
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Logical vs. Physical File System Backup

Norman C. Hutchinson
University of British Columbia

Stephen Manley, Mike Federwisch, Guy Harris, Dave Hitz, Steven Kleiman, Sean O’Malley
Network Appliance, Inc.

Logical vs. Physical File System Backup

Norman C. Hutchinson

Computer Science Department

University of British Columbia

Vancouver, B.C., Canada V6T 1Z4

hutchinson@cs.ubc.ca, http://www.cs.ubc.ca/spider/norm

Stephen Manley, Mike Federwisch, Guy Harris

Dave Hitz, Steven Kleiman, Sean O'Malley

Network Appliance, Inc.

2770 San Tomas Expressway

Santa Clara, CA 95051

fstephen,mikef,guy,hitz,srk,seang@netapp.com, http://www.netapp.com

Abstract

As �le systems grow in size, ensuring that data is
safely stored becomes more and more di�cult. His-
torically, �le system backup strategies have focused
on logical backup where �les are written in their en-
tirety to the backup media. An alternative is phys-
ical backup where the disk blocks that make up the
�le system are written to the backup media. This
paper compares logical and physical backup strate-
gies in large �le systems. We discuss the advan-
tages and disadvantages of the two approaches, and
conclude by showing that while both can achieve
good performance, physical backup and restore can
achieve much higher throughput while consuming
less CPU. In addition, physical backup and restore
is much more capable of scaling its performance as
more devices are added to a system.

1 Introduction

As a central player in every operating system, �le
systems have received a tremendous amount of at-
tention from both the academic and industrial com-
munities. However, one important aspect of �le sys-
tems has been conspicuous by its absence in the lit-
erature - �le system backup and restoration. As �le
systems grow in size, ensuring that data is safely
stored becomes more and more di�cult. The re-
search literature on this topic is extremely limited;

Chervenak et al. present a good survey of the cur-
rent literature [CVK98]. On the other hand, indus-
try is very interested in both the correctness and
performance of �le system backup [Sun97, CCC98].

In evaluating a backup/restore strategy, a number of
end-user desires must be balanced. On the backup
side, it is the hope of every system administrator to
never need any of the backup data that is collected,
and in fact, in normal operation the vast majority of
the data that is backed up is never looked at. This
means that maximizing the speed with which data
can be backed up, and minimizing the resources
(disk and CPU) that are used in performing the
backup are very important. This also means that
the robustness of backup is critical. Horror stories
abound concerning system administrators attempt-
ing to restore �le systems after a disaster occurs,
only to discover that all the backup tapes made in
the last year are not readable.

Because backup data is kept for a long time, both to
provide �le system history and increased resilience
to disasters, it is important that the format used to
store the data be archival in nature. That is, the
data should still be recoverable even if the hard-
ware, operating system, or backup/restore software
of the system has been changed since the backup
was created.

On the restore side, there are at least two primary
sorts of restores that are performed. We call these
disaster recovery and stupidity recovery. Disaster

recovery comes into play when whole �le systems are
lost because of hardware, media, or software failure.
A disaster recovery solution involves a complete re-
store of data onto new, or newly initialized media.
The solution to the disaster recovery requirement
also allows migration of data from one set of me-
dia to another. Stupidity recovery manifests itself
as requests to recover a small set of �les that have
been \accidentally" deleted or overwritten, usually
by user error.

There are two primary approaches to the
backup/restore problem: logical and physical.
A logical (or �le-based) strategy interprets the �le
system meta data, discovers which �les need to be
duplicated and writes them to the backup media,
usually in a canonical representation which can be
understood without knowing very much if anything
about the �le system structure. A dump command
has been implemented in every version of Unix
since Version 6 from AT&T. The current standard
was developed as part of the original BSD Unix
e�ort. Other logical backup approaches include
using tar or cpio. Each of these tools de�ne their
own format for the data, but in both cases the
format is architecture neutral and well documented.
A number of companies such as Legato, Veritas,
and IBM have extended this idea by de�ning their
own proprietary formats (typically based on tar or
cpio) which can be used to stream �le system data
to a backup server.

A physical (or block-based) strategy duplicates the
physical medium on which the �les are stored (disks
or disk arrays) onto the backup medium without
interpretation (or with a minimum of interpreta-
tion). Physical backup has primarily been used to
copy data from one medium to another (the Unix
\dd" command), but has also been developed into
a fully functional backup/restore strategy by Digi-
tal [GBD96]. The Plan 9 �le system uses a physical
block level copy-on-write scheme to implement its
�le system \epoch" scheme, which is similar in some
respects to incremental �le system backup [Qui91].
One of the advantages of a physical dump is that all
�le and �le system attributes are duplicated, even
those that may not be representable in the stan-
dard archival format. Examples of such attributes
include CIFS access control lists, snapshots, hidden
�les, �le system con�guration or tuning information
and �le system statistics.

