, the speculative exe-
cution transformations could also be performed within a
compiler.

The SpecHint tool is implemented in 16,000 lines of
C code. Currently, the tool is relatively unsophisticated.
It is restricted to Digital UNIX 3.2 Alpha binaries pro-
duced by the nativecc compiler that are single-threaded,
statically linked, and retain their relocation information.
It does not yet perform any loop optimizations, which
could significantly decrease the number of copy-on-write
checks in some codes. The tool does recognize, and re-
move from the shadow code, calls to a few of the stan-
dard library output routines (printf , fprintf and
flsbuf) because these routines are known not to in-
fluence future read accesses and can require many cycles
to execute.

As illustrated in Figure 2, the application object files
and libraries are first linked with the SpecHint auxiliary
object files and the necessary libraries to support thread-
ing. The resulting binary is transformed by SpecHint,
then linked normally to produces a transformed applica-
tion executable. The SpecHint object files, which were
generated from 4,000 lines of assembly code, include the
dynamic memory allocation routines used by the specu-
lating thread and the routine that handles control trans-
fers that cannot be statically resolved (discussed in Sec-
tion 3.2.1), as well as a routine that the speculating thread
executes in order to restart speculation (discussed in Sec-
tion 3.2.2). They also contain versions ofstrncpy and

3In combination with placing dynamic checks on instructions which
modify the stack pointer and cannot be statically checked, copying the
stack also allows us to avoid copy-on-write checks for load and store
instructions off the stack pointer.

Standard
linker

Standard
linker

SpecHint
object files

Libraries
for

threading

application
Speculating

executable

Application
object files

and libraries

SpecHint
tool

Figure 2: Transforming applications to use speculative execution.
The SpecHint object files contain various routines executedby the orig-
inal or speculating thread in order to support speculative execution.

memcpy for the shadow code that were hand-optimized
to simulate the effect of performing loop optimizations to
minimize copy-on-write checks in these standard library
routines.

4 Experimental evaluation
In this section, we describe our experimental environ-

ment, our benchmarks, and our results. The SpecHint
tool implements the design described in the previous
section by modifying Alpha binaries for Digital UNIX
3.2. Threading to support speculative execution was
implemented using Digital UNIX’s POSIX-compliant
pthreads library.

Our experiments were conducted on an AlphaStation
255 (233MHz processor) with 256MB of main memory
running Digital UNIX 3.2g, where the standard Unified
Buffer Cache (UBC) manager was replaced with the TIP
informed prefetching and caching manager. To facilitate
comparison with Patterson’s work [Patterson95], the file
cache size was set to 12MB. The automatic read-ahead
policy, which was invoked by all unhinted read calls,
prefetches approximately the same number of blocks as
have been sequentially read, up to a maximum of 64
blocks. The I/O system consisted of four HP C2247
disks (15ms average access times) attached by fast-wide-
differential SCSI. Data files were striped over these disks
by a striping pseudodevice with a striping unit of 64KB.
A new file system was created to hold the files used in
our experiments. All tests were run with the file cache
initially empty. All reported results are averages over
five runs. To facilitate comparison with programmer-
inserted hints, we reran the manually modified applica-
tions [Patterson95] on this testbed.

4.1 Benchmark applications
We evaluated the effectiveness of our approach on

three benchmark applications from the TIP benchmark
suite [Patterson97].

Agrep(version 2.04) is a fast full-text pattern matching
program. The application loops through the files speci-
fied on its command line, opening and reading each file
sequentially. Therefore, the arguments to Agrep com-
pletely specify the stream of read accesses it will per-
form. In the benchmark, Agrep searches 1349 Digital

Benchmark Modification Transformed % increase
time (s) executable size in size

Agrep 21 1,648 KB 610%
Gnuld 23 2,408 KB 349%
XDataSlice 151 10,792 KB 138%

Table 3:Transformed application statistics.

UNIX kernel source files occupying 2928 disk blocks for
a simple string that does not occur in any of the files.

