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Abstract
We describe a two-dimensional architecture for defend-
ing against denial of service attacks. In one dimension,
the architecture accounts for all resources consumed by
each I/O path in the system; this accounting mechanism
is implemented as an extension to the path object in the
Scout operating system. In the second dimension, the var-
ious modules that define each path can be configured in
separate protection domains; we implement hardware en-
forced protection domains, although other implementa-
tions are possible. The resulting system—which we call
Escort—is the first example of a system that simultane-
ously does end-to-end resource accounting (thereby pro-
tecting against resource based denial of service attacks
where principals can be identified) and supports multiple
protection domains (thereby allowing untrusted modules
to be isolated from each other). The paper describes the
Escort architecture and its implementation in Scout, and
reports a collection of experiments that measure the costs
and benefits of using Escort to protect a web server from
denial of service attacks.

1 Introduction

It is becoming increasingly important that networked
computing systems be able to protect themselves from de-
nial of service attacks. For example, a web server needs to
be able to detect and defend itself from an attacker that is
consuming its resources by trying to initiate TCP connec-
tion establishment as rapidly as possible—the so called
SYN attack [22]. Protecting against denial of service at-
tacks involves three steps:

Accounting: A necessary first step is to account for all
resources consumed by every principal.

Detection: A denial of service attack is detected when
the resources consumed by a given principal exceed
those allowed by some system policy.

Containment: Once an attack is detected, it must be pos-
sible to reclaim the consumed resources using as few
additional resources as possible, otherwise, removal
of an offending principal becomes a denial of service
attack in its own right.

Attacks on traditional operating systems like Unix [18]
frequently exploit the lack of accounting within the ker-
nel, that is, before the work has been assigned to a partic-
ular user (principal). For example, it is possible for an at-
tacker to consume all available TCP ports before a single
message is dispatched to a user process which implements
the policy and could detect the attack. Even if an attack is
detected, it is often difficult, if not impossible, to reclaim
all the resources consumed by the offending principal.
Consider, for example, something as commonplace as a
distributed file system: cached file blocks, NFS mount
points, device buffers, and network connection state al-
most always have a longer lifetime than the user process
that requested them. There is no direct way to account
such resources towards a principal, and certainly no way
to reclaim them when the principal is removed from the
system because it has violated some usage policy.

Recent multimedia operating systems like Scout and
Nemesis [13, 14] begin to address this problem by iso-
lating data streams and minimizing cross talk between
streams; cross talk is resource contention that interferes
with the system’s ability to make quality-of-service guar-
antees to each stream. Although these systems are suc-
cessful in isolating streams, they do not provide the fine-
grain accounting of resource usage needed to detect de-
nial of service attacks. They are also limited in that their
isolation mechanisms do not span multiple protection do-
mains; they assume all resources used by a given data
stream are confined to a single domain. Assuming a sin-
gle protection domain is unrealistically restrictive, for ex-
ample, it precludes a web server from running untrusted
CGI scripts.

This situation points to a dilemma faced in designing a
secure system: how to simultaneously support protection



domains that allow untrusted components of the system
to be isolated from each other, yet account for all sys-
tem resources consumed (potentially across multiple do-
mains) by a single principal. This paper addresses this
dilemma by making two contributions. First, it presents a
fine-grain resource accounting mechanism that has been
implemented in the Scout operating system. The mech-
anism is able to account for virtually 100% of the re-
sources used by a given principal at a low overhead of 8%.
Second, it describes how this mechanism can be made to
work across multiple protection domains. The paper does
not offer any novel denial of service policies, but it does
describe a working web server based on this architecture,
and measures its performance while enforcing a represen-
tative set of usage policies.

The limitation of this work is that it is impossible
to charge a piece of work to a particular principal un-
til the principal has been identified. For incoming net-
work packets, this means the system is vulnerable from
the time a packet arrives until it has been demultiplexed
and authenticated. The architecture we describe takes two
steps to minimize the impact of this window of vulnera-
bility. First, it pushes the demultiplexing/authentication
decision as early as possible. Exactly how early depends
on the protocols being used and the environment in which
the system exists. For example, a WWW server using
IPSEC [1] can authenticate an IPv6 datagrams cheaply
using a secure hash function. This happens during de-
multiplexing, earlier than it would be possible using TLS
[7]. In another example, a WWW server positioned be-
hind a filtering router might use IP addresses from the
local network for authentication, trusting the router to fil-
ter inappropriate datagrams. In a third, and more complex
environment, IP addresses could be rated by an intrusion
detection system, with resources allocated according to
the trustworthiness of those addresses. In all three cases,
it is important that the OS does not architecturally force a
late demultiplexing decision.

The second way our architecture minimizes the impact
of late authentication is that, even when the system has
not yet determined precisely what principal is responsi-
ble for a particular packet, certain classes of packets can
be aggregated and given only limited resources. For ex-
ample, IPSEC allows early authentication by requiring a
key exchange protocol to establish a shared key. In such
an environment, the server is vulnerable to an attack by
a new client that consumes server resources by sending
the server bogus key exchange requests. Our architec-
ture allows the WWW server to give preference to clients
that already posses valid shared keys, thereby maintain-
ing connectivity to the current set of clients while under
attack. We will demonstrate this feature in a later section,
showing how a web server might limit the cycles spent
processing new connections (e.g., SYN packets) by giv-

ing preference to existing connections.

2 Architecture

This section defines Scout’s security architecture. It be-
gins with an overview of Scout, and then describes how
we have extended Scout to support both fine-grain ac-
counting and protection domains. It concludes with a
brief discussion of how the resulting system—which we
call Escort—facilitates the enforcement of different secu-
rity policies.

