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Abstract
In highly cached and pipelined machines, operating sys-
tem performance, and aggregate user/system performance,
is enormously sensitive to small changes in cache and TLB
hit rates. We have implemented a variety of changes in
the memory management of a native port of the Linux op-
erating system to the PowerPC architecture in an effort to
improve performance. Our results show that careful design
to minimize the OS caching footprint, to shorten critical
code paths in page fault handling, and to otherwise take
full advantage of the memory management hardware can
have dramatic effects on performance. Our results also
show that the operating system can intelligently manage
MMU resources as well or better than hardware can and
suggest that complex hardware MMU assistance may not
be the most appropriate use of scarce chip area. Com-
parative benchmarks show that our optimizations result in
kernel performance that is significantly better than other
monolithic kernels for the same architecture and highlight
the distance that micro-kernel designs will have to travel to
approach the performance of a reasonably efficient mono-
lithic kernel.

1 Motivation

In the development of the PowerPC port of the Linux op-
erating system, we have carried out a series of optimiza-
tions that has improved application wall-clock performance
by anywhere from 10% to several orders of magnitude.
According to the LmBench [5] benchmark, Linux/PPC is
now twice as fast as IBM’s AIX/PPC operating system
and between 10 and 120 times faster than Apple’s Mach
based MkLinux/PPC and Rhapsody/PPC operating sys-
tems. We have achieved this level of performance by ex-
tensive use of quantitative measures and detailed analysis
of low level system performance — particularly regarding
memory management. While many of our optimizations
have been machine specific, most of our results can be eas-
ily transported to other modern architectures and, we be-
lieve, are interesting both to operating system developers
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and hardware designers.
Our optimization effort was constrained by a require-

ment that we retain compatibility with the main Linux ker-
nel development effort. Thus, we did not consider opti-
mizations that would have required major changes to the
(in theory) machine independent Linux core. Given this
constraint, memory management was the obvious starting
point for our investigations, as the critical role of memory
and cache behavior for modern processor designs is well
known. For commodity PC systems, the slow main mem-
ory systems and buses intensify this effect. What we found
was that system performance was enormously sensitive to
apparently small changes in the organization of page tables,
in how we control the translation look aside buffer (TLB)
and apparently innocuous OS operations that weakened lo-
cality of memory references. We also found that having a
repeatable set of benchmarks was an invaluable aid in over-
coming intuitions about the critical performance issues.

Our main benchmarking tools were the LmBench pro-
gram developed by Larry McVoy and the standard Linux
benchmark: timing and instrumenting a complete recom-
pile of the kernel. These benchmarks tested aspects of
system behavior that experience has shown to be broadly
indicative for a wide range of applications. That is, per-
formance improvements on the benchmarks seem to cor-
relate to wall-clock performance improvements in appli-
cation code. Our benchmarks do, however, ignore some
important system behaviors and we discuss this problem
below.

The experiments we cover here are the following:

� Reducing the frequency of TLB and secondary page
map buffer misses.

– Reducing the OS TLB footprint.

– Increasing efficiency of hashed page tables.

� Reducing the cost of TLB misses.

– Fast TLB reload code.

– Removing hash tables — the ultimate optimiza-
tion.

� Reducing TLB and page map flush costs.



– Lazy purging of invalid entries.

– Trading off purge costs against increased misses.

� Optimizing the idle task!

2 Related Work

There has been surprisingly little published experimental
work on OS memory management design. Two works that
had a great deal of influence on our work were a series of
papers by Bershad [7] advocating the use of“superpages”
to reduce TLB contention and a paper by Liedtke [3] on
performance issues in the development of the L4 micro-
kernel. Our initial belief was that TLB contention would
be a critical area for optimization and that the monolithic
nature of the Linux kernel would allow us to gain much
more than was possible for L4.

It is the current trend in chip design to keep TLB size
small, especially compared to the size of working sets in
modern applications. There are many proposed solutions
to the problem of limited TLB reach, caused by the dis-
parity between application access patterns and TLB size,
but most of them require the addition and use of special
purpose hardware. Even the simpler proposed solutions re-
quire that the hardware implement superpages.

Swanson proposes a mechanism in [10] that adds an-
other level of indirection to page translation to create non-
contiguous and unaligned superpages. This scheme makes
superpage use far more convenient since the memory man-
agement system does not have to be designed around it
(finding large, continuous, aligned areas of unused mem-
ory is not easy).