Gnuld (version 2.5.2) is the Free Software Founda-
tion’s object code linker. The input object files are spec-
ified on the command line. Gnuld first reads each ob-
ject file’s file header, symbol header, symbol tables and
string tables. The location of each file’s symbol header
is stored in its file header, and the locations of its symbol
and string tables are stored in its symbol header. Gnuld
then makes up to nine small, non-sequential reads in
each object file to gather debugging information. The
locations of these reads are determined from the symbol
tables. Finally, Gnuld loops through the different non-
debugging sections that appear in an object file, reading
the corresponding section fromeach of the object files.
Interspersed with the reads, Gnuld processes the data in
order to produce and output an executable. In the bench-
mark, 562 binaries are linked to produce a Digital UNIX
kernel.

XDataSlice(version 2.2) is a data visualization pack-
age that allows users to view a false-color represen-
tation of arbitrary slices through a three-dimensional
data set. The original application limited itself to data
sets that fit into memory, but Patterson modified the
application to load data dynamically from large data
sets [Patterson95]. In the benchmark, XDataSlice re-
trieves 25 random slices (the same slices used for Pat-
terson’s experiments) through a data set of512

3 32-bit
floating-point numbers that resides in 512MB of disk
space.

4.2 Transformed applications
The application binaries were transformed by

SpecHint on a 500MHz AlphaStation 500 with 1.5GB
of memory. SpecHint is an unoptimized research
prototype. Nevertheless, as shown in Table 3, SpecHint
was able to modify our benchmark applications in a
reasonable amount of time, 21 to 151 seconds. The
resulting binaries were processed by the standard linker
to produce speculating executables that, unlike the
original application executables, contain shadow code,
the SpecHint binaries, and libraries to support threading.
These additions resulted in a 138% to 610% increase in
executable size.

4.3 Overall performance results
As shown in Figure 3, performing speculative exe-

cution significantly reduces the execution times of our

Agrep Gnuld XDataSlice
0

50

100

150

200

250

300

350

E
la

ps
ed

 ti
m

e
(s

)

Original
Speculating
Manual

Figure 3: Performance improvement.Original corresponds to the
original, non-hinting applications;Speculatingcorresponds to the ap-
plications transformed to perform speculative execution for hint gener-
ation; andManualcorresponds to the applications manually modified
to issue hints. In all cases, the non-hinted read calls issued by the ap-
plications invoked the operating system’s sequential read-ahead policy
(which is described at the beginning of Section 4).

Agrep Gnuld XDataSlice
0

50

100

150

200

250

300

350

E
la

ps
ed

 ti
m

e
(s

)

Original
Speculating
Manual

Figure 4: Runtime overhead of supporting speculative execution,
as captured by running the benchmarks with TIP configured to ignore
hints.

benchmark applications (by 69%, 29% and 70%, respec-
tively, for Agrep, Gnuld and XDataSlice). For Agrep and
XDataSlice, we were able to automatically achieve the
same performance improvements obtained when the ap-
plications were manually modified to issue hints. For
Gnuld, our gain was much less than that of the manu-
ally modified application, but still represents a substan-
tial improvement over the original non-hinting applica-
tion. Based on these results, and considering the rela-
tive unsophistication of our tool, speculative execution
promises to be an effective technique for exploiting disk
parallelism and underutilized processor cycles to reduce
the execution time of disk-bound applications.

If TIP is configured to ignore hints, the applications
that perform speculative execution were no more than
4%, and as little as 1%, slower than the original appli-
cations as shown in Figure 4. These figures capture all of
the factors that can contribute to the worst-case perfor-

Benchmark Read calls Read blocks Read bytes Write calls Write blocks Write bytes

Agrep total 4,277 2,928 18,091,527 0 0 0
% hinted 68.1% 99.6% 99.7% – – –
inaccurately hinted 0 0 0 – – –
% manually hinted 68.3% 99.8% >99.9% – – –

Gnuld total 13,037 20,091 60,158,290 2343 3418 8,824,188
% hinted 54.9% 67.5% 89.7% – – –
inaccurately hinted 2,336 6,721 37,177,440 – – –
% manually hinted 78.4% 86.0% 99.6% – – –

XDataSlice total 46,356 46,352 370,663,914 2 2 4081
% hinted 97.5% 97.5% 99.9% – – –
inaccurately hinted 0 0 0 – – –
% manually hinted 97.6% 97.6% >99.9% – – –