Recent years have witnessed a quiet debate between
the merits of �le-based versus block based backup

schemes. Unfortunately, the comparisons have gen-
erated little interest for two reasons. First, since
the two schemes are fundamentally di�erent, it is
di�cult to �nd common ground on which to base
reasonable analyses. Second, it is rare to �nd sys-
tems in which the two schemes have both been im-
plemented with comparable degrees of completeness
and attention to detail.

Network Appliance's WAFL (Write Anywhere File
Layout) �lesystem [HLM94] implements both the
logical and physical backup strategies. By using
snapshots (consistent, read-only images of the �le
system at an instant of time) both logical and phys-
ical dump can backup a consistent picture of the �le
system. WAFL's physical backup strategy is called
image dump/restore. It takes advantage of the
snapshot implementation to quickly �nd those disk
blocks that contain data that needs to be dumped.
Furthermore, the bookkeeping necessary to support
copy-on-write enables incremental image dumps |
only those disk blocks that have changed since the
last image dump are included in an incremental
dump. While taking advantage of the bene�ts of
WAFL, image dump bypasses many of the �le sys-
tem constructs when reading and restoring data in
order to improve performance. Thus, it is a true
block-based implementation.

WAFL's BSD-style dump and restore utility has
also been modi�ed to take advantages of the fea-
tures of the WAFL �le system. First and foremost,
unlike most other BSD-style dumps, the Network
Appliance dump is built into the kernel. Since Net-
work Appliance's �lers are specialized to the task
of serving �les, there is no user level. Instead the
�le system has been designed to include dump and
restore. This not only avoids context switches and
data copies, but further allows dump and restore to
utilize their own �le system access policies and algo-
rithms as well as giving them access to internal data
structures. Unlike the image dump utility which by-
passes the �lesystem however, BSD-style dump and
restore uses WAFL to access data.

WAFL therefore provides an intriguing test-bed for
comparing and contrasting �le-based and block-
based backup strategies. First, rarely is a �le system
designed with backup as one of the primary goals.
Second, system designers do not usually optimize
both block-based and �le-based backup. Finally,
the nature of WAFL enables functionality that su-
persedes fundamental backup and restore. On the
physical backup side, WAFL's image dump technol-

ogy allows more interesting replication and mirror-
ing possibilities. On the logical backup side, some
companies are using dump/restore to implement a
kind of makeshift Hierarchical Storage Management
(HSM) system where high performance RAID sys-
tems nightly replicate data on lower cost backup �le
servers, which eventually backup data to tape.

Section 2 of this paper describes those features
of WAFL that are important in our discussion of
backup strategies. Section 3 of this paper describes
logical dump as embodied in WAFL's modi�ed BSD
dump. Section 4 describes WAFL's physical dump
strategy (image dump). Section 5 compares the per-
formance of the two utilities. Section 6 describes
the future possibilities inherent in each scheme, and
Section 7 concludes.

2 WAFL - Write Anywhere File Lay-

out

In many respects, WAFL's disk format is similar to
that of other UNIX �le systems such as the Berkeley
Fast File System [MJLF84] and TransArc's Episode
[CAK+92] �le system. For example:

� WAFL is block based, using 4 KB blocks with
no fragments.

� WAFL uses inodes to describe its �les.

� Directories are specially formatted �les.

Like Episode, WAFL uses �les to store meta-data.
WAFL's two most important meta-data �les are the
inode �le (which contains all inodes) and the free
block bitmap �le. Keeping meta-data in �les allows
meta-data blocks to be written anywhere on disk.
WAFL has complete exibility in its write allocation
policies because no blocks are permanently assigned
to �xed disk locations as they are in the Berkeley
Fast File System (FFS). The only exception to the
write anywhere policy is that one inode (in WAFL's
case the inode describing the inode �le) must be
written in a �xed location in order to enable the
system to �nd everything else. Naturally, this inode
is written redundantly.

2.1 The Snapshot Facility

Snapshots are a primary bene�t of WAFL's write
anywhere approach. A snapshot is an on-line, read-
only copy of the entire �le system. The �le server is
able to copy the entire �le system in just a few sec-
onds. The copy uses no additional disk space until
�les are changed or deleted due to the use of copy-
on-write. Only as blocks in the active �le system
are modi�ed and written to new locations on disk
does the snapshot begin to consume extra space.