2.1 Configurability

Modulesare the unit of program development and config-
urability in Scout. Each Scout module provides a well-
defined and independent function. Well-defined means
that there is usually either a standard interface specifi-
cation, or some existing practice that defines the exact
function of a module. Independent means that each single
module provides a useful, self-contained service. That is,
the module should not depend on there being other spe-
cific modules connected to it. Typical examples are mod-
ules that implement networking protocols, such as HTTP,
IP, UDP, or TCP; modules that implement storage system
components, such as VFS, UFS, or SCSI; and modules
that implement drivers for the various device types in the
system.
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Figure 1: Example Scout Module Graph

To form a complete system, individual modules are
connected into amodule graph: the nodes of the graph
correspond to the modules included in the system, and
the edges denote the dependencies between these mod-
ules. Two modules can be connected by an edge if they
support a commonservice interface. These interfaces are
typed and enforced by Scout. By configuring Scout with
different collections of modules, we can configure ker-
nels for different purposes, including network-attached



devices, web and file servers, firewalls and routers, and
multimedia displays. For example, Figure 1 shows an
extract of the module graph for a Scout kernel that im-
plements a web server. The configuration includes device
drivers for the network and disk devices (ETH and SCSI),
four conventional network protocols (ARP, IP, TCP and
HTTP), and a simple file system (FS). Such a configura-
tion is specified at build time, and a set of configuration
tools assemble the corresponding modules into an exe-
cutable kernel.

2.2 Path Abstraction

Scout adds a communication-oriented abstraction—the
path—to the configurable system just described. Intu-
itively, a path can be viewed as a logical channel through
a modular system over which I/O data flows. In other
words, the path abstraction defines a channel over which
data moves through the system, for example, from input
device to output device. Each path is an object that en-
capsulates two important elements: (1) it defines the se-
quence of code modules that are applied to the data as it
moves through the system, and (2) it represents the entity
that is scheduled for execution.
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Figure 2: Example HTTP Path

Although the module graph is defined at system build
time, paths are created and destroyed at run time as I/O
connections are opened and closed. Figure 2 schemati-
cally depicts a path that traverses the module graph shown
in Figure 1; it has source queues and sink queues, and is
labeled with the sequence of software modules that define
how the path “transforms” the data it carries. This partic-
ular path processes incoming HTTP requests by fetching
web pages from disk.

The path-specific local state of each module is stored in
a data structure called astage. Stages from a sequence of
modules are combined to form the path. In addition to this
path-specific state, when executing code within a certain

module, paths also have access to the state of the module.
For example, a path executing code of the IP module has
access to the routing tables stored in the IP module.

Each path goes through three phases during its lifetime.
The first phase is path creation, during which the topology
of the path—i.e., the sequence of modules it traverses—is
determined, and the state of the path is initialized. Path
creation is triggered by apathCreate call to the kernel;
the kernel limits path creation according to an access con-
trol list (ACL) specified by the system designer.

Specifically, thepathCreate operation takes six argu-
ments: a set of attributes, the starting module, a subject, a
subject class, the calling protection domain, and the call-
ing owner. The first four arguments are explicitly given,
while the last two are implicitly known from the calling
thread. The attribute set defines invariants for the path,
such as the port number and IP address for the peer. The
kernel uses these invariants, plus the starting module, to
determine the path’s topology—the sequence of modules
that the path traverses. Because only a certain small num-
ber of path topologies are useful in a given configuration,
it is accurate to think of this process as determining the
path’stype(e.g., an “HTTP path”). Next, the kernel con-
sults the ACL to determine if the entity trying to create
the path is allowed to create a path of this type, and if so,
what resource limits might be imposed on it. The entity
creating the path is identified by the last four arguments to
pathCreate: the subject (think of this as a user or a role),
a subject class (this defines the availability level [16]), the
calling protection domain (see Section 2.3), and the call-
ing owner (see Section 2.4). At this point, the path exists
and its resource limits are known.

Then the path enters its second phase, during which
data is sent and received over it. Both send and receive
work in the obvious way: data is enqueued at one end
of the path and a thread is scheduled to execute the path.
There is one complication, however. When data arrives on
a device—e.g., a network packet arrives on the Ethernet—
the kernel must determine to which path it belongs. This
is done in a way that is analogous to path creation: the
kernel identifies the path incrementally by invoking ade-
mux operation on a sequence of modules. Each module’s
demux function has three choices: (1) it can determine
that a unique path has not yet been identified and call the
demux function of some adjacent module; (2) it can re-
ject the request and drop the data; or (3) it can return a
unique path. Thedemux function is side-effect free.

The last phase of a path is invoked by apathDestroy
or pathKill call to the kernel. In case ofpathDestroy the
kernel invokes adestroy function associated with each
module along the path in the same order in which they
were initialized before it frees all resources used by the
path. pathKill frees all the path’s resources, but does not
invoke thedestroy functions.



2.3 Protection Domains

Escort extends the basic Scout architecture by isolating
the modules that have been configured into the system
into separate protection domains. The kernel—which im-
plements the path operations described above, as well
as other objects described in the next section—runs in
a privileged protection domain. The protection domain
that each module is to run in is specified at configuration
time. Trusted modules can be placed in the privileged
domain. Modules can also be multiply instantiated, both
across different protection domains, and in the same pro-
tection domain.
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Figure 3: Modules Partitioned into Protection Domains

Figure 3 shows the module graph for our example web
server partitioned into separate protection domains; one
module per domain in this example. (The device drivers
also have access to the memory regions used to access
their devices.) This configuration represents the maxi-
mum possible separation. A less restrictive configuration
might, for example, combine TCP, IP and ARP within one
protection domain.