Table 4:Hinting statistics.Total includes explicit file calls only. The hinting behavior of the speculating applications is described by the% hinted
andinaccurately hintedfigures, and can be compared with the behavior of the manually modified applications (which issued no inaccurate hints)
described by the% manually hintedfigures. The number of read calls is sometimes larger than the number of read blocks because, for example,
Agrep issues at least one extra read call per file to detect the end of the file. Discounting these non-data-returning reads (which do not need to be
hinted), over 99% of Agrep’s read calls were hinted.

mance of the speculating applications except the poten-
tial negative effects of any erroneous hints. These factors
include increased memory contention, the overhead of
checking hint log entries before issuing read calls, and
the overhead of executing an initialization routine that,
among other things, spawns the speculating thread.

4.4 Performance analysis
Having established that speculative execution achieves

significant performance improvements, we examine the
behavior of the speculating applications and attempt to
explain the differences between our results and those ob-
tained with manually modified applications.

The primary metric for automatic hint generation is
the number of correct hints generated. Table 4 summa-
rizes the hinting behavior of the original and transformed
applications. For Agrep and XDataSlice, we found that
speculative execution was able to issue hints for nearly as
many of the read calls as the manually modified applica-
tions. However, speculative execution was significantly
less successful for Gnuld, hinting only 55% of the read
calls in contrast to the 78% that the manually modified
application was able to hint.

There are two basic reasons why speculating appli-
cations may hint fewer read calls than manually mod-
ified applications. One is that speculating applications
must determine what to hint dynamically, but are only
allowed to pursue hint discovery while normal execution
is stalled. In fact, the more successfully a speculating
application generates hints that will hide I/O latency, the
less opportunity it will have to pursue hint discovery, un-
less the application is bandwidth-bound. The other rea-
son is that data dependencies limit how early prefetches
can be issued. For example, if the data specified by the
next read call depends on the data returned by the cur-
rently outstanding read call, then speculative execution
will not be able to hint the next read call.

Agrep is the most likely of our applications to be af-

fected by the fact that hint discovery is only performed
during I/O stalls. Agrep has the largest median number
of cycles between read calls – 30362, 15902 and 4454
for Agrep, Gnuld and XDataSlice, respectively. It also
has the largest ratio between the median number of cy-
cles between hint calls and the median number of cycles
between read calls – 7.5, 1.6 and 1.3 for Agrep, Gnuld
and XDataSlice, respectively. (This ratio, which we call
thedilation factor, is larger than one mainly due to the
copy-on-write checks performed during speculative exe-
cution.) Accordingly, of our three applications, the spec-
ulating Agrep generates hints at by far the slowest rate.
However, the almost equal gains achieved by the specu-
lating Agrep and the manually modified Agrep indicate
that this property of our design has negligible impact.

During the process of manually modifying an applica-
tion to issue hints, programmers can make the applica-
tion more amenable to prefetching by restructuring the
code to increase the number of cycles between depen-
dent read calls. As mentioned in Section 2.2, this was
the case for the manually modified Gnuld. The speculat-
ing Gnuld, however, was produced from the original, un-
modified code. It is only able to hint 55% of the read calls
because a speculating application cannot hint a read call
if it depends on a prior read and there are no I/O stalls be-
tween when the prior read completes and when the read
call is issued. In addition, since a read cannot be hinted
until all the data it is dependent on becomes available,
data dependencies may cause hints to be issued too late
to fully hide the latency of fetching the specified data.
Comparing the speculating Gnuld to the manually mod-
ified Gnuld, over five times as many data blocks were
only partially prefetched before being requested by the
application (as shown in thePartially column of Table 5),
indicating that the speculating Gnuld experienced many
more I/O stalls. Finally, since each speculation proceeds
with the assumption that future read calls are not data
dependent, data dependencies may cause erroneous hints

Benchmark Cache Prefetched Prefetched Blocks Cache
Block Reads Blocks Fully % Partially % Unused % Block Reuses

Agrep Original 3,424 1,031 529 51.3% 499 48.4% 3 0.4% 416
SpecHint 3,726 3,003 2,707 90.2% 272 9.1% 23 0.8% 655
Manual 3,423 2,947 2,687 91.2% 258 8.8% 1 0.0% 421

