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Abstract

In this paper we develop a novel technique, called
MuLTIVIEW, which enables implementation of page-
based fine-grain DsMs. We show how the traditional
techniques for implementing page-based DSMs can
be extended to control the sharing granularity in a
flexible way, even when the size of the sharing unit
varies, and is smaller than the operating system’s
page size. The run-time overhead imposed in the
proposed technique is negligible.

We present a DSM system, called MILLIPAGE, wh-
ich builds upon MULTIVIEW in order to support
sharing in variable-size units. MILLIPAGE efficiently
implements Sequential Consistency and shows com-
parable (sometimes superior) performance to related
systems which use relaxed consistency models. It
uses standard user-level operating system API and

requires no compiler intervention, page twinning, diffs,

code instrumentation, or sophisticated protocols. The
resulting system is a “thin” software layer consist-
ing mainly of a simple, “clean” protocol that handles
page-faults.

1 Introduction

The basic mechanism for implementing software dis-

tributed shared memory systems (DsMs) was described

for the first time in a seminal paper by Li and Hudak
[15] and implemented in the Ivy system [14]. The
method relies heavily on the operating system’s vir-
tual memory page protection mechanisms, enforcing
a sharing granularity which is equal to the size of the
virtual memory page (page-based DSMs). Page sizes,
typically a few kilobytes, are usually much larger
than the actual sharing granularity of the applica-
tions. Therefore, the main problem that researchers
have faced in developing page-based DSMs has been
false sharing, where two or more hosts use different

variables that happen to reside in the same page.
False sharing can cause a severe performance degra-
dation of programs running on software DSMs and
may even lead to slowdowns.

There have been many attempts to overcome the
false sharing problem. An extensive study has been
conducted and numerous works on relaxing the mem-
ory consistency have been written, including [1, 3,
5, 7,9, 12, 22, 26], to mention only a few. Relax-
ing the consistency enhances parallelism and may
significantly reduce the required communication for
memory synchronization. Memory synchronization
is generally controlled by calls to a synchronization
primitive or a method which is associated with one.
Even when not much work is involved, relaxed con-
sistency models do require that the programmer mod-
ify the code and be aware of the semantics of the
memory behavior. As a result, DSMs using relaxed
consistency models trade the abstraction of the un-
derlying memory system for added efficiency.

A different approach was proposed in the Bliz-
zard and the Shasta systems [18, 19, 20]. In order
to circumvent the false-sharing problem and provide
fain-grain access, Shasta avoids using the virtual
memory protection mechanism. Rather, it instru-
ments binary code, wrapping loads and stores with
instructions to check for the availability of the data
and to maintain its consistency. The result is a fine-
grained DSM, capable of sharing memory blocks of
arbitrary size. However, high overhead is introduced
by the wrapping instructions, which necessitates ag-
gressive optimization techniques.

In this paper we propose a new method, called
MuLTIVIEW, which allows the efficient implemen-
tation of fine-grained psm. Although MULTIVIEW
does use the virtual memory protection mechanism,
it is capable of manipulating the memory in variable
size blocks, called minipages, which are smaller than
the virtual memory page size. MULTIVIEW involves



little overhead; it usually requires no modifications
by the programmer, nor does it require post compi-
lation or code instrumentation of any kind.

MUuULTIVIEW provides two notable advantages.
First, false sharing can be avoided simply by as-
sociating variables with individual minipages. The
system then manages sharing of program variables
rather than full pages. Second, MULTIVIEW enables
a DSM implementation that completely avoids buffer
copying in the psMm layer. For this reason MULTI-
VIEW is well suited for integration with high perfor-
mance messaging layers like Active Messages [24],
FastMessages [16] and the VIA interface.

We have implemented a system named MILLI-

PAGE - a high-performance fine-granularity page-based

DSM. MILLIPAGE uses MULTIVIEW both for achiev-
ing fine granularity and for enhancing performance.
Despite the fact that it uses the virtual memory page
protection mechanism (and thus can be viewed as
“page-based”), MILLIPAGE supports sharing of mem-
ory at any granularity. Furthermore, sharing in small
granularity imposes only a negligible overhead in
MILLIPAGE.

It has recently been noted, e.g. in [23], that the
latest advances in communication speed make the
complexity of the underlying DSM protocols a non
negligible factor in the overall system performance.
A notable aspect of MILLIPAGE is its efficient support
of Sequential Consistency with a very simple and
“clean” protocol, which leads us to the notion of a
thin-layer DSM. The key element in thin-layer DSMs
is the simplicity of handling a request for shared
data. There is no need for page twinning, which con-
sumes memory, nor for diff operations, which occupy
the cpu, code instrumentation, which blows up the
instruction count, or sophisticated protocols which
complicate the system. As a result, thin-layer DSMs
are simple to develop and debug, easy to use, and
impose little overhead on the local operating system
and the communication network, beyond that which
is required by the applications.

It was recently shown that reducing the gran-
ularity in systems which implement strict consis-
tency may achieve performance comparable to that
of systems implementing relaxed consistency mem-
ory models [19, 27]. In accordance with these find-
ings, Sequential Consistency was employed in MILLI-
PAGE: initial performance evaluation shows results
comparable or superior to those obtained in systems
which employ relaxed consistency models.