Since existing hardware designs are set and the trend in
emerging designs is towards relatively small TLBs we can-
not rely on superpage type solutions or larger TLBs. More
effective ways of using the TLB and greater understanding
of TLB access patterns must be found. Greater understand-
ing of access patterns and better ways of using TLB would
only augment systems with superpages or larger TLBs.

3 A Quick Introduction to the PPC Memory
Management System

Our OS study covers the 32-bit PowerPC 603 [6] and 604
processors. Both machines provide a modified inverted
page table memory management architecture. The standard
translation between logical and physical addresses takes
place as follows:

Program memory references are 32-bitlogicaladdresses.
The 4 high order bits of the logical address index a set of
segment registers, each of which contains a 24-bit“virtual
segment identifier”(VSID). The logical address is concate-
nated with the VSID to produce avirtual address. There is
a translation look-aside buffer of cached virtual! physical
translations andhashed page tablesindexed by a (hashed)
virtual address. The tables are organized into “buckets”,
each consisting of eight page table entries (PTEs). Each

24-bit VSID 16-bit Page Index 12-bit Byte Offset

TLB/Page
   Table

4 bit SR # 16-bit Page Index 12-bit Byte Offset

Segment

Registers

20-bit Physical Page Number 12-bit Byte Offset

32-Bit Effective Address

52-Bit Virtual Address

32-Bit Physical Address

Figure 1: PowerPC hash table translation

PTE contains a 20-bit physical page address, a 24-bit vir-
tual segment identifier (VSID) and permission and other
housekeeping information. Once a TLB miss occurs, a
hash function is computed on the virtual address to obtain
the index of a bucket. If no matching entry is found in this
bucket, a secondary hash function is computed to find the
index of an overflow bucket. If no entry is found in either
bucket, the OS must determine further action. On the 604,
a TLB miss causes the hardware to compute the hash func-
tion and search the hash table. If no match is found, a page
fault interrupt is generated and a software handler is started.
On the 603, there are registers to assist hashing even though
the hardware does not require software to store PTEs in a
hash table. Since a TLB miss is handled in hardware, the
604 has a hash-table miss interrupt rather than a TLB miss
interrupt.

The PowerPC also offers an alternative translation from
logical to physical that bypasses the TLB/hash-table pag-
ing mechanism. When a logical address is referenced, the
processor begins the page lookup and, in parallel, begins
an operation calledblock address translation(BAT). Block
address translation depends on eight BAT registers: four
data and four instruction. The BAT registers associate vir-
tual blocks of 128K or more with physical segments. If a
translation via the BAT registers succeeds, the page table
translation is abandoned.

4 Performance Measurement

Benchmarks and tests of performance were made on a num-
ber of PowerPC processors and machine types (PReP and
PowerMac) to reduce the amount any specific machine
would affect measurements. We used 32M of RAM in each
machine tested. This way, the ratio of RAM size to PTEs in
the hash table to TLB entries remained the same. Each of
the test results comes from more than 10 of the benchmark



runs averaged. We ignore benchmark differences that were
sporadic even though we believe this understates the extent
of our optimizations.

Tests were made using LmBench [5]. We also used the
informal Linux benchmark of compiling the kernel, which
is a traditional measure of Linux performance. The mix
of process creation, file I/O, and computation in the kernel
compile is a good guess at a typical user load in a system
used for program development.

Performance comparisons were made against various
versions of the kernel. In our evaluations we compare the
kernel against the original version without the optimiza-
tions discussed in this paper. This highlights each opti-
mizations alone without the others. This lets us look more
closely at how each change affects the kernel by itself be-
fore comparing all optimizations in aggregate. This turned
out to be very useful as many optimizations did not interact
as we expected them to and the end effect was not the sum
off all the optimizations. Some optimizations even can-
celled the effect of previous ones. So, measurements are
relative to the original (unoptimized) kernel versus only
the specific optimization being discussed for comparison
unless otherwise noted.

Finally, we gathered low-level statistics with the PPC
604 hardware monitor. Using this monitor we were able to
characterize the system’s behavior in great detail by count-
ing every TLB and cache miss, whether data or instruc-
tion. Software counters on the 603 were used to serve in
much the same fashion as hardware performance monitor-
ing hardware on the 604, but with a less fine-grained scope.