In addition to the kernel and the set of modules config-
ured into the system, Escort also supports libraries that
implement commonly used functions. Library code is
trusted by their users, and so is mapped executable into
all protection domains. Escort currently supplies libraries
to manage messages, hash tables, participant addresses,
attributes, queues, heaps, and time. It also includes a stan-
dard C library.

The current version of Escort runs in a single 64-bit
address space and implements protection domains using
hardware mechanisms available on the Alpha micropro-
cessor. Modules not linked into the privileged domain
invoke kernel services using a hardware trap. However,
software fault isolation [24], type safe languages like
Java, and proof carrying code [15] could be used instead.

Since the code for each module and library might be

used by multiple protection domains, the calling environ-
ment for a given invocation of a library or module func-
tion must be specified. Furthermore, since modules can
also be multiply instantiated within one protection do-
main, it is not sufficient to have one data segment per pro-
tection domain. Therefore, Escort explicitly passes the
calling environment as the first argument to any proce-
dure, optimizing for stateless libraries and libraries that
access only protection domain state. This is similar to the
approach described in [19].

Each module supports a well-known initialization
function. When an Escort system boots, the kernel initial-
izes every module by switching to the appropriate protec-
tion domain and calling the init function on each module
in that domain. The modules initialize their global state
and create an initial set of paths.

Finally, we return to the issue of demultiplexing in-
coming network packets, but this time in light of mul-
tiple protection domains. The base demux mechanism
in Scout trusts thedemux functions contributed by each
module. Although not yet implemented in Escort, alterna-
tive mechanisms—e.g., pattern-based demultiplexers like
PathFinder [3] and the current system augmented with
Proof Carrying Code [15]—would be more appropriate
since they do not trust the demultiplexing code to be cor-
rect and to not leak information via the demultiplexing
decision.

2.4 Accounting for Resource Usage

A key goal of Escort is to account for all resource usage.
Towards this end, all resources are charged to anowner,
which can be either a path or a protection domain. Paths
are the preferred choice since they most naturally corre-
spond to the actual user of the resources. However, there
are certain resources that cannot be accounted to a partic-
ular path. For example, an IP routing table cannot be di-
rectly associated with (charged to) any individual IP flow;
the memory used by the routing table is associated with
the protection domain that runs the IP module.

There are only a few differences between protection
domains and paths in terms of ownership. One is that pro-
tection domains have a heap and paths do not. The reason
for this is that the kernel allows memory allocation at the
page level only. For paths this is extremely inefficient
since it would require a path to allocate at least one page
for each protection domain it crosses. To keep the ac-
counting mechanism accurate, the protection domain can
charge paths that cross it with memory usage. The mem-
ory charged toward a path is then deducted from the mem-
ory charged to the protection domain. In other words, the
kernel gives memory pages to protection domains, which
in turn implement a heap and hand out smaller memory
objects to paths that traverse them.



To allow the automatic reclamation of this memory—
and other resources like the reservation of a TCP port—
all modules can register destructor functions with a path.
This function is called in the module’s protection domain
when a path is destroyed or killed, and results in charge
for the memory being transfered back to the protection
domain. The destructor function usually frees all mem-
ory charged toward the path. However, the domain is ulti-
mately responsible for the freeing of the memory, that is,
returning the page back to the kernel.

Another difference is that paths can be destroyed with-
out destroying the modules or protection domains they
cross. However, if a protection domain is destroyed, all
paths crossing that protection domain are also destroyed.
This is necessary since paths can access the global state
of all modules they cross and this state will be removed if
the protection domain is destroyed. For example after de-
stroying the protection domain containing the IP module,
IP’s routing table will no longer be accessible by paths
anymore.

struct Owner {
OwnerType type; /* PATH or PD */
/* Accounting */
u_long kmem;
u_long pages;
u_long IoBuffer,
u_long threads;
u_long stacks;
u_long cycle;
u_long events;
u_long semaphores;
/* Tracking */
PageList pages;
ThreadList threads;
IoBufferLockList iobufferlock;
EventList event;
SemaphoreList semaphore;
/* Scheduling */
Scheduler scheduler;
/* Resource Monitoring */
Resource limits;

};

Figure 4: Owner Data Structure

Figure 4 shows theOwner data structure; this struc-
ture is the first element of both the path and protec-
tion domain data structures. TheOwner structure is di-
vided into three parts. The first part keeps a count of
the resources—kernel memory, memory pages, IOBuffer,
threads, stacks, CPU cycles, events, and semaphores—
used by this owner. The fields in this part are used to
decide if the resource part of the security policy has been
violated. Note that thekmem field counts the amount of

memory used to store the kernel objects referenced in the
second part of the data structure.

The second part contains doubly linked lists of the ac-
tual kernel objects associated with this owner; these ob-
jects are described in Section 3. These lists support the
fast removal of the corresponding objects in event that the
owner must be destroyed. TheScheduler object contains
the information necessary to schedule threads belonging
to this owner. The exact contents of this data structure
depends on the scheduler used. The last part contains the
resource limits of the owner. This object is more fully
described in Section 2.5.

Whenever a new resource is requested, the owner is
explicitly passed as an argument to the kernel allocator.
Although not mandated by the architecture, many policies
require that this argument must match the owner of the
current thread.