Snapshots can be used as an on-line backup capabil-
ity allowing users to recover their own �les. Snap-
shots can be taken manually, and are also taken on
a schedule selected by the �le system administrator;
a common schedule is hourly snapshots taken every
4 hours throughout the day and kept for 24 hours
plus daily snapshots taken every night at midnight
and kept for 2 days. With such a frequent snapshot
schedule, snapshots provide much more protection
from accidental deletion than is provided by daily
incremental backups. WAFL allows up to 20 snap-
shots to be kept at a time. How long snapshots
can be kept depends on how quickly the �le system
changes, but ranges from a few hours to a few weeks.
Snapshots also simplify backup to tape. Since snap-
shots are read-only copies of the entire �le system,
they allow self-consistent backup from an active sys-
tem. Instead of taking the system o�-line, the sys-
tem administrator can make a backup to tape of a
recently created snapshot.

A WAFL �le system can be thought of as a tree
of blocks rooted by a data structure that describes
the inode �le. The inode �le in turn contains the
inodes that describe the rest of the �les in the sys-
tem including meta-data �les such as the free block
bitmap. WAFL creates a new snapshot by making
a duplicate copy of the root data structure, and up-
dating the block allocation information. Since the
root data structure is only 128 bytes, and since only
the block allocation information needs to be copied
on disk, a new snapshot does not consume signif-
icant additional disk space until a user deletes or
modi�es data in the active �le system. WAFL cre-
ates a snapshot in just a few seconds.

Due to the presence of snapshots, the question of
whether a block is free or in use is more compli-
cated than in �le systems without snapshots. Typi-
cally, when a �le is deleted all of the blocks holding
data for that �le may be marked as free. In WAFL,

however, if the �le is in a snapshot, then the blocks
must not be reused until all of the snapshots hold-
ing the �le are deleted. Accordingly, WAFL's free
block data structure contains 32 bits per block in
the �le system instead of the 1 bit per block that is
needed without snapshots. The live �le system as
well as each snapshot is allocated a bit plane in the
free block data structure; a block is free only when
it is not marked as belonging to either the live �le
system or any snapshot.

2.2 Consistency Points and NVRAM

At least once every 10 seconds WAFL generates an
internal snapshot called a consistency point so that
the disks contain a completely self-consistent ver-
sion of the �le system. When the �ler boots, WAFL
always uses the most recent consistency point on
disk, which means that even after power loss or sys-
tem failure there is no need for time consuming �le
system checks. The �ler boots in just a minute or
two, most of which is spent spinning up disk drives
and checking system memory.

The �ler uses non-volatile RAM (NVRAM) to avoid
losing any NFS requests that might have occurred
after the most recent consistency point. During a
normal system shutdown, the �ler turns o� NFS
service, ushes all cached operations to disk and
turns o� the NVRAM. When the �ler restarts after
a system failure or power loss, it replays any NFS
requests in the NVRAM that have not reached disk.

Using NVRAM to store a log of uncommitted re-
quests is very di�erent from using NVRAM as a disk
cache, as some UNIX products do [LS89]. When
NVRAM is used at the disk layer, it may contain
data that is critical to �le system consistency. If
the NVRAM fails, the �le system may become in-
consistent in ways that fsck cannot correct. WAFL
uses NVRAM only to store recent NFS operations.
If the �ler's NVRAM fails, the WAFL �le system is
still completely self consistent; the only damage is
that a few seconds worth of NFS operations may be
lost.

3 Logical Backup

The BSD dump utility has been available in various
forms for nearly twenty years. In that time, the
format has remained fairly constant, and the utility
has been ported to platforms ranging from Solaris to
Linux. One of the bene�ts of the format has been
the ability to cross-restore BSD dump tapes from
one system to another. Even if the utility did not
already exist on the platform, such a utility could
be written or ported since the format is publicly
known.

The dump format is inode based, which is the fun-
damental di�erence between dump and tar or cpio.
The dump format requires that all directories pre-
cede all �les in the backup. Both directories and �les
are written in ascending inode order, assuming that
inode #2 is the root of dump, not necessarily of the
original �le system. Directories are written in a sim-
ple, known format of the �le name followed by the
inode number. Each �le and directory is pre�xed
with 1KB of header meta-data. This data includes:
�le type, size, permissions, group, owner, and a map
of the 1KB holes in the �le. The tape itself is pre-
�xed with two bitmaps describing the system be-
ing dumped. The �rst map indicates which inodes
were in use in the dumped subtree at the time of
the dump. The second map indicates which inodes
have been written to the backup media. The �rst
map helps show which �les have been deleted be-
tween incremental dumps. The second map veri�es
the correctness of the restore.