We make many references to the 603 software versus
the 604 hardware TLB reload mechanism. In this context,
when we refer to the 604 we mean the 604 style of TLB
reloads (in hardware) which includes the 750 and 601.

5 Reducing the Frequency of TLB Misses

The 603 generates software handled interrupts on a TLB
miss. It takes 32 cycles simply to invoke and return from
the handler — ignoring the costs of actually reloading the
TLB. The 604 PPC executes a hardware hash table search
on a TLB miss. If the PTE is in the hash table (the Pow-
erPC page-table), the cost of the hardware reload can take
up to 120 instruction cycles (measured experimentally) and
16 memory accesses. If the hash table does not contain the
PTE, the 604 generates a software handled interrupt that
adds at least 91 more cycles to just invoke the handler. With
interrupt overhead this high, TLB reloads will be expen-
sive no matter how much we optimize the TLB reload code
itself. With this motivation, we thought it worthwhile to
reduce the frequency of TLB misses as much as possible.

5.1 Reducing the OS TLB footprint

Bershad [7] and others have argued on theoretical grounds
that “superpages” and other mechanisms for reducing
the OS TLB footprint can greatly improve performance.
Indeed, we found that 33% of the TLB entries under

Linux/PPC were for kernel text, data and I/O pages. The
PowerPC 603 TLB has 128 entries and the 604 has 256 en-
tries, so allocating a third of the entries to the OS should
have a significant effect on performance. While some pro-
cessor architectures (MIPS [2]) directly support superpage
schemes, the PPC does not. There are too few BAT reg-
isters and their granularity is too coarse for a straightfor-
ward superpage implementation. The BATs can, however,
still be used to reduce the number of entries taken up in
the page-table and, therefore, reduce the number of TLB
misses. Since user processes are often ephemeral and large
block sizes for each user process would waste physical
memory, we decided to begin by using the BAT mapping
only for kernel address space.

Linux, like many other UNIX variants, divides each user
processes virtual address space into two fixed regions: one
for user code and data and one for the kernel. On a 32 bit
machine, the Linux kernel usually resides at virtual address
0xc0000000 and virtual addresses from0xc0000000
to 0xffffffff are reserved for kernel text/data and I/O
space. We began by mapping all of kernel memory with
PTEs. We quickly decided we could reduce the overhead of
the OS by mapping the kernel text and data with the BATs.
The kernel mappings for these addresses do not change and
the kernel code and static data occupy a single contiguous
chunk of physical memory. So, a single BAT entry maps
this entire address space. Note that one side effect of map-
ping kernel space via the BATs is that the hash tables and
backing page tables do not take any TLB space. Mapping
the hash table and page-tables is given to us for free so we
don’t have to worry about recursively faulting on a TLB
miss.

Using the BAT registers to map kernel space on the ker-
nel compile we measure a 10% reduction in TLB misses
(from 219 million to 197 million TLB misses on average)
and a 20% reduction in hash table misses (from an aver-
age 1 million hash table misses to 813 thousand hash table
misses) during our benchmarks. The percentage of TLB
slots occupied by the kernel dropped to near zero — the
high water mark we have measured for kernel PTE use is
four entries. The kernel compile benchmark showed a 20%
reduction in wall-clock time - from 10 to 8 minutes. Us-
ing the BAT registers to map the I/O space did not improve
these measures significantly. The applications we exam-
ined rarely accessed a large number of I/O addresses in a
short time so it is rare that the TLB entries are mapping
I/O areas since they are quickly displaced by other map-
pings. We have considered having the kernel dedicate a
BAT mapping to the frame buffer itself so programs such
as X do not compete constantly with other applications or
the kernel for TLB space. In fact, the entire mechanism
could be done per-process with a call toioremap() and
giving each process its own data BAT entry that could be
switched during a context switch.

Much to our chagrin, nearly all the measured perfor-
mance improvements we found from using the BAT reg-
isters evaporated when TLB miss handling was optimized.
That is, the TLB misses caused by kernel - user contention



are few enough so that optimizing reloads makes the cost of
handling these reloads minimal — for the benchmarks we
tried. In light of Talluri [11], however, it’s quite possible
that our benchmarks do not represent applications that re-
ally stress TLB capacity. More aggressive use of the TLB,
such as several applications using many TLB entries run-
ning concurrently would possibly show an even greater per-
formance gain. Not coincidentally, this optimizes for the
situation of several processes running in separate memory
contexts (not threads) which is the typical load on a mul-
tiuser system.