MILLIPAGE is fully operational in the Distributed
Systems Laboratory at the Technion - Israel Insti-

tute of Technology '. MILLIPAGE uses the Illinois
FastMessages [16] on a cluster of 8 Compaq 300Mhz
Pentium II machines, interconnected by a Myrinet
switch, and running Microsoft Windows-NT.

The rest of this paper is organized as follows.
The following section describes the MULTIVIEW tech-
nique and how to generate and control minipages.
In Section 3 we describe the design of MILLIPAGE;
we discuss important issues that affected the pDsSm
architecture, issues which arise from applying the
MULTIVIEW technique and the integration of fast
messaging libraries. Initial performance evaluation
of MILLIPAGE is provided in Section 4. Finally, we
discuss future work and open research topics.

2 The MultiView Technique

Unlike object-based DsM systems, which require a
specially tailored compiler or binary code instrumen-
tation, page-based DSM systems provide a transpar-
ent and portable software layer that can be devel-
oped and used on standard platforms. The main
disadvantage of page-based DSMs is that the small-
est unit of sharing (the granularity) is the page size,
which is determined by the operating system and
the underlying processor architecture. The size of
a page, as large as 4KB for the Intel Pentium and
8KB for the Digital Alpha, is three orders of magni-
tude larger than the memory addressing granularity.
In this section we propose a novel technique, called
MUuULTIVIEW, which enables the sharing of memory
in fine granularity as small as that of the memory
addressing unit.

2.1 The Basic Idea

Consider three variables z, y, and z, whose size is
smaller than that of a page. In a page-based DSM
system, the memory for these variables may be al-
located on the same page, resulting in false shar-
ing. Consider a mapping of the page that contains
these variables to three different, non-overlapping,
virtual address regions, starting at addresses vy, v2,
and vs, so that each of the locations in the page
can be viewed via three different virtual addresses.
Each of the regions is called a a view. Since access
permission is controlled through the virtual mem-
ory mechanism, it follows that protection and fault
handling can now be applied in three different and
independent ways, one for each view. Consequently,
the mechanism for maintaining page consistency can

lUpdated information can be found in our web site at
http://www.cs.technion.ac.il/Labs/Millipede



also arbitrate between three different policies, each
using the access capability setting of one of the views.
Figure 1 depicts this situation.
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Figure 1: Mapping three virtual views to a single mem-
ory page in which three variables reside.

Now suppose the application uses different views
to access different variables, say, the variable z is
accessed via v; + offset(z), y via ve + offset(y), and z
via vgtoffset(z). Then, although the variables reside
in successive memory addresses on the same physical
page, they are seen by the application as if placed
in three different (virtual) pages. It is now possible
to manage a separate access policy for each variable
using its respective view. Moreover, an independent
consistency protocol can be implemented for each
variable, despite the fact that all three reside on the
same page.

2.2 Views, Vpages, and Minipages

Most DSM systems provide consistency guarantees
for a single, large, contiguous region of shared ad-
dresses. In systems which implement MULTIVIEW,
the shared space is mapped to several such regions of
virtual addresses, called views. Consequently, each
memory element can be accessed via the virtual mem-
ory mapping mechanisms, using any of the views.
Since views must be managed in granularity of pages,
each view consists of a sequence of virtual memory
pages which we call vpages.

MuLTIVIEW lets the application manage each

memory element through a dedicated view, or a vpage,

which is said to be associated with this element. Be-
cause each memory element (in the above example,

a variable) can now be managed independently re-
gardless of its size, we call it a minipage. Minipage
sizes vary; they can be as large as the virtual page
size or as small as the basic memory addressing unit.

A minipage is identified by the associated vpage
number and a pair < offset, length > which indi-
cates the region inside the vpage where the minipage
resides. A protection is controlled for the minipage
using the virtual memory mapping mechanisms by
manipulating the associated vpage protection. A
NoAccess protection indicates a non-present mini-
page, a ReadOnly protection is set for read copies,
and a writable copy gets a ReadWrite protection.
Copying minipages between the hosts, invalidating
minipage copies, and changing access permissions
are all done according to the consistency guarantees
and the protocols implementing them.

The basic feature which enables the implementa-
tion of a fine granularity bsm using the MULTIVIEW
method is the independent manipulation of access
permissions for minipages which physically share the
same memory page, but are accessed by the applica-
tion via different vpages. For instance, the following
protocol implements Sequential Consistency. When
a read fault occurs, i.e., when the application at-
tempts to read a minipage for which the associated
vpage has a NoAccess protection, an accessible copy
of that minipage is located in one of the hosts and
brought in. Accessing the minipage is then enabled
by changing the protection of the associated vpage
to ReadOnly. Similarly, upon encountering a write
fault, a copy of the minipage is retrieved, all other
copies are invalidated, and a ReadWrite protection
is set for the associated vpage.