Gnuld Original 24,074 5,511 2,544 46.2% 2,014 36.6% 952 17.3% 12,435
SpecHint 25,353 12,855 3,498 27.2% 5,432 42.3% 3,924 30.5% 13,646
Manual 23,892 10,018 8,933 89.2% 1,057 10.6% 27 0.3% 13,519

XDataSlice Original 49,997 60,702 12,806 21.1% 12,664 20.9% 35,231 58.0% 4,162
SpecHint 50,810 45,338 40,319 88.9% 4,907 10.8% 112 0.3% 4,973
Manual 49,782 44,938 40,167 89.4% 4,750 10.6% 20 0.0% 4,491

Table 5: Prefetching and caching statistics. For the original, non-hinting applications, the prefetching figures are the result of the operating
system’s sequential read-ahead policy. For the speculating applications, the prefetching figures also include TIP’s hint-driven prefetching.Cache
Block Readsis the number of block reads from the file cache.Prefetched Blocksis the number of blocks prefetched from disk.Fully is the number
of blocks whose prefetch completed before being requested by the application,Partially is the number of blocks partially prefetched before being
requested by the application, andUnusedis the number of prefetched blocks that were not accessed by the application before being ejected from
the file cache. ACache Block Reuseis counted each time a cached block services a second or subsequent request, and therefore indicates the
effectiveness of caching. The closeness of theCache Block Reusefigures indicates that erroneous prefetching did not significantly harm caching
behavior.

to be generated. The speculating Gnuld generates 2,336
erroneous hints, as shown in Table 4, contributing to the
prefetching of 3,924 unused data blocks, as shown in Ta-
ble 5.

Prefetching speculatively, and therefore sometimes in-
correctly, is not new. History-based mechanisms all have
this property. Specifically, Digital UNIX has an aggres-
sive automatic read-ahead policy based on the expecta-
tion that files are read sequentially. It prefetches approx-
imately the same number of blocks as have been read
sequentially, up to a maximum of 64 blocks. For ap-
plications that issue nonsequential reads to large files,
like XDataSlice, this read-ahead policy can be entirely
too aggressive. As shown in Table 5, 58% of the blocks
prefetched by sequential read-ahead for the non-hinting
XDataSlice are not used. In contrast, since the read-
ahead policy is only invoked by unhinted read calls and
the hinting XDataSlices generate hints for almost all of
the read calls, the hinting XDataSlices are able to almost
eliminate the erroneous prefetches generated by the read-
ahead policy.

4.5 Performance side-effects

In addition to generating hints, speculative execution
will have other, less desirable performance effects. For
example, since the speculating thread uses shadow code
and performs copy-on-write, the speculating applications
have larger memory footprints, consume memory more
rapidly, and experience more page faults than the orig-
inal applications. Table 6 shows that the memory foot-
prints increase by 544 KB to 4.1 MB, the number of
page reclaimes increases by 95 to 633, and the number
of page faults increases by 12 to 40. In addition, the
speculating applications may generate extraneous signals
because speculative execution may use erroneous data in
its calculations. Table 6 shows that the speculating appli-
cations generate up to 39 extraneous signals. However,

Benchmark Footprint Reclaims Faults Sigs

Agrep Original 160 KB 39 4 0
SpecHint 704 KB 134 16 0
Manual 152 KB 39 4 0

Gnuld Original 10.1 MB 1,341 12 0
SpecHint 14.2 MB 1,974 52 39
Manual 10.5 MB 1,389 14 0

XDS Original 62.0 MB 8,105 61 0
SpecHint 62.5 MB 8,202 93 2
Manual 62.1 MB 8,104 60 0

Table 6: Performance side-effects of speculative execution.Foot-
print is the maximum amount of memory that is physically mapped on
behalf of the application at any time.Reclaimsis the number of page
reclaims, andFaultsis the number of page faults, generated by the ap-
plication. A page reclaim occurs if a referenced page is still in memory
but is not physically mapped, and therefore requires operating system
intervention but does not require a disk access. On our evaluation plat-
form, at least one third of the memory-resident pages are not physically
mapped, as determined by an LRU policy.Sigsis the number of signals
generated by the application. For our applications, these signals were
either segmentation violations or floating point exceptions.

many of the additional page reclaims and page faults, and
all of the additional signals, will occur while the original
thread is blocked on I/O, so that they would be nonob-
servable overhead. As described in Section 4.3, the ob-
servable overhead of these performance side-effects is
captured within the less than 4% increases in runtime ob-
served when hints were disabled.