The format leads to a fairly simple dump utility.
The dump runs as a four phase operation. A user
speci�es the incremental level of a dump of some
subset of the �le system. Since dump is �le based,
the incremental dump backs up a �le if it has
changed since the previously recorded backup - the
incremental's base. A standard dump incremental
scheme begins at level 0 and extends to level 9.

Once the dump level and path have been selected,
the dump enters Phase I. This phase is basically
a tree walk, marking the map with the used and
to-be-dumped �le inodes. Phase II then marks the
directories between the root of the dump and the
�les selected in Phase I. These directories are needed
for restore to map between �le names and inode
numbers. The �nal two phases of dump write out
the directories and �les in inode order, respectively.

Restore reads the directories from tape into one
large �le. It uses this to create a desiccated �le
system. That is to say, it tracks the o�sets of the
beginning of each directory in this �le. So, when a
user asks for a �le, it can execute its own namei (that
part of the kernel that maps �le names to inodes),
without ever laying this directory structure on the
�le system. This saves quite a bit of space. The rea-
soning behind this procedure revolves around the
ability of restore to reclaim a subset of the data
that is on tape. Thus, to write the full directory
structure on the system is a bad idea, especially if
it is low on disk space or inodes. Restore calcu-
lates which �les need to be extracted. It then be-
gins to lay the directories and �les on the system.
After the directories and �les have been written to
disk, the system begins to restore the directories'
permissions and times. Note that it couldn't do this
when creating the directories, since creating the �les
might have failed due to permission problems and
de�nitely would have a�ected the times.

The primary bene�ts of a logical backup and restore
utility can be traced to the use of the underlying
�le system. A user can back up a subset of a data
in a �le system, which can save time and backup
media space. Furthermore, logical backup schemes
often take advantage of �lters - excluding certain
�les from being backed up. Again, one saves media
space and time. Logical backups enable fairly easy
stupidity recoveries. If a user accidentally deletes
a �le, a logical restore can locate the �le on tape,
and restore only that �le. A logical backup is ex-
tremely resilient to minor corruption of the tape, or
mistakes on the part of the backup utility. Since
each �le is self-contained, a minor tape corruption
will usually a�ect only that single �le. A mistake
by the backup utility may result in some number of
�les being omitted, but much of the system should
still be accessible on the tape. Since each �le's data
is grouped together, a logical backup stream tends
to presuppose little or no knowledge of the source
�le system.

Not surprisingly, the weaknesses of a logical backup
and restore utility can be traced to the use of the
underlying �le system. For basic operations, the
utilities must use the �le system, adding additional
overhead. The �le system's read-ahead and caching
policies may not be optimized for backup. Concur-
rently, the backup's use of the �le system may have
serious impact on other users. Performance is often
a very serious issue. The same concerns apply to a
restore. For each �le, metadata and data need to

be written. Most �le systems are not optimized for
the data access patterns of a restore. Often, then
we see the performance being traded for functional-
ity. In some cases, the new functionality attempts
to allay the performance problems. It is more often
than not, unsuccessful.

Numerous formats and programs exist within the
space of logical backup and recover utilities. The
BSD dump utility, an inode based program that
produces a commonly known output stream gar-
ners the advantages and weaknesses inherent in its
design. The bene�t of any well-known format is
that the data on a tape can usually be easily re-
stored on a di�erent platform than that on which
it was dumped. If a "dump" utility does not exist
on the platform of choice, one can always port a
di�erent platform's dump. While certain attributes
may not map across the di�erent �le systems, the
data itself should be sound. Dump's advantages
over other well-known formats, such as tar and cpio
come from the ease of running incremental backups.
Since dump maps inodes, each dump stores a pic-
ture of the �le system as it looked at the time of the
dump. Thus, an incremental dump not only saves
those �les that have changed, but also easily notes
�les that have been moved or deleted.