2.3 Minipages and Views Layouts

Preparing the minipage layout can be done in both
static and dynamic fashion. Static layout may divide
each memory page into k& minipages of equal size.
This way, it is easy to calculate the minipage bor-
ders when a fault occurs. Static layout may there-
fore be appropriate for general purpose caching and
global memory systems, in order to reduce the page
size by a fixed factor [10]. In the dynamic layout
each allocation in the shared memory defines its own
minipage according to the allocation size, and this
minipage is associated with its own vpage. The sys-
tem should therefore store and maintain a minipage-
table (MPT) with the appropriate < offset,length >
pair specified for each minipage. Large allocations
should still reside in a contiguous region of addresses.



MILLIPAGE design is based on the dynamic lay-
out; it is this option on which we focus in the rest
of this paper.

2.3.1 The Privileged View

Multithreaded DSMs commonly use server threads
for DSM management, and application threads for
carrying out computation. We call the views that
are used by the application threads application views.

In addition to the fine granularity capabilities,
MULTIVIEW enables another useful feature. An ad-
ditional, separate view is constructed, called the priv-
ileged view. The protection of the privileged view is
fixed and set to ReadWrite. The DSM server threads
may use it at all times to access the memory, and
are thus not constrained by the bSM memory protec-
tions, as determined by the consistency guarantees
imposed on the application views.

There are two common DSM operations which
highly benefit from using the privileged view. First,
atomic minipage updates can now be performed in
user-mode. While access is blocked through the ap-
plication views, the DSM server thread can freely ac-
cess minipages via the privileged view. Once the
modification is complete, the protection in the ap-
plication views can be reduced, thus enabling the
application threads to access the modified memory.
In this way multithreading can be employed safely.

Secondly, buffering and copying of long messages
can be avoided. The privileged view may be used
to directly send/receive minipages from/to the user
space. While communication activities are taking
place using the privileged view, application thread
access to the same memory region is forbidden by
the protection imposed on the application views. In
this way, buffer copying is completely eliminated in
the bsM layer. Later, in Section 3.5, we describe how
all this is implemented in MILLIPAGE and integrated
with the Illinois FastMessages.

2.4 Implementation Issues

We have implemented MULTIVIEW in Windows-NT
in a DSM system called MILLIPAGE. Mapping sev-
eral views of virtual addresses to a shared memory
region was accomplished using the file mapping AP1,
as follows. First, a memory object? is created by call-
ing the CreateFileMapping API. A memory object
is simply a virtual memory region, allocated in the
kernel address space of a process, and backed-up by

2 A memory object is called a memory section in Windows-
NT terminology [21].

the paging file. This memory object is the shared
region on which minipages will be allocated.

Suppose the maximal number of minipages that
reside on the same page of the memory object is n.
We thus need n+ 1 different views of the memory ob-
ject: n application views for use by the application
threads and one for the privileged view. The views
are created using the MapView0fFile API, which is
called once for each established view.

For each application, MILLIPAGE keeps a single
process on each of the hosts. By carefully config-
uring the DSM addresses, the views are guaranteed
to map to the same addresses in all processes, so
there is no need for address translations between the
hosts. Once mapped, the protection of vpages (re-
call that vpages are the virtual pages composing a
view) can be manipulated independent of the pro-
tection of other vpages that are mapped to the same
memory object page. One of the views is made priv-
ileged with the protection of all its vpages set to
ReadWrite. This view is used by the DSM server
threads to read and update the memory object.

The construction of the views is performed dur-
ing system initialization. When the application is-
sues an allocation request, the DSM searches for a
suitable region in the memory object, and defines
it as a minipage (or a set of consecutive minipages).
The DSM associates the newly defined minipage with
one of the application views. More precisely, sup-
pose an allocation procedure defines a new minipage
M. M is associated with a certain vpage in one
of the views, and an address p in this vpage is re-
turned. During allocation, a new entry is formed in
the minipage-table MPT, containing both the offset
of p in the vpage and the size of M.

If mapping to M spans several vpages in the as-
sociated view, the above is generalized in a straight-
forward way.

Figure 2 describes the views configuration and
the dynamic allocation of minipages to variables dur-
ing malloc calls.

3 System Design

3.1 Design Goals

MILLIPAGE is a software-only implementation of a
fine-granularity strictly-consistent distributed shared
memory. Although MILLIPAGE can be seen as a page-
based DSM, it is not limited to sharing memory in
granularity of full pages.

The main design goals of MILLIPAGE are outlined
below. We discuss them throughout this section.
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Figure 2: Views configuration and dynamic minipage
allocation for independent variables. DSM service and
control threads use the privileged view. In general, a
memory object may be larger than a page and there
may be “gaps” between the views.

e User level software implementation.
e Efficient strict memory model.

e Fine granularity DSM.

e Thin layer DSM.

e Integration with fast networking media and
fast messaging packages.

e Multithreaded support to efficiently utilize SMP
machines.

3.2 Shared Memory Model

The programming model in MILLIPAGE is Sequential
Consistency, which is implemented through the Sin-
gle-Writer/Multiple-Readers (SW/MR) protocol: at
any point in time, for any minipage, there can be ei-
ther read copies or a single writable copy. Thus, par-
allel applications run on MILLIPAGE as if they were
executing on a physically-shared memory SMP ma-
chine; there is no need for either explicit or implicit
memory synchronization.