5.2 Increasing the Efficiency of Hashed Page
Tables

The core of Linux memory management is based on the
x86 two-level page tables. We could change the organiza-
tion of the PTEs in these tables to match the requirements
of the PPC architecture (a hash table instead of a two-level
page table), but we were committed to using these page
tables as the initial source of PTE’s due to the design of
Linux. Note that any PPC OS must have a data structure
to serve this function, because the PTEs that do not fit in
either the primary or overflow bucket must be stored some-
where. It is possible, but impractical, to resize the hash
table when both buckets overflow. Various techniques for
handling overflow are discussed in [8] and [12]. A reason-
able PPC OS must minimize the number of overflows in
the hash table so the cost of handling overflows was not a
serious concern for us. Instead, we focused on reducing
the contention in the hash table to increase the efficiency
of the hash table which reduces the number of overflows.
Our original strategy for both the 603 and 604 processors
was to use the hash table as a second level TLB cache and,
thus, it became important to reduce hash table “hot spots”
and overflow.

The obvious strategy is to derive VSIDs from the process
identifier so that each process has a distinct virtual address
space. Keep in mind that the hardware will treat each set
of VSIDs as a separate address space. Multiplying the pro-
cess id by a small non-power-of-two constant proved to be
necessary in order to scatter PTEs within the hash table.
Note that the logical address spaces of processes tend to
be similar so the hash functions rely on the VSIDs to pro-
vide variation. We tuned the VSID generation algorithm by
making Linux keep a hash table miss histogram and adjust-
ing the constant until hot-spots disappeared. We began with
37% use of the hash table and were able to bring that up to
an average of 57% with the hash table containing both user
and kernel PTE’s. After removing the kernel PTE’s from
the hash table we were eventually able to achieve 75% use
of the hash table with find tuning of the constant.

6 Reducing the Cost of TLB and Hash Table
Misses

6.1 Fast Reload Code

On an interrupt, the PowerPC turns off memory manage-
ment and invokes a handler using physical addresses. Orig-
inally, we turned the MMU on, saved state and jumped to
fault handlers written in C to search the hash table for the
appropriate PTE. To speed the TLB reload we rewrote these
handlers in assembly and hand optimized the TLB and hash
table miss exception code for both 603 and 604 processors.
The new handlers ran with the memory management hard-
ware off and we tried to make sure that the reload code path
was as short as possible.

Careful coding of miss handlers proved to be worth the
effort. On an interrupt, the PPC turns off memory man-
agement and swaps 4 general purpose registers with 4 in-
terrupt handling registers on a TLB miss. We rewrote the
TLB miss code to use only these registers in the common
case. Following the example of the Linux/SPARC develop-
ers, we also hand scheduled the code to minimize pipeline
hiccups. The Linux PTE tree is sufficiently simple that
searching for a PTE in the tree can be done conveniently
with the MMU disabled, in assembly code, and taking three
loads in the worst case. If the PTE cannot be found at all or
if the page is not in memory, we turn on memory manage-
ment, save additional context and jump to C code.

These changes produced a 33% reduction in context
switch time and reduced communication latencies by 15%
as measured with LmBench. User code showed an im-
provement of 15% in general when measured by wall-clock
time.

6.2 Improving Hash Tables Away

The 603 databook recommends using hardware hashing as-
sists to emulate the 604 behavior on the 603. Following
this recommendation, the early Linux/PPC TLB miss han-
dler code searched the hash table for a matching PTE. If no
match was found, software would emulate a hash table miss
interrupt and the code would execute as if it were on a 604
that had done a search in hardware. Our conjecture was that
this approach simply added another level of indirection and
would cause cache misses as the software stumbled about
the hash table.