2.5 Specifying Resource Limits

Owners are charged for resources they use, with any lim-
its placed on this usage specified at system configuration
time (for protection domains), and at path creation time
(for paths). The resource limits for a particular owner are
given by theResource object of theOwner data struc-
ture. The action to be taken when a given limit is ex-
ceeded is specified in theLimit object; possible actions
include destroying the path, denying the request, or pre-
venting further demultiplexing of incoming data to the
path. Figure 5 shows both theResource andLimit data
structures.

struct Limit {
int val;
Action action

};
struct Resource {

Id subject;
Id subject_class;
Limit kmem;
Limit pages;
Limit IoBuffer;
Limit threads;
Limit stacks;
Limit cycle;
Limit events;
Limit semaphores;
Limit yield;
Limit attribute[attr_count];

};

Figure 5:Limit andResource Data Structures.

TheResource object defines limits for the very same
resources as accounted for in theOwner object: kernel



memory, pages, IOBuffers, threads, stacks, cycle, events,
semaphores and attributes. In addition, theyield field lim-
its the maximum number of cycles a thread can run with-
out yielding the processor,attr count is a system con-
stant limiting the number of attributes which can be asso-
ciated with a path and theattribute field limits the values
of those attributes. TheResource object also contains
identifiers for subjects, which correspond to users or roles
and subject classes which represent availability levels in
multi level availability systems. These identifiers are used
to aggregate resource usage over multiple paths.

All resource limits, except for the yield and cycle re-
strictions, are enforced by a resource monitor. This mon-
itor is called whenever resources are allocated or freed,
or when attributes change. The resource monitor is also
responsible for monitoring aggregated resource utiliza-
tion for subjects and subject classes according to a given
policy. To support multiple policies, Escort allows the
appliance designer to configure different resource moni-
tors into the system. Currently, Escort uses a simple re-
source monitor that compares the resources used against
the stated limit, and performs the appropriate action when
the limit is exceeded. It does not support aggregation of
resources.

The yield and cycle restrictions are enforced directly
by the kernel at clock interrupt time, and if a violation of
policy occurs, the only action allowed is to destroy the
associated owner.

2.6 Remarks

Although we have been focusing on how Escort accounts
for resource usage, it is useful to place Escort’s security
mechanisms in a larger context. Specifically, Escort al-
lows the system designer to enforce a security policy on
four different levels.

� The kernel uses a conventional role-based ACL [2]
to guard against unauthorized access. The role is de-
termined by the owner of the thread and the current
protection domain.

� The module graph defines the base channels of com-
munication between protection domains, and there-
fore limits information flow between protection do-
mains and those channels.

� The path object allows the system to always charge
actions towards the principal that is ultimately re-
sponsible for them. Paths also allow us to perform
certain complex access control decisions at path cre-
ation time instead of path execution time. In this
way, a path is similar to a cache of capabilities for a
specific owner, and as a consequence, the path cre-
ation process becomes an important part of the pol-
icy.

� It is possible to configurefilters between modules
in the module graph. Syntactically, filters are just
like any other module, except their purpose is to en-
force policy rather than to implement a specific func-
tion. For example, a filter between TCP and IP might
restrict the TCP/IP interface from one that supports
“receive packets” to one that supports only “receive
packets to port 80”. The filter enforces this more
restricted interface by filtering data that does not ad-
here to this restriction. Such filters can be used along
with a vanilla TCP module, and conversely, the same
TCP module can be flanked by different filters. The
important point is that the security policy need not
be embedded in the TCP module.

3 Implementation

Escort currently implements 52 system calls that provide
access to the following kernel objects: paths, IObuffers,
threads, events, semaphores, memory pages, devices, and
the console. This section describes the implementation of
the first three of these objects in more detail.

3.1 Paths

As already described, paths are created and destroyed us-
ing pathCreate, pathDestroy and pathKill operations.
The kernel also provides functions that allow data to be
enqueued on either end of a path.

struct Path {
struct Owner owner;
Hash allowed_pd_crossings;
StageList stages;
Queues[4] q;
ThreadPool t;
u_long refCnt;

};

Figure 6: Path Data Structure

The path data structure, as shown in Figure 6, is acces-
sible only from within the kernel. It contains the owner
state, a hash table of allowed protection domain crossings
for this path, a list of the stages belonging to the path,
pointers to the path input and output queues, a thread pool
that provides threads for the path, and a reference counter
used to delaypathDestroy but notpathKill calls.

The stages contained in the stage list represent the con-
tribution of each module to the path. Stages communicate
using predefined interfaces. The entry point of these in-
terfaces are established during path creation and stored in
the map of allowed protection domain crossings. Escort



currently supports interfaces for asynchronous I/O, name
resolution, and file access.

3.2 Threads

Threads, like any other resource in Escort, are owned by
either a protection domain or a path. This means that
the lifetime of a thread is bound by the lifetime of its
owner, and as a consequence, threads cannot directly mi-
grate between owners. Keep in mind that the motivation
for migrating threads [5] is to allow a single execution
context to cross multiple protection domains, but this is
already supported in Escort by the explicit path abstrac-
tion. In a well designed configuration, thread migration
between owners—e.g., from one path to another or from
one protection domain to another—should be an uncom-
mon event. Should such a need arise, Escort provides a
handoff function that generates a new thread belonging
to the target owner. Escort also synchronizes the threads,
and wakes up any threads waiting for a thread belonging
to an owner that has been destroyed.

Threads owned by a protection domain always execute
within this domain and are implemented similar to regular
UNIX threads. In contrast, threads owned by a path have
the ability to cross the protection domains along the path.
These threads have multiple stacks: one for each protec-
tion domain in which they can execute, plus a kernel-
resident stack that records the protection domains cur-
rently being crossed. This is more efficient than assigning
a new stack after each protection domain crossing since
Escort threads are likely to switch into the same protec-
tion domain more than once. For example, a thread used
to deliver an ICMP echo request datagram is also used to
send the ICMP response, thereby crossing the protection
domain containing IP twice.