Aside from the initial setting of the maximal
number of views and the size of the shared-memory,

the allocation process is transparent from the pro-
grammer point of view. Some restrictions do apply,
however, in the sense that only dynamic allocations
can be shared; those are the only allocations man-
aged by the bDSM mechanism. For this reason, the
application should be written so that the sharing
unit is equal to the allocation size.

Allocating from the shared memory is performed
via a malloc-like ApI. The returned pointer can
point to any of the application view’s address spaces
(but never to the privileged one). It can then be used
in the usual way as if it had been returned by the
standard malloc call.

3.3 Protocols

An important goal in the design of MILLIPAGE was to
encapsulate the DSM functionality in a very thin soft-
ware layer. This was accomplished by implementing
a very simple SW/MR protocol, which we now pro-
ceed to describe.

On each host a single MILLIPAGE process is started,
running both application and server threads. One
of the processes is elected as the manager. As part
of the manager role, it is in charge of maintaining
the directory information of minipage and minipage
copy locations, minipage sizes, and the association of
view addresses with their minipages. This informa-
tion is stored in the minipage-table (MPT), which is
stored at the manager host.

All requests for missing minipages (resulting from
a fault) are sent to the manager, which redirects
them to the appropriate hosts. Requests which ar-
rive while an earlier request to the same minipage is
still in process are queued in the manager.

A request which arrives at the manager contains
only the faulting address. The manager looks it up
in the MPT and stores the translation information
(the minipage base address, its size, and its address
in the privileged view) in the message header where
the appropriate space has been reserved. When the
message is forwarded, it carries the translation in-
formation.

The manager-centered design significantly sim-
plifies the DSM layer for the non-manager processes.
Whenever a fault occurs, the fault handler issues a
request and sends it directly to the manager. No
computation or local search in any data structure is
required. The thread then waits on an event while
its request is serviced.

When the reply arrives, it is handled by a DsM
server thread, which receives the message in two
stages: first, the message header arrives, containing



the original request and the translation information.
Next, the minipage contents are received directly at
the appropriate address in the privileged view, as
specified in the request header. When the receive
operation completes, the protection for the minipage
is set and the faulting thread is signaled to continue
its execution.

The manager’s role is essentially to mark and
forward requests to hosts, and to maintain the MPT.
If a read copy is requested, the manager updates the
minipage copyset and forwards the request. If an
exclusive write copy is requested, the manager first
chooses one of the hosts in the copyset, instructs all
others to invalidate their copies, and then forwards
the request to the remaining one. This host will then
invalidate its copy and send the minipage directly to
the host where the fault occurred. The pseudo-code
of the complete protocol is given in Figure 3.

Once a fault is served and the faulting thread
wakes up, it sends an additional ack message to the
manager. Although this additional message might
seem to reduce performance, it actually solves a few
potential problems. First, a possible livelock caused
by race conditions on two or more threads is elim-
inated. This is reminiscent of the delta mechanism
[6], which ensures that a page remains in the host
for a certain amount of time before its removal is
permitted. Second, the potential need for message
queuing in the non-manager hosts is eliminated. A
host which receives a request is never in the process
of acquiring the same minipage, nor has it given the
minipage away. Hence, a request which arrives at a
non-manager host can always be served immediately,
completely eliminating the need for buffers.

Since all the messages which are sent to and by
the manager are small (32 bytes in our current imple-
mentation), reading and writing them to and from
the network does not involve much overhead, leaving
the manager highly responsive.

3.4 The MILLIPAGE Library

MILLIPAGE is implemented as a win32 library on
Windows-NT. It exports several Apis for the use
of application development. Its interface includes
an initialization routine, spawning local and remote
threads, a memory allocation routine, and common
synchronization calls such as barriers and locks.
Applications can be compiled with any standard
compiler. They should then be linked with the MIL-
LIPAGE and the FM libraries. The final executable
integrates the DSM run-time system with the applica-
tion code and can be started concurrently on several

hosts. Figure 4 shows the process of preparing an
application to run on top of MILLIPAGE. Since MILLI-
PAGE is multithreaded and its architecture supports
multithreaded applications, only a single instance
of the application should be executed on each host,
even if this host is a multi-processor (SMP) machine.

FM.LIB
MYRILIBLIB

MILLIPAGE LIB

application

source files fle2c [ COMPILE ThK
file3.c

millpage.h

Figure 4: Preparing an application for execution on
top of MILLIPAGE. The final executable includes both
the application code and the MILLIPAGE libraries.

3.5 FastMessages

MILLIPAGE uses FM on Myrinet as its communication
layer. FM was developed at the University of Illinois
as a low latency messaging layer, working on fast
networking media such as Myrinet. We measured a
roundtrip delay of 25 usec for small messages (200
bytes) and 180 usec for 4 KB messages. FM achieves
network bandwidth higher than 1 GB/sec on our
switched Myrinet LAN.

FM provides a reliable and FIFO ordered messag-
ing service. Its high performance is due to two main
features. First, it does not switch between user mode
and kernel mode, but rather transfers data directly
to and from the user space. Second, it minimizes
buffer copying of messages. When a send operation
is initiated by the user process, FM verifies that there
is sufficient space in the network buffers at the target
network adapter. Then the message is read directly
from the user space, through the local adapter to the
target network adapter card. Using DMA, the mes-
sage is copied at the receiver side from the buffers
of the network adapter card to the FM reserved (and
pinned) memory. The receiver should then poll in
order to check that the message has arrived and can
be processed by its handler.