The weaknesses of dump arise from the inherent na-
ture of being a well-known, inode based format. To
create an output stream in a well-known format re-
quires a potentially expensive conversion of �le sys-
tem metadata into the standard format. Further-
more, features of the �le system that are not ac-
counted for in the well-known format must either
be lost or hidden in the stream. As people con-
tinually extend a well-known format to incorporate
proprietary structures, such extensions can eventu-
ally conict. These conicts can harm or eliminate
cross-platform advantages. This weakness plagues
all well-known formats. Dump is further weakened
by not being a completely self-identifying format.
While this weakness does not exhibit itself during
a backup, the fact that BSD restore needs to cre-
ate a map of �le-system on tape signi�cantly slows
down data recovery. Furthermore, the complexity of
the operation increases the probability of error, and
the consumption of system resources. Finally, since
dump reads �les in inode order, rather than by di-
rectory, standard �le system read-ahead policy may
not help, and could even hinder dump performance.
Unnecessary data will continually be prefetched and
cached. Dump enables cross-platform restores and
accurate incremental backups. However, for these

advantages it adds a great deal of complexity in
restoring systems and, as always, a well-known for-
mat can rapidly turn into a variety of proprietary
formats that no longer work together.

Unlike the versions of BSD dump that run on So-
laris, BSD OS, or Linux, the Network Appliance
dump is part of the system's kernel. Since the ar-
chitecture of the system does not allow for a user-
level, the system was designed with dump as an in-
tegral part of the microkernel. The primary bene-
�t to this approach is performance. For example,
other dump utilities cross the user-kernel bound-
ary to read data from �les, and then to write the
data to the tape�le. Network Appliance has imple-
mented a no-copy solution, in which data read from
the �le system is passed directly to the tape driver.
Unix versions of dump are negatively a�ected by
the �le system's read-ahead policy. Network Ap-
pliance's dump generates its own read-ahead policy.
Similar fast paths have been set up for restoring
data. The Network Appliance version of restore en-
joys signi�cant performance improvements that are
only possible because it is integrated into the ker-
nel and runs as root. Most notable among these
is that while the standard restore accesses �les and
directories by name, which requires it to be able to
construct pathnames that the �le system can parse,
the Network Appliance version directly creates the
�le handle from the inode number which is stored in
the dump stream. In addition, since it runs as root,
it can set the permissions on directories correctly
when they are created and does not need the �nal
pass through the directories to set permissions that
user-level restore programs need.

Functionally, Network Appliance's dump and re-
store also add bene�t to the standard program. By
using snapshots, dump can present a completely
consistent view of the �le system. This not only
helps users, but it obviates many consistency checks
used by BSD restore on other systems. This en-
hances performance and simpli�es restores. As dis-
cussed before, companies tend to extend the format
in ways to back up attributes not included in the ba-
sic model. For Network Appliance, these attributes
include DOS names, DOS bits, DOS �le times, and
NT ACLs created on our multi-protocol �le system.
None of these extensions break the standard format.

Still, there are some di�culties that arise due to
being integrated in the kernel. First, since there is
no "user level" only a person with root access to
the �ler can run restore. This is a disadvantage

compared to the standard dump, restore, and tar
utilities on Unix. The �ler also does not support
the interactive restore option due to limitations that
arise from integrating restore into the kernel. On
the whole, however, the bene�ts make the Network
Appliance dump and restore a more popular option
with users than mounting the �le system onto a
Unix machine, and using a Unix version of dump
and restore.

4 Physical Backup

In its simplest form, physical backup is the move-
ment of all data from one raw device to another; in
the context of �le system backup the source devices
are disks and the destination devices may include
disk, CD-Rom, oppy, Zip drives, and of course,
tape.

It is a straightforward extension to the simple phys-
ical backup described in the preceding paragraph
to interpret the �le system meta-data su�ciently to
determine what disk blocks are in use and only back
those up. All �le systems must have some way of de-
termining which blocks are free, and the backup pro-
cedure can interpret that information to only back
up the blocks that are in use. Naturally, this re-
quires that the block address of each block written
to the backup medium be recorded so that restore
can put the data back where it belongs.

The primary bene�ts of a physical backup scheme
are simplicity and speed. It is simple because every
bit from the source device is copied to the desti-
nation; the format of the data is irrelevant to the
backup procedure. It is fast because it is able to
order the accesses to the media in whatever way is
most e�cient. There are a number of limitations to
physical backup, however. First, since the data is
not interpreted when it is written, it is extremely
non-portable; the backup data can only be used to
recreate a �le system if the layout of the �le sys-
tem on disk has not changed since the backup was
taken. Depending on the �le system organization,
it may even be necessary to restore the �le system
to disks that are the same size and con�guration
as the originals. Second, restoring a subset of the
�le system (for example, a single �le which was ac-
cidently deleted) is not very practical. The entire
�le system must be recreated before the individual
disk blocks that make up the �le being requested

can be identi�ed. Third, the �le system must not
be changing when the backup is performed, other-
wise the collection of disk blocks that are written to
disk will likely not be internally consistent. Finally,
the coarse grained nature behind this method leads
to its own di�culties. Because �le system informa-
tion is not interpreted by the backup procedure, nei-
ther incremental backups nor backing up less than
entire devices is possible. A raw device backup is
analogous to a �re hose. Data ows from the device
simply and rapidly | but it is all the you can do
to hold the hose. Finer grained control is generally
impossible.