The optimization we tried was to eliminate any use of the
hash table and to have the TLB miss handler go directly to
the Linux PTE tree. By following this strategy we make
a 180MHz 603 keep pace with a 185MHz 604 despite the
two times larger L1 cache and TLB in the 604. In fact, on
some LmBench points, the 180MHz 603 kept pace with a
200MHz 604 on a machine with significantly faster main
memory and a better board design. Unfortunately, the 604
does not permit software to reload the TLB directly, which
would allow us to make this optimization on the 604. The
end result of these changes was a kernel compile time re-
duced by 5%.



processor pstart ctxsw pipe lat. pipe bw file reread
603 180MHz (htab) 1.8s 4 �s 17�s 69 MB/s 33 MB/s
603 180MHz (no htab) 1.7s 3 �s 19�s 73 MB/s 36 MB/s
604 185MHz 1.6s 4 �s 21�s 88 MB/s 39 MB/s
604 200MHz 1.6s 4 �s 20�s 92 MB/s 41 MB/s

Table 1: LmBench summary for direct (bypassing hash table) TLB reloads

Using software TLB reloads which are available on
many platforms, such as the Alpha [9], MIPS [2] and Ultra-
SPARC, allows the operating system designer to consider
many different page-table data structures (such as clustered
page tables [11]). If the hardware doesn’t constrain the
choices many optimizations can be made depending on the
type of system and typical load the system is under.

7 Reducing TLB and Hash Table Flush
Costs

Because the 604 requires us to use the hash table, any TLB
flush must be accompanied by a hash table flush. Linux
flushes all or part of a process’s entries in the TLB fre-
quently, such as when mapping new addresses into a pro-
cess, doing anexec() or fork() and when a dynam-
ically linked Linux process is started, the process must
remap its address space to incorporate shared libraries.
In this context, a TLB flush is actually a TLB invalidate
since we updated the page-table PTE dirty/modified bits
when we loaded the PTE into the hash table. In the worst
case, the search requires 16 memory references (2 hash ta-
ble buckets, containing 8 PTE’s each) for each PTE being
flushed. It is not uncommon for ranges of 40 — 110 pages
to be flushed in one shot.

The obvious strategy, and the first one we used, was for
the OS to derive VSIDs from the process identifier (so that
each process has a distinct virtual address space) and mul-
tiplying it by a scalar to scatter entries in the hash table.
After doing this, we found that flushing the hash table was
extremely expensive, we then came upon the idea of lazy
TLB flushes. Our idea of how to do lazy TLB flushes was
to keep a counter of memory-management contexts so we
could provide unique numbers for use as VSID’s instead of
using the PID of a process. We reserved segments for the
dynamically mapped parts of the kernel (static areas, data
and text, are mapped by the BATs) and put a fixed VSID
in these segments. When the kernel switched to a task its
VSIDs could be loaded from the task structure into hard-
ware registers by software.

When we needed to clear the TLB of all mappings as-
sociated with a particular task we only had to change the
values (VSIDs) in the task structure and then update the
hardware registers and increment the context counter. Even
though there could be old PTEs from the previous con-
text (previous VSIDs) in the hash table and TLB marked
as valid PTEs (valid bit set in the PTE) their VSID’s will
not match any VSID’s used by any process so incorrect

matches won’t be made. We could then keep a list of
“zombie” VSID’s (similar to “zombie” processes) that are
marked as valid in the hash table but aren’t actually used
and clear them when hash table space became scarce.

What we finally settled on and implemented was differ-
ent from what we had planned at first. Deciding when to
really flush the old PTE’s from the hash table and how to
handle the “zombie list” was more complex than we wanted
to deal with at first. Performance would also be inconsis-
tent if we had to occasionally scan the hash table and in-
validate “zombie” PTE’s when we needed more space in
the hash table. So, instead, we just allowed the hash table
reload code to replace an entry when needed (not check-
ing if it has a currently valid VSID or not). This gave a
non-optimal replacement strategy in the hash table since
we may replace real PTEs (have a currently active VSID)
in the hash table even though there are PTEs that aren’t be-
ing used (have the VSID of an old memory context).

We were later able to return to this idea of reducing the
inefficiency of the hash table replacement algorithm (re-
placing unused PTE’s from an abandoned memory man-
agement context marked as valid) by setting the idle task to
reclaim zombie hash table entries by scanning the hash ta-
ble when the cpu is idle and clearing the valid bit in zombie
PTEs (physically invalidating those PTEs). This provided
a nice balance of simplifying the actual low level assembly
to reload the TLB and still maintaining a decent usage ratio
of the hash table (zombie PTEs to in-use PTEs).