Although we measured low latencies and high
bandwidth for messages that were sent using FM, we
confronted a problem caused by FM’s polling policy.
When coordination of the send-receive operations is
possible, e.g., in message-passing interfaces such as
MPI and PVM, the sender thread and the receiving



On Read or Write Fault

pmsg—event = myEvent;

pmsg—type = {READ or WRITE}_REQUEST;
pmsg—from = ME;

pmsg—addr = fault_addr;

Send pmsg to manager;

wait(myEvent);

Handle Read Request
if (access(pmsg—fault_addr) == ReadWrite)

then set access(pmsg—fault_addr) to ReadOnly
pmsg—type = READ_REPLY;
Send pmsg to pmsg—from;
Send(pmsg—privbase,pmsg—pgsize) to pmsg—from;

Handle Write Request

Set access(pmsg—fault_addr) to NoAccess
pmsg—type = WRITE_REPLY;

Send pmsg to pmsg—from;

Send(pmsg— privbase,pmsg—pgsize) to pmsg—from;

Handle Read or Write Reply
Recv(pmsg—privbase,pmsg—pgsize);

Set access(pmsg—fault_addr) to ReadOnly/ReadWrite
SetEvent(pmsg—event);

Handle Invalidate Request

Set access(pmsg—fault_addr) to NoAccess
pmsg—type = INVALIDATE_REPLY;
Send pmsg to manager;

Manager: Translate(pmsg)

pmsg—base = get_minipage_base(pmsg—fault_addr);
pmsg—pgsize = get_minipage_size(pmsg—fault_addr);
pmsg—privbase = addr2priv(pmsg—base);

Manager: Handle Read Request
Translate(pmsg);

p = find_replica(pmsg—fault_addr);
Forward pmsg to p;

Manager: Handle Write Request

Translate(pmsg);

forall p in replicas of pmsg—fault_addr {
pmsg—type = INVALIDATE_REQUEST;
Send pmsg to p;

}

Manager: Handle Invalidate Reply

if got less than (#replicas - 1) replies then return;
pmsg—type = WRITE_REQUEST;

p = find_replica(pmsg—fault_addr);

Forward pmsg to p;

Figure 3: The complete protocol in MILLIPAGE. Note the simplicity of the DSM layer: no buffer copying, queuing,
table lookup, or translation of any kind are required, except at the manager.

thread can be co-scheduled to achieve good timing
of the polling action. Unfortunately, such coordina-
tion is impossible in DSM systems, since (mini)page
faults occur in an unpredictable manner. When a
thread faults and sends a (mini)page request to an-
other process, this process will commonly be busy
in application-related computation. In this situa-
tion, frequent polling will slow down the computa-
tion, whereas infrequent polling will cause large de-
lays in receiving and handling the request. Since
both responsiveness and efficiency have a major im-
pact on DSM performance, we had to address this
problem in our system design. We proceed below to
describe our solutions.

Communication and DSM Server Thr-
eads

3.5.1

Application threads run as native kernel threads of
the operating system. When started, they invoke
a wrapper routine that installs the MILLIPAGE ex-
ception handler and calls the original main thread
routine. Aside from this, the application code is ex-
ecuted as is and application threads experience no
interference unless they fault.

In addition to the application threads, MILLI-
PAGE spawns three threads that are in charge of

maintaining the memory consistency and servicing
requests: two DSM server threads and a millisecond
timer thread. One DSM server thread, called the
poller, is constantly polling for messages in a busy
loop. It promptly serves received messages, then
continues to poll. The poller runs at a low prior-
ity; it does not consume cpu cycles when required
by application threads. Another thread, called the
sweeper, differs from the poller only in that it waits
on an event before it issues a single poll.

Ideally, we would let the sweeper sleep for periods
of a few hundred microseconds, maximizing respon-
siveness without overloading the cpu. However, high
resolution timers are provided in Windows-NT only
through multimedia timers, of which the finest reso-
lution is Ims. Therefore, a third thread, the timer,
was used to set up an event to wake up the sweeper
once in every millisecond. For higher accuracy, and
since it consumes, over a period of a millisecond,
very little time, the priority of the sweeper was set
to exceed that of the application threads. Note that
the multimedia timer thread runs in high priority as
well.

Our measurements showed that the deviation in
the time between timer events is extreme: most of
them appear either within several tens of microsec-
onds, which overloads the cpu, or take several mil-



liseconds, which degrades responsiveness. We have
found that this anomaly of the Windows-NT timers
has been recently reported in [11], where a stan-
dard deviation of 955 microseconds was measured
for Ims timers on similar hardware - nearly equal
to the mean! Since polling is in the core of our sys-
tem, the timer inaccuracy significantly affected the
responsiveness of the DSM server threads, and thus
the overall performance of MILLIPAGE.