4.6 Varying file cache size
All previously reported results for the manually mod-

ified applications were obtained with a 12 MB file
cache [Patterson95, Patterson97]. We measure the sen-
sitivity of our results to the file cache size by running
the benchmarks with a smaller (6 MB) file cache, and
a larger (64MB) file cache. The cache size can affect
performance because the sequential read-ahead policy
sometimes prefetches data that will be accessed much
later, and larger cache sizes may allow more of this data
to remain in memory until the future access. For exam-

Benchmark File cache size
6 MB 12 MB 64 MB

Agrep Original 21.3 21.4 21.2
SpecHint 6.5 (69%) 6.5 (70%) 6.4 (70%)
Manual 6.3 (70%) 6.2 (71%) 6.1 (71%)

Gnuld Original 106.3 89.5 56.5
SpecHint 74.7 (30%) 63.3 (29%) 45.2 (20%)
Manual 34.4 (68%) 30.2 (66%) 25.4 (55%)

XDS Original 295.0 324.6 279.0
SpecHint 94.6 (68%) 97.0 (70%) 87.8 (69%)
Manual 91.4 (69%) 94.1 (71%) 85.8 (69%)

Table 7:Elapsed time of applications as the file cache size is varied
(in seconds). Percentages indicate performance improvement relative
to the original, non-hinting application.

ple, as shown in Table 7, the performance of the original,
non-hinting Gnuld improves significantly as thecache
size increases, reducing the benefit that can be obtained
through prefetching. The speculating Gnuld achieves rel-
atively less benefit with a 64MB cache because many of
the read calls which it can generate hints for no longer
require prefetching, whereas many of the read calls it is
unable to hint continue causing I/O stalls. For Agrep and
XDataSlice, there is little data reuse and sequential read-
ahead seldom fetches data that is accessed much later, so
the cache size does not affect the benefit obtained by the
hinting applications.

4.7 Varying available I/O parallelism
While four-disk arrays are widely available, we also

tested a single disk configuration and smaller and larger
arrays. As shown in Table 8, the original, non-hinting
applications are unable to derive much benefit from ad-
ditional disks.

As shown in Figure 5, all the benchmarks receive sig-
nificantly less benefit from speculative execution when
there is only one disk because prefetching can only be
overlapped with computation. The performance of spec-
ulating Gnuld degrades with one disk because erroneous
prefetches consume scarce bandwidth, delaying service
for the application’s demand requests. As we discuss in
Section 5, we believe that simple mechanisms can be em-
ployed to address this problem.

One objection to our assumptions – that disk-bound
applications will be running on machines that have both
disk arrays and no competing tasks to run on the pro-
cessor – is that more than one disk is attached to a ma-
chine only if it is a shared server. However, Rochberg has
shown that the TIP system can be effectively extended
to allow clients to prefetch from distributed file servers
with multiple disks [Rochberg97]. It is these “personal”
clients that will be most rich in excess processor cycles.

As shown in Figure 5, the benefit of the hinting ap-
plications increase, and their runtimes decrease, when
I/O parallelism is available. The benefit obtained by the
manually modified applications increases monotonically

Benchmark Number of Disks
1 2 4 10

Agrep 23.8 24.1 21.4 20.1
Gnuld 93.7 101.3 89.5 82.8
XDS 303.5 292.0 324.6 265.7

Table 8: Elapsed time of original, non-hinting applications as the
number of disks is varied (in seconds).

1 2 3 4 5 6 7 8 9 10
Number of Disks

−15

−5

5

15

25

35

45

55

65

75

85

%
 Im

pr
ov

em
en

t

Agrep − speculating
Agrep − manual
Gnuld − speculating
Gnuld − manual
XDataSlice − speculating
XDataSlice − manual

Figure 5:Performance improvementas the number of disks is varied.

with the number of disks since these applications always
issue enough hints to take advantage of the additional
disks. For Agrep, the benefit of the speculating applica-
tion mirrors that of the manually modified application for
the 2 and 4 disk configurations. However, due to the di-
lation factor discussed in Section 4.4, speculative execu-
tion is not far enough ahead of normal execution to issue
sufficient hints to keep 10 disks busy. For Gnuld, data
dependencies limit hint generation, and therefore the de-
gree to which the speculating application is able to utilize
additional disks. For XDataSlice, however, speculative
execution generates more than enough hints to take ad-
vantage of the additional I/O parallelism.