Without the code to reclaim zombie PTEs in the idle
task, the ratio of hash table reloads to evicts (reloads that
require a valid entry be replaced) was normally greater than
90%. Since the hot-spots were eliminated in the hash table,
entries are scattered across all of the hash table and never
invalidated. Invalidation in this case means the valid bit
is never cleared even though the VSID may not match a
current process. Very quickly the entire hash table fills up.
Since the TLB reload code did not differentiate between
the two types of invalid entries, it chose an arbitrary PTE
to replace when reloading, replacing valid PTEs as well as
zombie PTEs. With the reclaim code in the idle task, we
saw a drastic decrease in the number of evicts. This is be-
cause the hash table reload code was usually able to find
an empty TLB entry and was able to avoid replacing valid
PTEs.

Our series of changes took hash table use up to 15% and
finally down to around 5% since we effectively flush all the
TLB entries of a process when doing large TLB flushes (by
changing the VSID’s of a process). Our optimization to re-



duce hot-spots in the hash table was not as significant since
so few entries stayed in the hash table (about 600–700 out
of 16384) at one time due to the flushing of ranges of PTEs.
Even with this little of the hash table in use we measured
85% — 95% hit rates in the hash table on TLB misses. To
increase the percentage of hash table use, we could have
decreased the size of the hash table and free RAM for use
by the system but in performing these benchmarks we de-
cided to keep the hash table size fixed to make compar-
isons more meaningful. This choice makes the hash table
look inefficient with some optimizations but the net gain in
performance as measured by hit rate in the hash table and
wall-clock time shows it is in fact an advantage.

Another advantage of the idle task invalidating PTEs was
that TLB reload code was usually able to find an empty en-
try in the hash table during a reload. This reduced the num-
ber of evicts so the ratio of evicts to TLB reloads became
30% instead of the greater than 90% we were seeing before.
This reduced number of evicts also left the hash table with
more in-use PTEs so our usage of the hash table jumped to
1400–2200 from 600–700 entries, or to 15% from 5%. The
hit rate in the hash table on a TLB miss also increased to as
high as 98% from 85%.

Using lazy TLB flushes increased pipe throughput by
5 MB/s (from 71 MB/s) and reduced 8-process context
switch times from 20�s to 17�s. However, the system
continued to spend a great deal of time searching the hash
table because for certain operations, the OS was attempt-
ing to clear arangeof virtual addresses from the TLB and
hash table. The OS must ensure that the new mappings are
the only mappings for those virtual addresses in the TLB
and hash table. The system call to change address space is
mmapand LmBench showedmmap() latency to be more
than 3 milliseconds. The kernel was clearing the range of
addresses by searching the hash table for each PTE in turn.
We fixed this problem by invalidating the whole memory
management context of any process needing to invalidate
more than a small set of pages. This effectively invalidates
all of the TLB entries of this process. This was a cheap op-
eration with the mechanism we used since it just involved a
reset of the VSID whose amortized cost (later TLB reloads
vs. cost of flushing specific PTEs) is much lower. Once the
process received a new VSID and its old VSID was marked
as zombie, all the process’ PTEs in the TLB and hash table
were automatically inactive. Of course, there is a perfor-
mance penalty here as we invalidate some translations that
could have remained valid, but using 20 pages as the cutoff
point mmap() latency dropped to41� — an 80 times im-
provement. Pipe bandwidth increased noticeably and sev-
eral latencies dropped as well. These changes come at no
cost to the TLB hit rate since no more or fewer TLB misses
occurred with the tunable parameter to flushing ranges of
PTEs. This suggests that the TLB entries being invalidated
along with target range of TLBs were not being used any-
way - so there is no cost for losing them.

Table 2 shows the 603 doing software searches of the
hash table and a 604 doing hardware searches with the ef-
fect of lazy TLB flushes. Note that the 603 hash table

search is using software TLB miss handlers that emulate
the 604 hardware search. This table shows the gain from
avoiding expensive searches in the hash table when a sim-
ple resetting of the VSID’s will do.

8 Cache Misuse on Page-Tables

Caching page-tables can be a misuse of the hardware. The
typical case is that a program changes its working set,
which adds a particular page. That page is referenced and
its PTE is brought into the TLB from the page-tables and
during that TLB reload the PTE is put in the data cache.
On the 604 the PTE is also put into the hash table, which
creates another cache entry. TLB reloads from page-tables
are rare and caching those entries only pollutes the cache
with addresses that won’t be used for a long time.

Caching page tables makes sense only if we will make
repeated references to adjacent entries, but this behavior
does not occur nor is it common for page-table access pat-
terns. For this to be common, we’d need to assume that
either the page accesses (and PTEs used to complete those
accesses) or cache accesses do not follow the principle of
locality. The idea behind a TLB is that it’s rare to change
working sets and the same is true for a cache.