To call from one domain to another, the call to the tar-
get function is executed, resulting in a memory access
violation. The kernel then checks to see if the thread
is owned by a path, and if the path data structure con-
tains a mapping from the current protection domain to the
target environment and function. If this mapping exists,
the kernel switches to the appropriate protection domain
and continues execution using the same thread. Since the
mappings are maintained in a per-path hash table, access
time is almost always constant. Upon return, a memory
trap to a special address occurs, triggering the kernel to
remove the last protection domain crossing from its stack
and return to the caller that triggered the protection do-
main crossing.

Using the Alpha calling conventions, Escort passes
integer arguments across protection domain boundaries
in registers. Arguments passed by reference are either
copied onto the stack that is mapped in the appropriated
protection domain, or an IOBuffer (described in section

3.3) is used. This makes inter-domain calls indistinguish-
able from regular function calls, and allows the system
builder to draw protection boundaries between modules
as needed. In other words, whether a protection domain
boundary sits between any pair of modules need not be
known at the time the modules are implemented.

Escort threads cannot be preempted gracefully. They
are similar to non-preemptive threads, with the exception
that they can be preempted if they are destroyed immedi-
ately afterwards. The removal of a thread, however, most
likely leaves its owner in an inconsistent state. Therefore,
the owner of a removed thread is itself removed. Since
Escort allows the kernel to specify a maximum thread
runtime without yields for each owner, this mechanism
is good enough to deal with runaway threads, but it does
not impose the synchronization overhead within modules
that would be necessary if preemptive threads were used.

In addition to threadHandoff, threadYield and
threadStop operations, the kernel also supports events
and semaphores. Again, these objects are owned by ei-
ther paths or protection domains. Events allow modules
to fork new threads that start executing a given function
after a specified delay. Semaphores can be used to block
threads. The threads that can be blocked on a semaphore
are not limited to threads of the owner of the semaphore.
If a semaphore is destroyed, however, all threads that do
not belong to the owner of the semaphore are unblocked.

The thread scheduler is configured during configura-
tion time. Escort currently supports a priority-based
scheduler, a proportional share scheduler, and an EDF
scheduler.

3.3 IOBuffers

Escort uses IOBuffers to pass blocks of data between pro-
tection domains. IOBuffers are similar to FBufs [8], ex-
cept they use a more elaborate reference counting scheme
and more restrictive mapping rules. IOBuffers are man-
aged by the kernel and can be allocated, locked, unlocked,
and associated with an owner. IOBuffers are always allo-
cated as a multiple of the system’s page size.

When an IOBuffer is allocated, it is associated with the
owner that is specified as an argument. The owner argu-
ment is restricted to either the current protection domain,
or a path that crosses the current protection domain. If
the owner is the current protection domain, the IOBuffer
is mapped read/write in that domain. If the IOBuffer is
associated with a path, it is mapped read/write in the cur-
rent protection domain, and read-only in all other protec-
tion domains along the path. The current direction that
IOBuffer is flowing is also specified as an argument; di-
rection is given by specifying the next stage along the path
that will process the IOBuffer.

To allow paths to traverse multiple security levels, it is



possible to designate certain protection domains along a
path as termination domains. This limits the read map-
ping to the protection domains along the path from the
current protection domain, up to and including the termi-
nation domain. An identifier for the protection domain
that can write in an IOBuffer is stored as first long word
in the IOBuffer.

The kernel keeps a reference count for each IOBuffer;
a buffer’s reference count is incremented by locking it.
Locking an IOBuffer removes all write privileges from
the buffer; this is indicated by setting the protection do-
main id field in the IOBuffer to zero. The purpose of
removing all write permission is that after locking an
IOBuffer, the buffer can be checked for consistency and
cannot be altered anymore by the original writer.

Unlocking an IOBuffer decrements the reference
counter and removes all write mappings. If the refer-
ence counter reaches 0, the buffer is freed or added to
a buffer cache. If an IOBuffer is allocated, and it has
read mappings in the same protection domains as a cached
buffer, the current protection domain mapping is changed
to read/write and the buffer is reused. The advantage of
this scheme is that cached IOBuffers do not have to be
cleaned and a buffer allocation requires only changes in
one protection domain’s memory mapping.

A final kernel call associates a pre-existing IOBuffer
with a second owner. The mapping directions and restric-
tions are specified in the same way as during IOBuffer
allocation. This feature is useful for an application that
implements a cache (e.g., a web cache): it allows the
protection domain that manages the cache to allocate the
IOBuffer, and later map the buffer into all protection
domains traversed by paths that use (send/receive) the
cached data. No copying is required and only one copy
of each data item is stored. This association call includes
locking the buffer for the second owner. The second
owner is also fully charged for the buffer. This is neces-
sary to avoid the case in which the original owner removes
its lock and the second owner does not have enough re-
sources to actually own the buffer. The disadvantage is
that there are more resources charged for than actually
used.

The message library [12] is used to efficiently manage
the IOBuffer and offer a simple user interface tailored for
manipulating network messages. All meta data used by
the message library is stored in IOBuffers. The message
library can deal with the possibility that it might lose write
permission to an IOBuffer transparently. It also adds an-
other layer of reference counting without involving the
kernel. As a result, each protection domain holds at most
one kernel lock on any IOBuffer reducing the number of
kernel calls.

4 Performance

This section reports measurements of Escort designed to
demonstrate the costs and benefits of accounting for re-
source usage across multiple protection domains. The ex-
ample system we use for all our experiments is the web
server introduced in Section 2.