4.8 Increasing relative processor speed
Due to rapid improvements in processor technology,

the gap between processor speeds and I/O latency con-
tinues to widen. This will increase the number of cycles
per I/O stall, and therefore the progress that speculative
execution can make during a single stall. To predict the
impact of this trend on the effectiveness of our approach,
we modified the striping pseudodevice to delay notifica-
tion of completed I/O requests. For example, to simulate
the effect of doubling the gap between processor and disk
speeds, we doubled the time before the system was noti-
fied that each I/O request had completed, then scaled our
resulting measurements by half.4 Since disk position-
ing times and data rates improve at different rates, and

4To obtain the desired effect on the perceived service time of
prefetch requests, we configured the pseudodevice to limit the number
of prefetch requests outstanding at each disk to at most one.

1 2 3 4 5 6 7 8 9
Processor speed / Disk speed

0

10

20

30

40

50

60

70

80

90

100

%
 Im

pr
ov

em
en

t

Agrep − speculating
Agrep − manual
Gnuld − speculating
Gnuld − manual
XDataSlice − speculating
XDataSlice − manual

Figure 6: Results from simulating a widening of the gap between
processor and disk speeds. A processor/disk speed ratio of 1 indicates
results in our current experimental environment.

data rates have been improving at 40% per year lately,
this simulates an artificially slow transfer rate. However,
since the disks perform track-buffer read-ahead while the
pseudodevice is delaying completion,accesses which are
physically sequential will appear to have a faster than
modelled transfer rate.

Our simulation results are shown in Figure 6. The im-
provements obtained by the manually modified applica-
tions increase steadily but insignificantly. This is unsur-
prising since their performance is limited by the avail-
able I/O bandwidth and their processing times are al-
ready only a small percentage of their execution times.
The curves for the speculating applications are similar to
those for the manually modified applications, although
offset in Gnuld’s case. For Agrep and XDataSlice, spec-
ulative execution already generates enough hints to keep
the disks busy at all times.5 For Gnuld, data dependen-
cies, which are independent of processor speed, prevent
speculative execution from using the additional cycles
during I/O stalls to hint more read calls. For some ap-
plications, a more sophisticated design may be able to
take advantage of these additional cycles. For example,
it may prove useful to loosen our current definition of
what it means for speculative execution to be on track.
In general, however, applications dependent on recently
read values may not be able to derive additional benefit
from faster processors (unless they are rewritten to allow
newly read data to affect future reads only after more in-
tervening disk requests have been issued).

5Recall from the last section that the speculating Agrep was not
able to generate enough hints to keep 10 disks busy on our current
experimental platform. Under simulation, increasing the processor-to-
disk speed ratio alleviated this problem so that, with a ratio of 3, the
performance improvement of the speculating Agrep and the manually
modified Agrep were 87% and 84%, respectively.

5 Future work
Having successfully demonstrated that speculative ex-

ecution can be used to automate I/O hint generation, we
are working on refining our design to better handle data-
dependent applications like Gnuld. We discovered that
even a simple, ad-hoc mechanism – disabling speculative
execution for a brief time after some number of cancel
requests have been issued – was sufficient to eliminate
the performance penalty of performing speculative exe-
cution in Gnuld when the I/O system offered no paral-
lelism. We are exploring more generic methods for lim-
iting the number of erroneous hints generated, and for
reducing the negative impact of erroneous hinting.

We are also investigating how speculative execution
can be effectively employed in the range of possible
multiprogramming/multithreaded scenarios. In particu-
lar, we are developing methods for evaluating the effec-
tiveness of any particular speculation and for using this
evaluation to decide what speculation, if any, should be
scheduled and allowed to consume shared machine re-
sources.

