
The following paper was originally published in the

Proceedings of the 8th USENIX Security Symposium
Washington, D.C., USA, August 23–26, 1999

H A N D - H E L D C O M P U T E R S C A N B E
B E T T E R S M A R T C A R D S

Dirk Balfanz and Edward W. Felten

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Hand-Held Computers Can Be Better Smart Cards

Dirk Balfanz
Princeton University

balfanz@cs.princeton.edu

Edward W. Felten
Princeton University

felten@cs.princeton.edu

Abstract

Smart cards are convenient and secure. They protect
sensitive information (e.g., private keys) from malicious
applications. However, they do not protect the owner
from abuse of the smart card: An application could for
example cause a smart card to digitally sign any mes-
sage, at any time, without the knowledge of the owner.

In this paper we suggest that small, hand-held computers
can be used instead of smart cards. They can communi-
cate with the user directly and therefore do not exhibit
the above mentioned problem.

We have implemented smart card functionality for a
3COM PalmPilot. Our implementation is a PKCS#11
module that plugs into Netscape Communicator and
takes about 5 seconds to sign an email message.

Generalizing from this experience, we argue that appli-
cations that are split between a PC and a hand-held de-
vice can be more secure. While such an application re-
mains fast and convenient to use, it gains additional se-
curity assurances from the fact that part of it runs on a
trusted device.

1 Introduction

Public key systems (like RSA [Rivest et al., 1978] or
DSA [DSA, 1994]) promise to play a major role in the
evolving global networked community. Since they solve
the key distribution problem, they are especially useful
for a big, open network like the Internet. In a public
key system every individual possesses two keys: a pub-
lic and a private key. The public key is published and

known to everyone. The private key is only known to
its owner, and kept secret from everyone else. Public
keys are used to encrypt messages and verify signatures,
and private keys are used to decrypt messages and pro-
duce signatures. If a thief steals your private key, he can
not only read confidential messages sent to you, he can
also impersonate you in electronic conversations such
as email, World Wide Web connections, electronic com-
merce transactions, etc.

People should therefore protect their private keys ad-
equately. One way to do so are smart cards. Smart
cards are small1, tamper-resistant devices that can be
connected to a PC and store private keys. The PC cannot
learn the private key stored on the smart card, it can only
ask the card to perform certain cryptographic functions
for which the private key is needed, such as calculating a
digital signature or decrypting an email message. These
functions are executed on the smart card. This way, the
connected PC can be used to engage in electronic con-
versations on behalf of the smart card owner, but it does
so without knowledge of the owner’s private key.

Contrast this with a scenario in which the private key is
stored on the PC itself (which is the most common case
today). Although the key will probably be protected by
a password, the PC itself could fall victim to an attack
from the outside ([Gutmann, 1997]). If and when that
happens, it is usually just a question of determination
for the intruder to break the protection mechanism and
learn the private key. Even worse, if the application that
uses the private key turns out to be malicious (it could
be infected by a virus, or turn out to be a tampered-with
version of a well-known application, or some other Tro-
jan horse), it can get to know the private key without any
further ado.

1Usually, smart cards have the form factor of a credit card.

Smart cards protect users from security breaches of that
kind. They are also quite convenient. Since they allow
users to carry around their private keys with them, and
at the same time connect to any PC, they allow users to
engage in electronic conversations from any PC.

However, smart cards also have problems. Imagine,
like in the scenario described above, that the PC to
which the smart card is connected has been compro-
mised, and that an email application that talks to the
smart card is malicious. While the application will not
be able to learn the private key on the smart card, it may
do other things that are almost as bad. For example,
when the user composes an email message to pres-
ident@whitehouse.gov that reads

I support you,

then the malicious emailer could, instead, send out an
email that reads

I conspired to kill you,

and could even have the smart card sign the latter. The
digital signature might stand up in court and could get
the owner of the private key into a lot of trouble.

The problem here is that the smart card does not have an
interface to the user. A smart card is designed to protect
the private key even if it is talking to a malicious appli-
cation. However, it does not protect against abuse of the
private key as shown in the example above. If the smart
card had a user interface it could have shown – for veri-
fication purposes – the message it was asked to sign, and
the user would have learned that the emailer was trying
to frame him.

Recently, hand-held computers like the 3COM PalmPi-
lot emerged in the marketplace. They are almost as small
as smart cards, have superior computing power2, and
provide an interface to the user. In this paper we re-
port on how we implemented smart card functionality
for the 3COM PalmPilot (which we will simply call “Pi-
lot” from now on). We describe how even in our initial
attempt we achieved certain security properties that nor-
mal smart cards cannot deliver.