4.1 Configurations

We measured Escort under a variety of configurations and
loads, as outlined below.

4.1.1 Web Server

We tested four configurations of the web server. The
first three run on Scout and implement the module graph
shown in Figure 1. The fourth configuration runs on
Linux. We denote the four configurations as follows:

Scout: All modules and the kernel are configured in a
single, privileged protection domain. This configu-
ration does no resource accounting, and so is equiv-
alent to a base Scout kernel.

Accounting: Like Scout, all modules are implemented in
a single protection domain, but the system accounts
for all resources consumed by paths and protection
domains.

Accounting PD: Includes resource accounting, but each
module is configured in its own protection domain.
This is the worst-case scenario since each inter-
module call implies a protection domain crossing.
The module graph for this configuration is shown in
Figure 3.

Linux: Apache 1.2.6 web server running on RedHat 5.1
with the 2.0.34 Linux kernel.

4.1.2 Load

The experiments place the following kinds of load on the
web server:

Client: A regular client performs a sequence of requests
to retrieve the same document. The document sizes
used are 1-Byte, 1K-Byte and 10K-Byte. The small
document sizes were chosen to minimize the effect
of TCP congestion control on the experiment.

QoS Stream: A QoS Stream corresponding to one TCP
connection with a guaranteed bandwidth of 1-MBps.
A proportional share scheduler is used to ensure that
the path responsible for this connection receives this
bandwidth. The web server can only guarantee that
enough resources for this stream are available on the



server; it cannot guarantee sufficient bandwidth is
available within the network.

CGI Attacker: A CGI Attacker performs a GET request
at a rate of one every second. The request results
in an an infinite-loop thread that emulates a runaway
CGI script. This experiment simulates the impact a
single user which is allowed to upload CGI scripts on
a WWW server can have on the overall performance
of the server. It also represents the most basic attack
on an active network in which router and end hosts
execute code associated with an active packet.

SYN Attacker: A SYN Attacker sends a SYN request to
the server at a rate of 1000 every second.

4.1.3 Hardware

All four server configurations, as well as the QoS receiver
and the SYN Attacker, run on 300MHz AlphaPC 21064
systems with Digital Fast EtherWORKS PCI 10/100
(DE500) Ethernet adapter connected to a 100Mbps Eth-
ernet. The clients and CGI Attackers run on one to 64
200MHz PentiumPro workstations running Linux. These
stations are connected by 100Mbps Ethernet cards to a
CISCO Cat5500 switch. The switch is connected by a
hub to the web server, the receiver of the QoS stream and
the SYN Attacker.

Pentium

Pentium

Client
AttackerHUB SWITCH

Escort
WWW Server

SYN Attacker

QofS Client

Figure 7: Experimental Setup

The full configuration is shown in Figure 7. There
are two reasons for this particular hardware configuration.
First, it is possible to run a single Client and a single CGI
Attacker on each PentiumPro, eliminating the effects of
having overly loaded sources. Second, all Client and CGI
Attacker traffic share one 100Mbps Ethernet link. This
reduces the number of collisions on the hub and gives
the QoS traffic enough network capacity to sustain the
1MBps rate.

4.2 Accounting and Protection Overhead

The first set of experiments measure the overhead im-
posed on the system by Escort’s accounting and protec-
tion domain mechanisms. Specifically, Figure 8 reports
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Figure 8: Basic performance of the different configu-
rations in connection per second for a 1Byte document
1KByte document and 10KByte document.

the performance of the web server as it retrieves docu-
ments of size 1-byte, 1K-bytes, and 10K-bytes, respec-
tively, from between 1 and 64 parallel clients. All mea-
surements represent the ten-second average measured af-
ter the load had been applied for one minute.

The best performance is achieved by the base Scout
kernel with Escort’s accounting and protection domains
disabled; the server is able to handle over two times as
many requests as the Apache server running on Linux
(800 versus 400 connections per second). This is not sur-
prising considering that Linux is a general-purpose oper-
ating system with different design goals. It does, how-



ever, demonstrate that we used a competitive web server
for our experiments.

Adding fine-grain accounting to the configuration de-
creases the server’s performance by an average of 8%.
This decrease in performance can be mostly attributed to
keeping track of ownership for memory and CPU cycles.

Adding protection domains decreases the performance
by an additional factor of over four. The impact of adding
multiple protection domains is rather high, but keep in
mind that we configured every module in its own protec-
tion domain so as to evaluate the worst-case scenario. In
practice, it might be reasonable to combine TCP, IP, and
ETH in one protection domain. Each additional domain
adds, on average, a 25% performance penalty to the sin-
gle domain case. We say “on average” because the actual
cost depends on how much interaction there is between
modules separated by a protection boundary.

Another contributing factor is a bug in our OSF1 Alpha
PAL code that requires the kernel to invalidate the entire
TLB at each protection domain crossing. Other single
address space operating systems [14] have shown signif-
icant performance improvements by replacing the OSF1
PAL code with their own specialized PAL code. We plan
to implement this fix, as well as modify the PAL code
in two other ways: (1) to implement some of the system
calls directly in PAL code, and (2) to replace the OSF1
page table with a simpler structure of our own. We ex-
pect these three optimizations to reduce the per-domain
overhead by more than a factor of two.

The difference between 1-byte and 1K-byte documents
is less than 3% in most cases, which is not surprising
considering that the Ethernet MTU is 1460 bytes and
our 100Mbps Ethernet has sufficient capacity. The 10K-
byte document connection rate, however, is substantially
slowed down by the TCP congestion control mechanisms
if less than 16 parallel clients are present. If enough par-
allel clients are present, the connection rate is between
50-60% of the 1K-byte document case. This seems to be
a reasonable slowdown to account for sending multiple
TCP segments.