Multiprocessor environments offer another exciting
possibility. One of the biggest challenges for propo-
nents of multiprocessors is how they will enable non-
parallelized applications to utilize the additional process-
ing resources. By performing speculative execution in
parallel with normal execution, disk-bound applications
that cannot be automatically parallelized using compiler
techniques may still be able to take advantage of the ad-
ditional processing capabilities of a multiprocessor.

6 Related work
In Section 2, we discussed history-based prefetching,

static approaches to automating prefetching, informing
hints and the TIP prefetching and caching manager.

Mowry, Demke and Krieger’s work [Mowry96] re-
lies on static analysis, but also makes use of dynamic
information provided by the operating system. Their
approach applies to memory-mapped files, so that their
hints affect virtual memory management as well as file
cache management. Their use of hints differs from ours
in that their compiler is responsible for placing hints
based on a static decision of when prefetches should be
issued, whereas we rely on TIP to manage the scheduling
of prefetches.

Research presented by Franaszek, Robinson and
Thomasian is close in spirit to our own [Franaszek92].
Through simulation, they demonstrated that pre-
executing database transactions in order to prefetch data
or pre-claim locks could significantly increase through-
put because it reduced effective concurrency. However,
their simulations assumed that pre-execution would al-
ways cause the correct data to be prefetched (or the cor-
rect locks to be claimed). Our approach differs from

theirs primarily in two aspects. First, to reduce con-
flicts, they proposed that pre-execution of a transaction
would run to completion before the transaction would
re-execute with the intent to commit. In our system, pre-
execution is overlapped with, and always secondary to,
normal execution. Second, they explored pre-execution
as a concurrency control technique for manual inclusion
in the design and implementation of database systems.
One of the essential properties of our work is the abil-
ity to automatically transform applications to use pre-
execution.

The idea of adding software checks around load and
store instructions was first brought to our attention by
Lucco and Wahbe [Wahbe93]. They used these checks
to perform software fault isolation, a fast alternative to
hardware-enforced memory protection. Our checks are
more complex and costly in order to implement software-
enforced copy-on-write.

7 Conclusions

Disk-bound applications, increasingly common as
faster computers and larger storage encourage users to
manipulate more data, have their performance deter-
mined by storage rather than processor performance.
While parallel storage systems are increasingly common,
applications that exploit them well are not. Aggressive
prefetching is a simple way to effectively utilize storage
parallelism to reduce application latency, provided suf-
ficiently detailed predictions of future accesses can be
made sufficiently early.

This paper extends aggressive prefetching research
with an automatic hint generation technique based on
speculative pre-execution using mid-execution applica-
tion state. Invoked only when the application is stalled
waiting for I/O, speculative execution can add little or
no observable overhead to the application. Provided that
cycles are available in these time periods, speculative ex-
ecution can discover future read accesses and issue hints
to an aggressive prefetching system.

We have designed and implemented a binary modifi-
cation tool that transforms Digital UNIX binaries to au-
tomatically perform speculative execution. Applied to a
text search utility, a linker, and a 3-D visualization pro-
gram, our system demonstrated 29% to 70% reductions
in execution time with a four-disk array. A principle lim-
itation of the current design is the lack of more effec-
tive automatic mechanisms for limiting the penalty of
erroneous hinting due to data dependencies. The rela-
tively large success of our currently unsophisticated de-
sign demonstrates that speculative execution is a promis-
ing new approach to aggressive I/O prefetching.

Acknowledgements
We thank David Nagle and Digital Equipment Cor-

poration for providing the AlphaStation 500. We thank
Paul Mazaitis for setting up the various hardware con-
figurations, David Rochberg and Jim Zelenka for their
assistance with TIP and Digital UNIX, and Robert
O’Callahan for many invaluable discussions. We also
thank John Hartman and the anonymous referees for their
feedback on earlier drafts of this paper. TIP was devel-
oped by Hugo Patterson, and the SpecHint tool was in-
spired by a project with Steve Lucco to implement a soft-
ware fault isolation tool for Digital UNIX.

References
[Baker91] Mary Baker, et. al. Measurements of a dis-

tributed file system. Proceedings of the 13th
SOSP, October 1991.

[Cabrera91] Luis-Felipe Cabrera and Darrell D. E. Long.
Swift: Using distributed disk striping to pro-
vide high I/O data rates. Computing Systems
4(4), pp.405-436, Fall 1991.