These negative aspects of physical backup have un-
til now caused it to have very limited application.
Physical backup is used in a tool from BEI Corpo-
ration that addresses the problem of restoring NT
systems after catastrophic failure of the system disk
[Edw97]. Two large experiments at getting Ter-
abyte per hour backup performance mention the use
of raw (or device) backup and contain performance
measures that validate the intuition that it obtains
extremely good performance [CCC98, Sun97].

4.1 WAFL Image Dump

WAFL's snapshot facility addresses several of the
problems with physical dump identi�ed above.
First, because a snapshot is a read-only instanta-
neous image of the �le system, copying all of the
blocks in a snapshot results in a consistent image of
the �le system being backed up. There is no need
to take the live �le system o� line.

Second, snapshots allow the creation of incremental
physical dumps. Since each snapshot has a bitmap
indicating which blocks are in the snapshot, we can
easily determine which blocks are new and need to
be dumped by considering the sets of blocks in-
cluded in the two snapshots. Suppose that our full
backup was performed based on a snapshot called
A, and we have just created a new snapshot called
B from which we wish to make an incremental im-
age dump. Table 1 indicates the state of blocks as
indicated by the bits in the snapshot bit planes. We
must include in the incremental dump every block
that is marked as used in the bit plane correspond-
ing to B but is not used the bit plane corresponding
to A, and no other blocks. Alternatively, we can
consider the bitmaps to de�ne sets of blocks, we

wish to dump the blocks in the set:

B �A

Higher level incrementals are handled in the same
manner. A level 2 incremental whose snapshot is
C and which is based on the full and level 1 incre-
mental described above needs to include all blocks
in:

C �B

since everything in A that is also in C is guaranteed
to be in B as well. These sets are trivial to compute
by looking at the bit planes associated with all of
the relevant snapshots.

Of course, a block based dump does not want to
be too closely linked to the internal �le system, or
you lose the advantage of running at device speed.
Therefore, image dump uses the �le system only to
access the block map information, but bypasses the
�le system and writes and read directly through the
internal software RAID subsystem. This also en-
ables the image dump and restore to bypass the
NVRAM on the �le system, further enhancing per-
formance.

Finally, the block based dump allows for some fea-
tures that the �le-based dump cannot provide. Un-
like the logical dump, which preserves just the live
�le system, the block based device can backup all
snapshots of the system. Therefore, the system you
restore looks just like the system you dumped, snap-
shots and all. Unfortunately, the other two limita-
tions detailed above, portability and single �le re-
store, seem to be fundamental limitations of physi-
cal backup and are not addressed by WAFL. We'll
return to the single �le restore issue in Section 6.

5 Performance

This section reports the results of our experiments
to quantify the achievable performance of the phys-
ical and logical backup and recovery strategies. We
begin by reporting the performance of the most
straightforward backup and recovery plans, and
then proceed to measure the speedup achievable by
utilizing multiple tape devices.

All of our measurements were performed on eliot, a
Network Appliance F630 �le server. The �ler con-

Bit plane A Bit plane B Block state

0 0 not in either snapshot
0 1 newly written - include in incremental
1 0 deleted, no need to include
1 1 needed, but not changed since full dump

Table 1: Block states for incremental image dump

sists of a 500 MHz Digital Alpha 21164A proces-
sor with 512 MBytes of RAM and 32 MBytes of
NVRAM. 56 9 GByte disks are attached via a Fi-
bre Channel adapter. 4 DLT-7000 tape drives with
Breece-Hill tape stackers are attached through ded-
icated Di�erential Fast Wide SCSI adapters. At the
time the experiments were performed, the �ler was
otherwise idle.

The 481 GBytes of disk storage are organized into 2
volumes: home which contains 188 GBytes of data
and rlse which contains 129 GBytes of data. The
home volume consists of 31 disks organized into
3 raid groups and the rlse volume consists of 22
disks organized into 2 raid groups. Both the home
and rlse �le systems are copies (made using image
dump/restore) of real �le systems from Network Ap-
pliance's engineering department.