This is especially important under Linux/PPC since the
hardware searched hash table (the PowerPC page-table) is
actually used as a cache for the two level page table tree
(similar to the SPARC andx86 tables). This makes it pos-
sible in the worst case for two separate tables to be searched
in order to load one PTE into the TLB. This translates into
16 (hash table search and miss)+ 2 (two level page table
search)+ 16 (finding a place to put the entry in the hash ta-
ble)= 34 memory accesses in order to bring an entry into
the hash table. If each one of these accesses is to a cached
page there will be 18 new cache entries created (note that
the first and second 16 hash table addresses accessed are
the same so it is likely we will hit the cache on the second
set of accesses).

By caching the page-tables we cause the TLB to pollute
the cache with entries we’re not likely to use soon. On the
604 it’s possible to create two new cache entries that won’t
be used again due to accessing the hash table and the two-
level page tables for the same PTE. This conflict is non-
productive and causes many unnecessary cache misses. We
have not yet performed experiments to quantify the number
of cache misses caused by caching the page-tables but the
results of our work so far suggests this has a dramatic im-
pact on performance.

9 Idle Task Page Clearing

Clearing pages in the idle task is not a new concept but
has not been popular due to its effect on the data cache.
For the same reason we did not use the PowerPC instruc-
tion that clears entire cache lines at a time when we im-
plementedbzero() and similar functions. This problem
illustrates the effect the operating system has on perfor-



processor mmap lat. ctxsw pipe lat. pipe bw file reread
603 133MHz 3240�s 6 �s 34�s 52 MB/s 26 MB/s
603 133MHz (lazy) 41�s 6 �s 28�s 57 MB/s 32 MB/s
604 185MHz 2733�s 4 �s 22�s 90 MB/s 38 MB/s
604 185MHz (tune) 33�s 4 �s 21�s 94 MB/s 41 MB/s

Table 2: LmBench summary for tunable TLB range flushing

mance due to its use of the cache. We began by clear-
ing pages in the idle task without turning off the cache for
those pages. These pages were then added to a list which
get_free_page() then used to return pages that had
already been cleared without having to waste time clearing
the pages when they were requested. The kernel compile
with this “optimization” took nearly twice as long to com-
plete due to cache misses. Measurements with LmBench
showed performance decreases as well. The performance
loss from clearing pages was verified with hardware coun-
ters to be due to more cache misses.

We repeated the experiment by uncaching the pages be-
fore clearing them and not adding them to the list of cleared
pages. This allowed us to see how much of a penalty clear-
ing the pages incurred without having the effect of using
those pages to speedget_free_page() . There was no
performance loss or gain. This makes sense since the data
cache was not affected because the pages being cleared
were uncached and even after being cleared they weren’t
used to speed upget_free_page() . The number of
cache misses didn’t change from the kernel without the
page clearing modifications.2

When the cache was turned off for pages being cleared
and they were used inget_free_page() the system
became much faster. This kept the cache from having use-
less entries put into it whenget_free_page() had to
clear the page itself when the code requesting the page
never read those values (it shouldn’t read them anyway).
This suggests that it might be worthwhile to turn off the
data and instruction cache during the idle task to avoid pol-
luting the cache with any accesses done in the idle task.
There’s no need to worry about the idle task executing
quickly, we’re only concerned with switching out of it
quickly when another task needs to run so caching isn’t
necessary.

We must always ensure that the overhead of an optimiza-
tion doesn’t outweigh any potential improvement in perfor-
mance [11] [4]. In this case we did not incur great overhead
when clearing pages. In fact, all data structures used to
keep track of the cleared pages are lock free and interrupts
are left enabled so there is no possibility of keeping control
of the processor any longer than if we had not been clear-
ing pages. Even when callingget_free_page() the
only overhead is a check to see if there are any pre-cleared
pages available. Our measurements with page-clearing on

2On a SMP machine we might see conflicts due to accesses causing
cache operations on other processors or, more likely, all these writes to
memory using a great deal of the bus while the other processor needs it

but not adding the pages to the list still costs us that check
in get_free_page() so any potential overhead would
have shown up. This is important since the idle task runs
quite often even on a system heavily loaded with users
compiling, editing, reading mail so a lot of I/O happens
that must be waited for.