4.3 Micro-Experiments

The next set of experiments measure detailed aspects of
the architecture.

4.3.1 Accounting Accuracy

Table 1 shows the results of a micro-experiment designed
to demonstrate that Escort accounts for all resources con-
sumed during a single HTTP request; here we focus on
CPU cycles. The first row (Total Measured) reports the
measured number of CPU cycles used during a request
for a one-byte document. The measurement starts when

the passive path accepts the SYN packet—resulting in the
creation of an active path that serves the request—and
concludes when the final FIN packet is acknowledged.1

The next six rows report the total number of cycles ac-
counted for by Escort; the last row (Total Accounted) cor-
responds to the sum of the preceding five.

We measured two configurations: the second column
(Accounting) gives the results for a configuration that in-
cludes accounting but no protection domains, while the
last column (Accounting PD) includes both accounting
and protection domains.

Owner Accounting Acounting PD
Total Measured 402033 1123195

Idle 201493(50%) 9825(1%)
Passive SYN Path 11223(3%) 78882(7%)
Main Active Path 188685(47%) 1033772(92%)
TCP Master Event 38(0%) 514(0%)
Softclock 92 (0%) 200 (0%)

Total Accounted 402031(100%) 1123193(100%)

Table 1: Average number of cycles spent serving 100 se-
rial requests of a one-byte web document.

There are two things to observe about this data. First,
Escort accounts for virtually every cycle used, both with
and without protection domains. Second, in both theAc-
counting andAccounting PD cases, more then 92% of
the non-idle cycles are charged to the active path serving
the request. Most of the remaining cycles are accounted to
the passive path that receives the SYN request and creates
the active path. The number of cycles spent in this pas-
sive path is constant for each connection, and therefore its
share of the overall time will decrease as the active path
does more work.

All other cycles are charged to the TCP master event
and the softclock. The TCP master event is responsible
for scheduling timeouts of individual TCP connections.
The softclock increments the system timer every millisec-
ond and schedules the events. The time spent increment-
ing the timer and scheduling the softclock is charged to
the kernel (it is constant per clock interrupt); the TCP
master event is charged to the protection domain that con-
tains TCP; and the cycles spent actually processing each
TCP timeout is charged to the path that represents the
connection.

1Passive and active paths are not an explicit part of the architecture;
they are just a way to characterize paths according to their use. The for-
mer receive only connection setup messages (e.g., TCP SYN packets),
while the latter correspond to open connections on which data messages
are sent and received.



4.3.2 Killing a Path

A second micro-experiment measures the time needed to
remove all resources associated with a non-cooperating
path. In the experiment, a client requests a document and
the server enters an endless loop after the GET request is
received. Escort then times out the thread after 2ms and
destroys the owner.

Accounting Accounting PD Linux

Cycle 17951 111568 11003

Table 2: Cycle needed to destroy non cooperative path.

Table 2 shows the cycles needed to kill the path from
the time the runaway thread is detected until all resources
associated with the path in all protection domains are de-
stroyed.

The Linux numbers are measured from the time a par-
ent issues a kill signal untilwaitpid returns. The Linux
number are only reported to give a general idea of the
cost of destroying a process and should not be directly
compared to the Escort numbers. In Escort, thepathKill
operation reclaims all resources, including device buffers
and other kernel objects. When protection domains are
present, all resources associated with the path in ev-
ery protection domain—as well as all IPC channels and
IOBuffers along the path—are also destroyed. As a point
of reference, the 111,568 cycles it takes to reclaim re-
sources in a system with both accounting and protection
domains represents approximately 10% of the cycles used
to satisfy a single request to retrieve a 1-byte document.
These numbers should improve as we optimize the inter-
domain calls.

4.4 Defending Against Attacks

We conclude this section by considering three scenarios
in which Escort can be used to enforce some resource
usage policy. The examples we use were selected to
illustrate the impact of policies Escort is able to sup-
port. We make no claims that the example policies are
strong enough to protect against arbitrary attacks; they
are merely representative of policies a system administra-
tor might want to implement.

4.4.1 SYN Attack

The first example is a policy that protects against SYN
attacks. We assume that there is a trusted part of the In-
ternet and an untrusted part. The goal is to minimize the
impact on HTTP requests from the trusted subnet during
a SYN attack from the untrusted subnet.

Escort implements this policy by providing different
passive paths: one accepts SYN requests for the trusted
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Figure 9: Performance for 1-Byte and 10K-Byte docu-
ments for Escort with and without protection domains,
with one SYN Attacker generating 1000 SYN requests
per second.

subnet and the other from the untrusted subnet. Each
passive path uses a path attribute to keep track of the
number of active paths it has created which are in the
SYN RECVD state. This path attribute is monitored
by the resource monitor and demultiplexing to the pas-
sive path is suspended as soon as 64 paths are in the
SYN RECVD state. Therefore, additional SYN requests
are identified as such as early as possible and dropped in-
stantly.

Figure 9 shows the impact on the best effort Client traf-
fic of a SYN attack from the untrusted subnet. The best
effort traffic of theAccounting kernel slows down by less
than 5% for both document sizes. TheAccounting PD
kernel slows down by less than 15%. Both slowdowns are
caused by the interrupt handling and demultiplexing time
spent on each incoming datagram. The higher slowdown
for theAccounting PD kernel is caused by a higher TLB
miss rate during demultiplexing. This is because for each
domain-crossing, the TLB is invalidated and, therefore,
no mappings for demultiplexing are present.