5.1 Basic Backup / Restore

Table 2 reports our measurements of backing up and
restoring a large, mature1 data set to a single DLT-
7000 tape drive. In this con�guration both logical
and physical dump obtain similar performance, with
physical dump getting about 20% higher through-
put. This is because the tape device that we are
using (a DLT-7000) is the bottleneck in the backup
process. Note however the signi�cant di�erence in
the restore performance. This can be primarily at-
tributed to image restore's ability to bypass the �le
system and write directly to the disk, while logical
restore goes through the �le system and NVRAM2.

We can look at the resource utilization of the �ler
while backup and restore are proceeding to learn

1A mature data set is typically slower to backup than a

newly created one because of fragmentation: the blocks of

a newly created �le are less likely to be contiguously allo-

cated in a mature �le system where the free space is scattered

throughout the disks.
2There is no inherent need for logical restore to go through

NVRAM as it is simple to restart a restore which is inter-

rupted by a crash. Modifying WAFL's logical restore to avoid

NVRAM is in the works.

something about how logical and physical backup
are likely to scale as we remove the bottleneck de-
vice. Table 3 indicate the time spent in various
stages of backup and restore as well as the CPU
utilization during each stage. It is worth noting the
variation in CPU utilization between the two tech-
niques. Logical dump consumes 5 times the CPU
resources of its physical counterpart. Logical restore
consumes more than 3 times the CPU that physical
restore does.

One way to reduce the time taken by the backup
procedure is to backup multiple �le system vol-
umes concurrently to separate tape drives. The re-
source requirements of both logical dump and phys-
ical dump are low enough that concurrent backups
of the home and rlse volumes did not interfere with
each other at all; each executed in exactly the same
amount of time as they had when executing in iso-
lation.

5.2 Backup and Restore to Multiple
Tapes

Our next set of experiments are designed to measure
how e�ectively each dump strategy can use parallel
backup tape devices. For the logical strategy, we
cannot use multiple tape devices in parallel for a
single dump due to the strictly linear format that
dump uses. Therefore we have separated the home
volume into 4 equal sized independent pieces (we
used quota trees, a Network Appliance construct for
managing space utilization) and dumped them in
parallel. For physical dump, we dumped the home
volume to multiple tape devices in parallel. Tables
4 and 5 report our results.

Overall, logical dump managed to dump the
188 GByte home volume to 4 tape drives in
2.7 hours, achieving 69.6 GBytes/hour, or 17.4
GBytes/hour/tape. Physical backup to 4 drives
completed in 1.7 hours, achieving 110 GBytes/hour,
or 27.6 GBytes/hour/tape.

Operation Elapsed time (hours) MBytes/second GBytes/hour

Logical Backup 7.4 7.2 25.0
Logical Restore 8.1 6.3 22.8
Physical Backup 6.2 8.6 30.3
Physical Restore 5.9 8.9 32.0

Table 2: Basic Backup and Restore Performance

Stage Time spent CPU Utilization

Logical Dump
Creating snapshot 30 seconds 50%

Mapping �les and directories 20 minutes 30%
Dumping directories 20 minutes 20%
Dumping �les 6.75 hours 25%
Deleting snapshot 35 seconds 50%

Logical Restore
Creating �les 2 hours 30%
Filling in data 6 hours 40%

Physical Dump
Creating snapshot 30 seconds 50%
Dumping blocks 6.2 hours 5%
Deleting snapshot 35 seconds 50%

Physical Restore
Restoring blocks 5.9 hours 11%

Table 3: Dump and Restore Details

Operation Elapsed time CPU Utilization Disk MB/s Tape MB/s

Logical Backup
Mapping 15 minutes 50% 5.0 0.0
Directories 15 minutes 40% 15.0 12.0
Files 4 hours 50% 12 - 20 12 - 20

Logical Restore
Creating �les 1.25 hours 53% 6.0 0.0
Filling in data 3.5 hours 75% 16.0 16.0

Physical Backup
Dumping blocks 3.25 hours 12% 17 17

Physical Restore
Restoring blocks 3.1 hours 21% 17.4 17.4

Table 4: Parallel Backup and Restore Performance on 2 tape drives

Operation Elapsed time CPU Utilization Disk MB/s Tape MB/s

Logical Backup
Mapping 5 minutes 90% 9.5 0.0
Directories 7 minutes 90% 27.0 12.0
Files 2.5 hours 90% 21 21