4 Performance Evaluation

In this section we discuss the performance implica-
tions of using MULTIVIEW and the performance of
the MILLIPAGE system. Our testbed environment
consists of a network of eight Pentium II 300Mhz
uniprocessor machines, running Windows-NT Work-
station 4.0 SP3. Each machine has 128 Mbytes of
RAM. The architecture page size is 4 KB. The clus-
ter is interconnected by a switched Myrinet LAN [4].
The Myrinet drivers were taken from the HPVM re-
lease 1.0 for NT [8].

4.1 MultiView Limitations

In order to measure the overhead of using MULTI-
VIEW we used a standalone test application which
is not related to the MILLIPAGE system. In this way
the overhead of MULTIVIEW could be distinguished
from that of other implementation-related sources.

Our test application allocates an array of char-
acters (bytes). The array resides in minipages of
equal size. The number of minipages in each page is
equal to the number of views. The main application
routine iteratively traverses the array, reading each
element (from first to last) exactly once in each iter-
ation. We experiment with two parameters: the size
of the array (which represents the size of the shared
memory), N, and the number of views n.

As expected, the total size of committed mem-
ory increases with the size of the allocated region,
independent of the number of views. We were lim-
ited, however, by the size of the available virtual ad-
dress space, which stands at about 1.63 GB. Thus,
we could only experiment with n < 1.63Gig/N (e.g.,
for N = 16MB we could set up to n = 104 views).

For N = 512KB we hardly noticed any overhead.
For 1 < n < 32 the measured overhead is always less
than 4% for 512KB < N < 16MB. Note that n = 32
means a sharing granularity of 128 bytes.

In order to study the limitations of the MULTI-
VIEW technique we also experimented with a very
large number of views, up to 1664. The results show
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Figure 5: Overheads of MuLTIVIEW. Note that the
breaking-points where the overheads become substan-
tial depend on the size of the shared memory in an
inversely linear fashion.

that, at certain breaking-points, the overhead of us-
ing many views becomes substantial and may lead
to severe slowdown. Figure 5 summarizes the re-
sults up to 512 views (minipages of size 8 bytes).
Taking a closer look at the graphs, we could make
several observations. First, for each N, beyond the
breaking-point, the overhead increases linearly with
the number of views. Second, beyond their respec-
tive breaking-points, the graphs for all N increase
with the same slope. Third, the breaking-points
themselves depend on N in an approximately inver-
sely-linear fashion: they appear at the points where
n-N = 512 (N in MB). Finally, when we tried
to allocate a large N and use only a fraction of it,
the breaking-point appeared earlier than in the case
where only the accessed fraction was allocated.

Our first explanation is that the slowdown is re-
lated to the enormous increase in TLB misses, and
to the size of the cache. The number of active PT
entries (not MPT) at the breaking points becomes
128K. The TLB size in the Pentium II is 64 data
entries and 32 code entries. A PTE is four bytes
in size, and the PTEs are cachable. A TLB miss
and a 1st level cache miss cause a single stall; an
increase there may thus explain the 1-4% slowdown
we experienced with smaller N and n, but cannot
possibly explain the slowdown that appears beyond
the breaking-points.



The size of the 2nd level cache in our machines
is 512KB, thus the breaking-points occur precisely
when the PTEs can no longer be cached there. The
cache is physically tagged. Attempting to access a
new minipage causes the virtual memory transla-
tion mechanism to search for a new PTE, which,
when the cache is congested, causes a miss. In
the extreme situations that we tested, beyond the
breaking-points, the cache misses caused by the miss-
ing PTEs dominate the cache activity.

We note here that other factors might also have
affected the performance of MULTIVIEW. One ex-
ample is a possible performance degradation caused
by overloading the operating system’s internal data
structures, keeping track of extensive data mapping.
Another example is the quicker cache exhaustion
that may occur in virtually tagged caches.

As we describe later in this section, the appli-
cations in our benchmark suite all use less than 32
views and thus the overhead they experience is neg-
ligible.

4.2 Basic Costs in MILLIPAGE

A major goal in MILLIPAGE’s design was to minimize
the DSM protocol time by implementing a thin proto-
col layer. Table 1 shows the measured times (costs)
of some basic operations that are part of the bsm
protocols in MILLIPAGE.

operation s
access fault 26
get protection 7
set protection 12

header message send/recv

—~

32 bytes) | 12

a data message send/recv (0.5 KB) 22
a data message send/recv (1 KB) 34
a data message send/recv (4 KB) 90

minipage translation (MPT lookup) 7

Table 1: Cost of basic operations in MILLIPAGE.

The time it takes to bring in a page for reading in
MILLIPAGE is 204 us for minipages of size 128 byte,
and 314 us for minipages of size 4 KB. The difference
in arrival times for a minipage request arriving in a
single hop as opposed to two hops was slight. The
time it takes to bring in a page for writing in MIL-
LIPAGE is 212-366 us for 128 bytes minipages, and
327-480 ps for 4KB minipages. These times vary
according to the number of read copies that should
be invalidated prior to serving the write request.

A barrier between 1 to 8 hosts takes 59-153 us
(linearly in the number of hosts) and a lock followed
by an unlock operation takes 67—80 usec.

In addition, we measured diff creation time in
our setting. Our measurements show that a run-
length diff operation (as described in [5]) for 4KB
page takes 250 us and decreases linearly with the size
of the page. Obviously, this time is not negligible,
and would have dominated the overhead if it were
required in the DSM protocol.