In Section 2 we give an overview of PKCS#11, which
is a standard for “cryptographic tokens” (smart cards).

2With the exception of certain cryptographic operations - see Sec-
tion 3.5.

In Section 3 we describe details of our implementation.
In Section 4 we give an estimate as to how hard or easy
it would be to extract the private key from a Pilot. Sec-
tion 5 is reserved for a outlook into the future: What else
can be done with hand-held computers? We summarize
and conclude the paper in Section 6.

2 Overview of PKCS#11

We have implemented a PKCS#11 library for Netscape
Communicator. PKCS#11 [PKCS#11, 1997] is a “stan-
dard” drafted by RSA Data Security Inc. It defines sixty-
odd prototypes for functions that together can be used to
perform a wide range of cryptographic mechanisms, in-
cluding digital signatures, public key ciphers, symmet-
ric key ciphers, hash functions etc. The standard is de-
signed with smart cards in mind3: The caller can have
the PKCS#11 library perform certain functions, like pro-
ducing a signature, without ever knowing the private key
that is used in the process. In this section we will ex-
plain how PKCS#11 works, how Netscape Communica-
tor uses it, and what the design of our PalmPilot imple-
mentation is.

PKCS#11 describes function prototypes and semantics
for a library, which we will call PKCS#11 or cryptoki li-
brary. An application can bind to a cryptoki library and
call into its functions to perform certain cryptographic
operations. The PKCS#11 world is populated by ob-
jects, which are sequences of attribute-value pairs. For
example, the following is an object:

Attribute Value
OBJECT CLASS PRIVATE KEY
KEY TYPE RSA
TOKEN YES
EXTRACTABLE NO
LABEL BOBS PRIVATE KEY
PRIVATE EXPONENT 8124564. . .
MODULUS 7234035054. . .
...

...

Figure 1: A private RSA key

There are five different classes of objects: certificates,
public keys, private keys, secret (i.e., symmetric) keys,
and “data” objects. Objects can be created temporarily
(e.g., a session key for an SSL connection), or can be

3It is also called the cryptoki, or cryptographic token interface,
standard.

long-lived, in which case they are assumed to be stored
on a “cryptographic token”. The example above de-
scribes a private RSA key. It is stored on a smart card
and marked “unextractable”. This means that calls into
the cryptoki library that try to read the values of various
attributes of this key will fail. Hence, there is no way
for the application to learn the value of this secret key
(assuming that in fact is is stored on a smart card and not
in the same address space as the application).

How can the application use this key to sign a message?
The cryptoki library returns handles to the application,
which are usually small integers and uniquely identify
objects. Although the application will not be able to
learn the private exponent of the key above, it can for
example ask the cryptoki library if it knows of an ob-
ject with the label “BOBS PRIVATE KEY”. If such an
object is found, a handle is returned to the applica-
tion, which can then ask the cryptoki library to sign a
certain message with the object identified by . Using
the information known to it, the cryptoki library can sign
the message and return the signature to the application.
If the object is stored on the smart card, and the handle,
message and signature are the only things exchanged be-
tween smart card and application, then the private key
is safe. Object search and signature calculation have to
happen on the smart card in this case.

PKCS#11 defines many more functions besides object
search and message signing. The application can learn
which cryptographic mechanisms are supported by the
library, create and destroy objects, encrypt and decrypt
messages, create keys, and more.

The cryptoki library will not perform certain functions
(like signing a message) unless the user is logged on to
the cryptographic token. Usually, the user has to provide
a PIN or password to log on to the token. PKCS#11 dis-
tinguishes between tokens with or without a trusted au-
thentication path. A token with a trusted authentication
path is a smart card to which the user can log on directly,
e.g., by means of a numeric key pad on the card. If the
card does not have a trusted authentication path, then the
application on the PC has to gather the PIN or password
from the user, and send it to the smart card. We note
that this is less secure than a trusted authentication path:
The application can learn the PIN or password needed to
“unlock” the private key on the smart card. Smart cards
usually do not have a trusted authentication path.

Netscape Communicator supports PKCS#11, which
means that smart card vendors can provide a cryp-
toki shared library [PKCS#11, 1998]. Communica-
tor will then bind to that library and use it for cer-

Netscape
Communicator

PC Hardware

O/S

PKCS#11
library

PalmPilot Hardware

PalmOS

PKCS#11
application

serial link

Figure 2: Overview of our PKCS#11 implementation

tain cryptographic operations. In particular, Com-
municator uses the library for key pair genera-
tion, S/MIME encrypted email [Dusse et al., 1998a,
Dusse et al., 1998b] and client authentication in SSL
connections [Freier et al., 1996]. For S/MIME the cryp-
toki library has to support RSA [Rivest et al., 1978],
DES [DES, 1993], RC2 [Rivest, 1998], and Triple-DES
[Schneier, 1996]. Communicator only supports RSA
key pair generation, so client authentication – although
technically feasible with any signature scheme – is done
using RSA signatures.