Logical Restore
Creating �les 0.75 hours 53% 9.0 0.0
Filling in data 3.25 hours 100% 18.0 18.0

Physical Backup
Dumping blocks 1.7 hours 30% 31 31

Physical Restore
Restoring blocks 1.63 hours 41% 32 32

Table 5: Parallel Backup and Restore Performance on 4 tape drives

5.3 Summary

As expected, the simplicity of physical backup and
restore means that they can achieve much higher
throughput than logical backup and restore which
are constantly interpreting and creating �le sys-
tem meta data. The performance of physical
dump/restore scales very well; when physical re-
store hits a bottleneck it is simple to add addi-
tion tape drives to alleviate the bottleneck. Even-
tually the disk bandwidth will become a bottle-
neck, but since data is being read and written es-
sentially sequentially, physical dump/restore allows
the disks to achieve their optimal throughput. Logi-
cal dump/restore scales much more poorly. Looking
at the performance of 4 parallel logical dumps to 4
tape drives (Figure 5) we see that during the writ-
ing �les stage the CPU utilization is only 90% and
the tape utilization is under 70% (as compared to

that achieved by physical dump). The bottleneck
in this case must be the disks. The essentially ran-
dom order of the reads necessary to access �les in
their entirety achieves highly sub-optimal disk per-
formance.

6 The Future

Physical backup and restore has been ignored for a
long time. With �le systems continuing to increase
in size exponentially, the ability of a physical backup
strategy to scale with increasing disk bandwidth
makes it an interesting strategy. In the WAFL con-
text, where snapshots provide the ability to discover
recently changes blocks very e�ciently, incremental

image backups become a possibility. We are working
on an implementation of incremental backup and
will soon be able to answer questions about its per-
formance. The image dump/restore technology also
has potential application to remote mirroring and
replication of volumes.

7 Conclusion

This paper has examined the limitations and perfor-
mance of both the logical and physical backup and
restore strategies. Logical backup has the advan-
tage of a portable archival format and the ability to
restore single �les. Physical backup and restore has
the advantages of simplicity, high throughput, and
the ability to support a number of data replication
strategies. Both have much to contribute to a com-
plete �le system backup strategy, but that the abil-
ity of physical backup/restore to e�ectively use the
high bandwidths achievable when streaming data to
and from disk argue that it should be the workhorse
technology used to duplicate our constantly growing
data sets and protect them from loss.

References

[CAK+92] Sailesh Chutani, Owen T. Anderson,
Michael L. Kazar, Bruce W. Leverett,
W. Anthony Mason, and Robert N.
Sidebotham. The Episode �le system.
In Proceedings of the Usenix Winter

1992 Technical Conference, pages 43{

60, Berkeley, CA, USA, January 1992.
Usenix Association.

[CCC98] Sandeep Cariapa, Robert Clard, and Bill
Cox. Origin2000 one-terabyte per hour
backup white paper. SGI White Paper,
1998. http://www.sgi.com/Technology/
teraback/teraback.html.

[CVK98] Ann L. Chervenak, Vivekenand Vel-
lanki, and Zachary Kurmas. Protect-
ing �le systems: A survey of backup
techniques. In Proceedings of the Joint

NASA and IEEE Mass Storage Confer-

ence, March 1998.

[Edw97] Morgan Edwards. Image backup and NT
boot oppy disaster recovery. Computer
Technology Review, pages 54{56, Sum-
mer 1997.

[GBD96] R. J. Green, A. C. Baird, and J. C.
Davies. Designing a fast, on-line backup
system for a log-structured �le sys-
tem. Digital Technical Journal of Dig-

ital Equipment Corporation, 8(2):32{45,
October 1996.

[HLM94] Dave Hitz, James Lau, and Michael Mal-
colm. File system design for a �le server
appliance. In Proceedings of the 1994

Winter USENIX Technical Conference,
pages 235{245, San Francisco, CA, Jan-
uary 1994. Usenix.

[LS89] Bob Lyon and Russel Sandberg. Break-
ing through the nfs performance barrier.
Sun Technical Journal, 2(4):21{27, Au-

tumn 1989.

[MJLF84] M. K. McKusick, W. N. Joy, S. J. Le�er,
and R. S. Fabry. A fast �le system for
UNIX. ACM Transactions on Computer

Systems, 2(3):181{197, August 1984.

[Qui91] Sean Quinlan. A cached worm �le sys-
tem. Software|Practice and Experi-

ence, 21(12):1289{1299, December 1991.

[Sun97] High-speed database backup on Sun sys-
tems. Sun Technical Brief, 1997.