4.3 Applications

This section presents the results of parallel execution
of five benchmark applications on the MILLIPAGE
system. Our application suite consists of: Water-
nsquad (WATER) and LU-contiguous (LU) from -
SPLASH-2 [25]; Integer-Sort (IS) from the NAS par-
allel benchmarks [2]; Successive Over Relaxation -
(SOR) and the Traveling Salesperson Problem (TSP)
from the Treadmarks [13] benchmark applications.

Table 2 summarizes application information such
as data sets, shared memory size, and the sharing
granularity. As can be seen, different applications
naturally use minipages of different sizes, which in
turn dictates the number of views as explained ear-
lier in Section 2.

The code for memory allocation in three of the
applications was slightly modified in order to equate
the allocations and the sharing units.

In the original code for WATER, all the molecules
are stored in a single array (VAR) and are referenced
via pointers. We altered the main function so that
each molecule will be allocated separately.

IS allocates a shared portion of memory where
the keys reside. The array is relatively small and is
divided into regions of equal size where each host is
in charge of another region. We modified the allo-
cation routine to have these regions allocated sepa-
rately and thus reside in different minipages.

TSP allocates a global memory structure that
contains an array of tours. Each tour (TourElement)
is of size 148 bytes and each tour is manipulated
exclusively by one of the tasks. We extracted the
array out of the global memory structure, leaving
there only a pointer. We then allocated each tour
independently so that each one resides in a separate
minipage.

There was no need to modify SOR, as it uses a
matrix which is allocated row by row. The gran-
ularity of a row is suitable as the sharing unit, so
the size of a row may determine that of a minipage.
Similarly, it was not necessary to modify LU, as it



Input Set Shared | Num. Sharing | Barr. | Locks

Mem. Size | views Granularity
SOR 32768x64 matrices 8 MB 16 a row, 256 bytes 21 -
IS 223 numbers, 2° values 2 KB 8 256 bytes 90 -
WATER | 512 molecules 336 KB 6 | a molecule, 672 bytes 29 | 6720
LU 1024x1024 mat., 32x32 blocks 8 MB 1 a block, 4 KB 577 -
TSP 19 cities, recursion level 12 785KB 27 a tour, 148 bytes 3 681

Table 2: Application Suite.

builds a matrix by allocating sub-blocks, each of size
32 x 32 x |int| = 4KB. Since the granularity of these
sub-blocks is suitable as the sharing unit, the size of
a minipage may be set equal to that of a 4KB page.

4.3.1 Speedups

Figure 6 summarizes the speedups on MILLIPAGE for
each of the applications, when executing on 1 to 8
processors.

When examining the results, one should keep in
mind that because of the FM polling problem and
the large-grain timers described in Section 3.5, our
system suffers from relatively high delays in servic-
ing minipage requests. Since the resolution of the
operating system timers is constrained to 1 ms (and
is extremely inaccurate, see Section 3.5.1 and [11]),
we experienced an average delay of about 750 us for
minipage requests. Only about a third of the delay
comes from the DSM layer (see Section 4.2 above),
while the rest is due to the slow response of the server
thread: an average of more than 500 us.

Despite the above, our initial experience with
MILLIPAGE shows encouraging results. IS and SOR
achieved speedups that are close to linear: the ef-
ficient resolution of false sharing led to a relatively

small communication volume. WATER’s performance

was comparable to that achieved in reduced consis-
tency systems. This performance was achieved by
chunking molecules in larger minipages, a method
that we describe later in this section.

LU achieved relatively good results, mainly due
to the thin DSM layer which reduces the protocol
overhead. In addition, in order to minimize the
large minipage service delays explained above, we
inserted two prefetch calls during the LU computa-
tion. We believe that this prefetch mechanism will
not be needed once the FM polling problem is re-
solved, and/or the operating system timer resolution
is refined.

False sharing was resolved in TSP, except for a

single data race for updating the minimal tour found
so far. Although the modification of this variable is
protected by means of mutual exclusion, it is fre-
quently read through an unprotected section. We
changed a single code line in which this variable is
updated, so that it pushes readable copies of the new
value to all hosts. It is instructive to consider the
minipage allocation size, which is equal to that of
a tour element: 148 bytes. Providing granularity of
128 or 256 bytes (“cleaner” numbers that divide a
page size) may involve a large increase in false shar-
ing due to the pattern in which TSP assigns tours
to processors: two adjacent tours are often assigned
to two different processors.

4.4 Chunking

In the tradeoff between false sharing and aggregation
we found that it is sometimes better to use granu-
larity larger than the sharing unit size, with the cost
of some additional false sharing. The main reason
is the longer time it takes to bring in a relatively
large portion of the memory when fine granularity is
employed. Aggregation may reduce the number of
DSM protocol calls, number of messages, page pro-
tection changes, and other sources of overhead, thus
improving performance.