The performance for the 1K-byte documents are not
shown but they are within 3% of the 1-byte document.
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Figure 10: Performance of different configurations with
and without a 1MByte/sec Qofs stream in connection per
second.

4.4.2 QoS Stream

In the next experiment we add one 1MBps TCP stream to
the base experiment described in Section 4.2. The point
of this experiment is to demonstrate that Escort is able
to sustain a particular quality-of-service request in the
face of substantial load. Figure 10 shows the impact on
the best effort client traffic with and without protection
domains. The results for the 1K-byte document are not
shown but are again within 3% of the 1-byte document.

Although not shown in the figure, the ten-second aver-
age of the QoS stream is always within 1% of the target
rate. TheAccounting kernel slows down an average of
15%; theAccounting PD kernel slows down by an aver-
age of 50%. This is not a surprising result since Escort
with protection domains needs substantially more CPU
cycles to sustain a 1MBps data stream.

Note that accounting is required to make QoS guaran-
tees, therefore, we are not able to compare Escort with
Linux in this case.

4.4.3 CGI Attack

In our final experiment we add 1, 10, or 50 CGI attack-
ers to the previous experiment. As described earlier in
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Figure 11: Performance for 1-Byte and 10K-Byte (top
down) documents for Escort with and without protection
domains, with one 1MBps QoS stream, 64 clients, and a
variable number of attackers.

this section, each attacker launches one attack per second.
Our example policy realizes the attack within 2ms and re-
moves the offending path. As before, we performed this
experiment with 1 to 64 clients, document sizes of 1, 1K,
and 10K bytes, and a 1MBps guaranteed data stream.

In all cases, the QoS traffic, as measured over ten-
second intervals, stays within 1% of the target rate. Since
for our example policy we do not distinguish between at-
tackers and clients until the former has used 2ms of CPU
time, the system allows connections from attackers with
the same probability as from regular clients. This allows
the attacker to slow the best effort traffic down substan-
tially since each attacker consumes 2ms worth of CPU
cycles before it is detected. This is shown in Figure 11
for the case of 64 concurrent clients. The advantage of
Escort in this scenario is that after the attacker path has
been detected and killed, all resources owned by the path
have been reclaimed.

4.4.4 Remarks

Note that many alternative policies are possible and eas-
ily enforced in Escort. For example, the passive path that



fields requests for new TCP connections can be given a
limited share of the CPU, meaning that existing active
paths are allowed to run in preference to starting new
paths (creating new TCP connections). Similarly, clients
that have previously violated some resource bound—e.g.,
the CGI attackers in our example—can be identified and
their future connection request packets demultiplexed to a
different distinct passive path with a very small resource
allocation (or a very low priority). The possibility of IP
spoofing, the presence of firewalls, and other aspects may
also impact the policy that one chooses to implement.
While we believe any such policy can be implemented
in Escort, it is not clear that any single policy serves as a
silver bullet for all possible denial of service attacks.

5 Related Work

Like Scout, Nemesis [14, 20] avoids cross talk by isolat-
ing data streams. It does not, however, take the additional
step of accounting for all resource usage in a way that can
be used to detect denial of service attacks. It also does
not avoid cross talk when a data stream spans multiple
protection domains. Escort’s linkage and IPC model are
also similar to Nemesis’, as well as to other single address
space operating systems [17, 11, 6].

Whereas Escort and Nemesis extend the operating sys-
tem by moving functionality from the kernel to user
space, Spin [4] and Vino [9] extend the OS by moving
functionality into the kernel. However, all four systems
face similar challenges. For example, [23] describes how
transactions can be used in Vino to protect against mis-
behaving kernel extensions. The problem with this ap-
proach is that any single user of a kernel extension can
consume all the extension’s resources, even those allo-
cated by other users. As a consequence, all the users of
an extension have to trust each other.

Rushby [21] describes the security advantages of mod-
eling a secure system after a distributed system. He ar-
gues that organizing an operating system in isolated pro-
tection domains which can only communicate via prede-
fined channels as represented in our module graph makes
arguing about and achieving high levels of security easier.
We extend this idea by providing global QoS guarantees
in the form of paths, and therefore enable such a system
to deal with denial of service attacks.

LRPC [5] and migrating threads [10] are similar to Es-
cort’s thread model. Without the path abstraction, how-
ever, a migrating thread can be stopped only by destroy-
ing all the protection domains it crosses. This makes it
substantially more difficult to defend against denial of ser-
vice attacks.

6 Conclusions

This paper describes the Escort security architecture that
we have implemented in the Scout operating system. Es-
cort is novel in that it supports both end-to-end resource
accounting (thereby protecting the system against denial
of service attacks) and multiple hardware-enforced pro-
tection domains (thereby allowing untrusted modules to
be isolated from each other).

We have used Escort to build a secure web server. Ex-
periments with the server show that the accounting mech-
anism is highly accurate (accounting for virtually 100%
of the cycles used to respond to HTTP requests), but im-
poses a relatively small overhead on the system (on the
order of 8%). Enabling protection domains slows the sys-
tem down by a factor of over four in the worst case mea-
sured. In practice, we expect the slowdown to be much
less than a factor of two.

Finally, we demonstrate how Escort can be used to im-
plement different denial of service policies. We mea-
sure three example policies and demonstrate that it is
possible to detect and remove offending clients, while
at the same time delivering quality-of-service guarantees
to other clients. Although defining effective policies for
various attacks is beyond the scope of this paper, we be-
lieve Escort provides the necessary mechanisms for im-
plementing such policies.
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