10 Future Work

There is still more potential in the optimizations we’ve al-
ready made. We’ve made these changes on a step-by-step
basis so we could evaluate each change and study not only
how it changed performance but why. There are still many
changes we’ve seen that we haven’t actually studied in de-
tail that we believe to be worthy of more study. These in-
clude better handling of the cache in certain parts of the
operating system and cache preloads.

10.1 Locking the Cache

Our experiments show that not using the cache on certain
data in critical sections of the operating system (particu-
larly the idle task) can improve performance. One area
worthy of more research would be locking the cache en-
tirely in the idle task. Since all of the accesses in the idle
task (instruction and data) aren’t time critical there’s no
need to evict cache entries just to speed up the idle task.

10.2 Cache Preloads

Waiting on the cache to load values from memory is a big
performance loss. Modern processors rely on the fact that
the pipeline will be kept full as much as possible but mis-
handling the cache can easily prevent this. One easy way to
overcome this problem is to provide hints to the hardware
about access patterns. On the PowerPC and other architec-
tures there are sets of instructions to do preloads of data
cache entries before the actual access is done. This is a
simple way, without large changes, to improve cache be-
havior and reduce stalls. We feel that we can make signifi-
cant gains with intelligent use of cache preloads in context
switching and interrupt entry code.

11 Analysis

The results presented show that it is possible to achieve and
exceed the speed of hardware TLB reloads with software
handlers. This speedup depends very much on how well



OS Null syscall ctx switch pipe lat. pipe bw
Linux/PPC 2 �s 6 �s 28�s 52 MB/s
Unoptimized Linux/PPC 18�s 28�s 78�s 36 MB/s
Rhapsody 5.0 15�s 64�s 161�s 9 MB/s
MkLinux 19�s 64�s 235�s 15 MB/s
AIX 11�s 24�s 89�s 21 MB/s

All tests except AIX performed on a 133MHz 604 PowerMac 9500, AIX number from a 133MHz 604 IBM 43P.

Table 3: LmBench summary for Linux/PPC and other Operating Systems

tuned the reload code is and what data structures are used
to store the PTEs. On the 603 we find it is not necessary
to mirror the same hash table that the hardware assumes on
the 604. We can actually speed things up by eliminating
the hash table entirely.

By reducing the conflict between user and kernel space
for TLB entries we’re able to improve TLB hit rates and
speed the system up in general by about 20%. Our ex-
periments bypassing the cache during critical parts of the
operating system where creating new cache entries would
actually reduce performance shows great promise. Already
we’re seeing fewer cache misses by avoiding creating cache
entries for the idle task and expect to see even fewer with
changes to the TLB reload code to uncache the page tables.
We’ve been able to avoid expensive TLB flushes through
several optimizations that bringmmap() latency down to
a reasonable value - an 80 times improvement by avoiding
unnecessary searches through the hash table.

Our hash table hit rate on a TLB miss is 80% – 98%
which demonstrates that the hash table is well managed to
speed page translations. We cannot realistically expect any
improvement over this hit rate so our 604 implementation
of the MMU is near optimal. When compared with our op-
timizations of the 603 MMU using software searches we’re
able to get better performance on the 603 in some bench-
marks than the 604 even though the 604 has double the size
TLB and cache.

All these changes suggest that cache and TLB manage-
ment is important and the OS designer must look deeper
into the interaction of the access patterns of TLB and cache.
It isn’t wise to assume that caching a page will necessarily
improve performance.

Though it has been claimed [1] that micro-kernel designs
can be made to perform as well as monolithic designs our
data (Table 3) suggests that monolithic designs need not
remain a stationary target.

The work we’ve mentioned has brought Linux/PPC to
excellent standing among commercial and non-commercial
offerings for operating systems. Table 3 shows our sys-
tem compares very well with AIX on the PowerPC and is a
dramatic improvement over the Mach-based Rhapsody and
MkLinux from Apple.

The trend in processor design seems to be directed to-
wards hardware control of the MMU. Designers of the
hardware may see this as a benefit to the OS developer but
it is, in fact, a hindrance. Software control of the MMU al-

lows experimentation with different allocation and storage
strategies but hardware control of the MMU is too inflex-
ible. As a final note, the architects of the PowerPC series
seem to have decided to increase hardware control of mem-
ory management. Our results indicate that they might bet-
ter spend their transistors and expensive silicon real-estate
elsewhere.
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