In our test applications we found WATER to be-
have much worse when we allocated each molecule in
a separate minipage, than when several of them were
chunked into a larger minipage. At the beginning
of each iteration of WATER, each processor brings
in the entire molecules’ structure, namely, the read
phase. When the allocation is done in granularity of
molecules, the read phase takes a long time to com-
plete due to the large number of minipage-faults that
should be served. Despite the fact that false shar-
ing is avoided for the computation which follows the
read phase, this phase has a major impact on de-
grading the speedup. We therefore set a switch in
MILLIPAGE, called chunking level, that makes MILLI-
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Figure 6: Summary of performance results. The breakdown graph on the right (for eight hosts) proves that the
efficient resolution of false sharing results in a low communication volume, which shows itself in small total service
times for faults. The total service time will further decrease once the polling and timer resolution problems are

solved (see Section 3.5).

PAGE aggregate allocations in larger minipages.

Increasing the chunking level causes our man-
ager to report more competing requests, i.e., requests
for a certain minipage that are enqueued while a
previous request is being served. When there was
no chunking, 21 competing requests were reported.
This surprised us at first, as false-sharing had been
completely eliminated, and we expected no compet-
ing requests whatsoever. However, [17] already re-
ported that there is a Write-Read data-race in WA-
TER. Apparently this data-race is the cause for the
competing requests reported by our manager.

We experimented with chunking in WATER for
the shared molecules structure, setting the chunking
level to increase from 1 to 6. We also ran WATER
with no false-sharing control, so molecules were al-
located in the traditional way; i.e., in minipages of a
page size, disregarding minipage boundaries. As ex-
pected, the number of competing requests increases
with the chunking level, reaching up to 601 when no
false-sharing control is employed. From Figure 7 we
conclude that the best performance is achieved for a
chunking level of 4 or 5.

It is interesting to compare our findings with
those of Shasta, as reported in [19]. They also found
WATER to benefit from a relatively coarse granular-
ity. However, they set the granularity level to 2048
bytes, while we found the optimum in a larger granu-
larity level, 2688 or 3360 bytes. We expect that when

the FM polling problem is solved (see Section 3.5),
the optimal chunking level will decrease, in which
case we may find it closer to that found by Shasta.

5 Discussion and Future Work

Prior to this work, the notion of a page-based DSMs
which use page protection mechanisms was perceived
as contradicting that of sharing data in fine granu-
larity, and tightly coupled with that of false-sharing.
Although relaxed consistency memories are success-
ful in solving the problem, they require complicated
protocols which introduce new sources of overhead.

In this paper we proposed a new method, called
MULTIVIEW, that unbinds the (seemingly) tight con-
nection between page-based DSMs and the need to
share data in granularity of pages. We describe one
realization of MULTIVIEW in a DSM system called
MILLIPAGE. In addition to the MULTIVIEW imple-
mentation, the design of MILLIPAGE gives rise to
other important issues such as the notion of a thin-
layer DsM and the integration of fast messaging lay-
ers.

The MULTIVIEW technique and its implementa-
tion in MILLIPAGE open a new avenue of research
directions. Work in these directions is already un-
der way. We proceed in this section to mention only
a few of them.
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Figure 7: The effect of chunking in WATER. The op-
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represented by the number of competing requests and
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Reduced-Consistency Protocols

When the minipages defined for a certain applica-
tion are larger than the sharing unit, i.e., the chunk-
ing level is set higher than one (see Section 4.4),
performance may benefit from employing reduced-
consistency protocols such as Lazy Release Consis-
tency [12, 26]. Thus, chunking reduces the overhead
involved in fine-grain operation, while false-sharing
is eliminated through the reduced consistency pro-
tocol. The overhead involved in the reduced consis-
tency protocol itself is small compared to that mea-
sured in traditional page-based systems, due to the
smaller page size.

Compiler Work

While we chose to use only the operating system API,
we believe that much can still be done through the
compiler. A compiler can map and re-map variables
to views, optimize accesses through those views, min-
imize PT usage, reduce TLB misses, etc. Large
static variables can be distributed carefully among
views in order to tune the granularity level with the
access pattern.

Composed-Views

Complex data structures (such as multi-dimensional
arrays) may be stored in groups of minipages. It
might be helpful for an application to access these
structures using different views at different stages.
Higher level views may be associated with groups
of lower level views, or groups of minipages. Ob-
viously, the access permissions to such a composed-
view should be set to the least of the access permis-
sions of its components.

One good example where composed-views (or com-
piler work) can be used is the chunking-level in WA-
TER, as discussed in Section 4.4. Clearly, the read
phase in WATER could benefit from a coarse grain
operation mode, whereas the later write phase would
accelerate in a fine grain mode due to the elimina-
tion of false-sharing. Hence, replacing the current
compromise by arbitration between fine-grained and
coarser-grained views would speed up the computa-
tion.

Access Locality in the Page Table

The main weakness of MULTIVIEW is the lost of lo-
cality in using PTEs due to the unusual memory
layout (see Section 4.1). Nevertheless, locality is
not completely lost, but is preserved across views.
A future work for integrating minipages inside the
operating system may consider altering the PT data
structure to exploit this memory layout.

Global Memory Systems

Recently, there has been a lot of research in utiliz-
ing remote memories for storing memory pages, thus
establishing an additional stage in the memory hier-
archy. It has been shown that using subpages as the
transfer units leads to substantial performance boost
[10]. We believe that MULTIVIEW can be used for
implementing subpages in global memory systems.
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