We implemented a cryptoki library that supports the
above mentioned ciphers and signature schemes. The
shared library that plugs into Communicator only serves
as a dispatcher of requests to the Pilot. For the Pilot, we
have written an application that receives those requests,
performs the necessary functions and sends the results
back to the PC.

Figure 2 shows how our implementation works. The PC
and the PalmPilot are connected through a serial link.
We implemented the pieces shown in grey: a plug-in li-
brary for Netscape Communicator and an application for
the PalmPilot. Communicator calls into our library when
some cryptographic operation needs to be performed (1).
If the request cannot be handled by the library itself,
it forwards it to the PalmPilot (2). On the PalmPilot,
the operating system notifies our PKCS#11 application
when a request arrives (3). The application processes the
request and returns the result to the PC (4), where it is re-
ceived by the cryptoki library (5). The library will then
return this result or a result based on what it received
from the PalmPilot back to Communicator (6).

It is worth pointing out what the trusted components are
in this model: We trust that the PKCS#11 application
on the PalmPilot is not tampered with and performs cor-
rectly. We trust in the same way the operating system on
the PalmPilot and its hardware. On the other hand, we

Enter Pin:

Pin entered directly

Enter Pin:

Pin travels through PC

Palm Pilot Smart Card

Figure 3: Information flow for PIN, contrasting traditional smart card and PalmPilot.

do not have to trust Communicator, the operating system
on the PC or its hardware to collaborate with us. We do
not even trust that the PKCS#11 library does what it is
supposed to do. The PKCS#11 application on the Pilot
is written defensively and works4 even in the case where
the PKCS#11 library is replaced by malicious code.

3 The Implementation

Our implementation runs on Windows 95, Windows
NT, and Linux for the Communicator plug-in, and on
a 3COM PalmPilot Professional for the Pilot side. It
practically turns the Pilot into a smart card. For the
cryptographic functions we used the PalmPilot port of
SSLeay [Young et al., 1998]. In the following section
we will highlight a few points of our particular imple-
mentation.

3.1 Key Pair Generation

To create an RSA key pair, we need a good source of
randomness. In a traditional smartcard, if the attacker
knows the random number generating algorithm and ini-
tial seed, we cannot hide the private key from him. He
can simply perform the same computation as the smart
card. PKCS#11 provides functions to re-seed the ran-
dom number generator on the card, but the application
never has to call them.

On the Pilot, we can use external events to provide ran-
domness that the application cannot observe. When the

4”Works” means that it does not leak any information it is not sup-
posed to leak. It does not mean that the system does not crash, for
example.

Pilot generates a new key pair, we ask the user to scrib-
ble randomly on the screen of the Pilot, thus providing
random bits we use for seeding the random number gen-
erator.

3.2 Logging on to the Pilot

The Pilot is a cryptographic token with a trusted authen-
tication path. Therefore, the user does not enter his pass-
word through Communicator, but directly into the Pilot.
This way Communicator cannot learn the PIN or pass-
word needed to unlock the private keys. If it knew the
PIN or password, it could try to use the Pilot without
the user’s knowledge or - even worse - make the PIN
known to adversaries who might later find an opportu-
nity to steal the Pilot from its owner. Figure 3 shows
the difference in information flow between a traditional
smart card and our PalmPilot implementation.

3.3 Signing Email Messages

In order to send a signed email message, all the user
needs to do is log on to the Pilot and put it into its cradle,
which will connect it to Communicator. Communicator
will ask the Pilot to sign the message and also retrieve
a certificate stored on the Pilot (unlike private keys, cer-
tificates are extractable objects and can therefore be re-
trieved by the application). Then, Communicator adds
the signature and the certificate to the message accord-
ing to the S/MIME standard, and sends it off.

Your email:
Re: Our very
secret treaty

Palm Pilot Smart Card

Your email:
Couldn’t
decrypt Your email:

Re: Our very
secret treaty

Network
Encrypted email travels
through PC

Decrypted email
returns to PC

Figure 4: Information flow for reading encrypted email, contrasting traditional smart card and PalmPilot.