[Cao94] P. Cao, E.W. Felton and K. Li. Imple-
mentation and performance of application-
controlled file caching. Proceedings of the
1st OSDI. November, 1994.

[Cormen94] Thomas H. Cormen and Alex Colvin. ViC*:
A preprocessor for virtual-memory C*. TR
PCS-TR94-243, Department of Computer
Science, Dartmouth College, November
1994.

[Curewitz93] K.M. Curewitz, P. Krishnan and J.S. Vit-
ter. Practical prefetching via data compres-
sion. Proceedings of the 1993 SIGMOD,
May 1993.

[Feiertag71] R.J. Feiertag and E.I. Organisk. The Multics
input/output system. Proceedings of the 3rd
SOSP, 1971.

[Franaszek92] P.A. Franaszek, J.T. Robinson and A.
Thomasian. Concurrency control for high
contention environments. ACM TODS, V
17(2), pp. 304-345, June 1992.

[Gibson98] Garth Gibson, et. al. A cost-effective, high-
bandwidth storage architecture. Proceedings
of the 8th ASPLOS. October, 1998.

[Griffioen94] J. Griffioen and R. Appleton. Reducing file
system latency using a predictive approach.
Proceedings of 1994 Summer USENIX,
June 1994.

[Hartman94] John H. Hartman. The Zebra striped network
file system. Doctoral thesis, UCB/CSD-95-
867, December 1994.

[Kotz91] David Kotz and Carla Ellis. Practical
prefetching techniques for parallel file sys-
tems. Proceedings of the 1st PDIS, Decem-
ber 1991.

[Kroeger96] T. Kroeger and D. Long. Predicting file sys-
tem actions from prior events. Proceedings
of 1996 Winter USENIX, January 1996.

[Lei97] Hui Lei and Dan Duchamp. An analytical
approach to file prefetching. Proceedings of
the 1996 Winter USENIX, January 1997.

[McKusick84] M.K. McKusick, et. al. A fast file system for
UNIX. ACM TOCS, V 2(3), pp. 181-197,
August 1984.

[Mowry96] Todd Mowry, Angela Demke and Or-
ran Krieger. Automatic compiler-inserted
I/O prefetching for out-of-core applications.
Proceedings of the 2nd OSDI, October 1996.

[Ousterhout85] J.K. Ousterhout, et. al. A trace-driven anal-
ysis of the UNIX 4.2 BSD file system. Pro-
ceedings of the 10th SOSP, December 1985.

[Paleczny95] M. Paleczny, K. Kennedy and C. Koelbel.
Compiler support for out-of-core arrays on
data parallel machines. Proceedings of the
5th Symposium on the Frontiers of Mas-
sively Parallel Computation, February 1995.

[Patterson88] David Patterson, Garth Gibson and Randy
Katz. A case for redundant arrays of inex-
pensive disks (RAID). Proceedings of the
1988 SIGMOD. June 1988.

[Patterson94] Hugo Patterson and Garth Gibson. Expos-
ing I/O concurrency with informed prefetch-
ing. Proceedings of the 3rd PDIS. Septem-
ber, 1994.

[Patterson95] Hugo Patterson, et. al. Informed prefetching
and caching. Proceedings of the 15th SOSP.
December, 1995.

[Patterson97] Hugo Patterson. Informed prefetching and
caching. Doctoral Thesis, CMU-CS-97-204,
December 1997.

[Powell77] Michael L. Powell. The DEMOS file sys-
tem. Proceedings of the 6th SOSP, Novem-
ber 1977.

[Rochberg97] David Rochberg and Garth Gibson.
Prefetching over a network: Early expe-
rience with CTIP. ACM SIGMETRICS
Performance Evaluation Review, V 25(3),
pp. 29-36, December 1997.

[Thakur94] R. Thakur, R. Bordawekar and A. Choud-
hary. Compilation of out-of-core data par-
allel programs for distributed memory ma-
chines. Workshop on I/O in Parallel Com-
puter Systems, IPPS94, April 1994.

[Trivedi79] K.S. Trivedi. An analysis of prepaging.
Computing, V 22(3), pp.191-210, 1979.

[Wahbe93] Robert Wahbe, et. al. Efficient software-
based fault isolation. Proceedings of the 14th
SOSP, December 1993.