3.4 Receiving Encrypted Email

When Communicator receives a message that has been
encrypted with the user’s public key, it will first ask the
Pilot to use the corresponding private key to unwrap the
symmetric (RC2 or DES) key used to encrypt the con-
tents of the message. Depending on the preference set-
ting on the Pilot, it will either signal an error, or unwrap
the symmetric key and store it as an unextractable ob-
ject on the Pilot. In the former case, Communicator will
ask to “decrypt” a certain string which happens to be
the wrapped key, and hence obtain the symmetric key
needed to decrypt the message.5 In the latter case, Com-
municator will send the encrypted message to the Pilot
and ask it to decrypt it using the symmetric key just un-
wrapped. The Pilot will decrypt the message, display it
on its screen, and send bogus information back to Com-
municator. So, depending on the preference settings on
the Pilot, Communicator may or may not be able to see
the decrypted contents of a message6.

Users that have little trust in the PC that their Pilot is
connected to can use this feature to read encrypted email
on their Pilot without risking its contents to become
known to anyone. This cannot be done with traditional
smart cards since they lack a user interface. See Figure 4
to illustrate this point.

5Note the difference between “unwrappinng” and “decrypting”. An
unwrapped key is not returned to the caller (only a reference to it),
while a decrypted key is.

6If the Pilot agrees to unwrap the key, it will refuse to “decrypt” it,
so that even a malicious version of Communicator would not be able
to decrypt the message on its own.

3.5 Performance Issues

A Pilot is not as fast as a smart card when it comes
to long integer arithmetic. Signing/decrypting a mes-
sage with a 512 bit key (the key size in exportable ver-
sions of Communicator) takes about 5 seconds. Sign-
ing/decrypting with a 1024 bit key takes about 25 sec-
onds. (These measurements were made with version
2.01 of pilotSSLeay.)

Creating a 512 bit RSA key pair takes a couple of min-
utes. Creating a 1024 bit key pair takes 30 minutes.
These numbers may vary since a randomized algorithm
is used to find the primes.

Communicator often calls into the cryptoki library to re-
assure that the token is still connected, to exchange in-
formation, to search for objects, etc. Through a rather
slow serial link, this conversation takes up a lot of time.
We built in Communicator-side caches for most of the
information that Communicator learns from the Pilot. So
what users experience is a flurry of messages going back
and forth between PC and Pilot when they start using it
during a session. However, after a while the Pilot will
only be contacted to actually perform a cryptographic
operation, and the time experienced by the users closes
in on the numbers given above.

4 Protecting Sensitive Data

How safe is the user’s sensitive data if the Pilot gets into
the hands of adversaries? In our implementation, sensi-
tive parts of the private key are stored encrypted in non-
volatile RAM. We derive a DES key from the PIN or
password that the owner uses for logging on to the Pi-

lot and use it to encrypt the sensitive parts of the private
key. Later, they are only decrypted just before they are
used, and erased after they are used. When the user logs
off, the PIN or password and the derived DES key are
erased.

It is very easy for an adversary to read the encrypted key
out of non-volatile RAM. He then needs to perform an
attack on the DES encryption, or alternatively a dictio-
nary attack on the PIN or password. Since only the ac-
tual bits of sensitive data (which are unknown to the at-
tacker) are encrypted, a straightforward known plaintext
attack is not possible. Instead, the attacker would have
to perform an expensive multiplication to test whether he
had found the correct private key. We therefore assume
that the private key is reasonably safe, with the weakest
link in the chain probably being the PIN or password,
which could be too short or part of a dictionary.

For a device like a Pilot, a different threat is more immi-
nent. Our PKCS#11 application usually shares the Pilot
with many other applications. Since there is no mem-
ory protection, other applications might be able to read
the decrypted private key if they manage to interrupt the
PKCS#11 application just at the right time. So, for bet-
ter security users should be very careful about what kind
of applications they install on their Pilot.

To alleviate this situation, the PalmPilot would need a
comprehensive security architecture. First, the operat-
ing system should enforce memory protection and add
access control to its resources such as the databases in
non-volatile RAM. Second, downloading software onto
the PalmPilot should be restricted; we could for exam-
ple imagine a password needed to download new soft-
ware onto the Pilot. Third, downloaded software should
be put in sandboxes that are enforced by the operating
system. There should be a way to relax sandboxes, per-
haps based on digital signatures, in order to give certain
applications access to more functionality. With a sys-
tem like this, a user could for example download a game
from an unknown source and place it into a tight sand-
box from where it cannot possibly learn things about the
other applications running.

Since we started this work in 1997, a number of ven-
dors and research projects have tried to address the prob-
lem of operating system security in hand-held comput-
ers. Recent versions of Microsoft’s Windows CE oper-
ating system include a feature that allows only applica-
tions signed by designated principals to be considered
“trusted”. Untrusted applications are barred from call-
ing a set of system calls considered sensitive. Sun and
3COM have recently announced that Sun’s Java Plat-

form 2, Micro Edition, will be available for the 3COM
Palm series of devices. Also, since smart cards them-
selves have become more powerful, the operating sys-
tems on smart cards now tend take into account the sce-
nario of multiple, mutually suspicious applications run-
ning on the same card. The techniques used on modern
smart cards (secure file systems, etc.) could be applied
to hand-held computers.

Once this security architecture is in place, we can turn
to physical security: Now that it is impossible for an ad-
versary to inject software into the Pilot, we need to make
sure that the data cannot be read out in some other way.
To prevent this, the Pilot could be equipped with tamper-
resistant hardware, which would make it difficult to ob-
tain the data in question by physical means. Equipping a
Pilot with tamper-resistant hardware is not too hard since
it is bigger than a smart card and there is more space
to accommodate tamper-aware protection mechanisms.
But as long as there is an easy way to install arbitrary
applications on the Pilot, the additional cost of a tamper-
resistant hand-held computer would not be justified.

5 Future Directions

So far, we have described a particular system that im-
plements smart card functionality on a PalmPilot. We
have also seen that a hand-held computer has potential
for better security, since it provides a direct user inter-
face. The fundamental reason for the desirable security
features is that the Pilot is more trusted than the PC. Just
like a smart card, we always carry it around with us and
are fairly certain that no-one tampered with it. We have a
good overview of the software running on the Pilot and
usually know where it came from. Contrast this with
a PC, which may easily run hundreds of different pro-
cesses at a time. These different processes may open
up vulnerabilities to attack. Moreover, if we use our Pi-
lot with an arbitrary PC, we do not know whether that
PC has not been specifically prepared to undertake ma-
licious acts.

In this section we are going to explore the possibilities
of the following scenario: A trusted, small, moderately
powerful computer working together with a more pow-
erful, big, but untrusted, PC to achieve some function-
ality. The trusted small device is needed to assure a
certain amount of security, and the big PC is needed to
give a convenient and powerful interface for security-
insensitive operations. For example, the PC could dis-
play media-rich documents that are not sensitive. This

is really just a generalization of the case discussed so far
in this paper.

As a first example, let us get back to email. Our imple-
mentation presented in Section 3 has at least two short-
comings:

1. The user does not see, on the Pilot, the message that
is to be digitally signed7. This means that a mali-
cious version of Communicator could forge email.

2. Only for encrypted messages can the user decide
whether or not they should be displayed on the PC.

A better approach would be if the email application was
controlled from the Pilot. The Pilot establishes an en-
crypted connection – through the PC it is connected to
– to the user’s mail host. Then the user decides where a
certain message should be displayed.

Another possible application is electronic commerce.
Here, also, smart cards are often used. However, be-
cause of the lack of an interface, we do not really know
what our smart card is doing and how much money it
is spending. With a Pilot, the picture looks different:
We again consider a scenario where three players are in-
volved. First, there is a server offering goods to pur-
chase. In addition, there is a trusted Pilot (or similar
device) which is connected to an untrusted PC. The Pi-
lot carries our electronic cash. On the PC, we launch the
client application that connects to the server and displays
the offered goods. The Pilot also authenticates itself to
the server and establishes an encrypted channel that the
PC cannot decrypt.

The client application can be used to view the items, get
price information, initiate a purchase, etc. Before the
Pilot spends any money, it displays relevant information
such as the price and a description of the product on its
screen. Only if and when the user confirms this on the
Pilot can the transaction proceed. We note that even if
the server and PC collaborate, the Pilot, which acts as an
electronic “wallet”, will not dispense more money than
the user acknowledges.

Generalizing from these examples, we envision a new
programming paradigm we call Splitting Trust. Under
this paradigm, applications are split to run on different
devices. Part of the application runs on a small, trusted
device, and part of the application runs on a bigger, more

7Communicator never passes the message content into the cryptoki
library. Rather, it calculates the hash itself and then just lets the cryp-
toki library sign the hash of the message.

powerful, but untrusted, device. We believe that this
splitting enables users to get both security and comput-
ing power. They get security because a crucial part of
their application runs on a trusted device. They get com-
puting power because the more powerful device can be
used to run non-crucial parts of the application. Part of
our future work will be to provide middleware to enable
easy splitting of applications in this fashion.

6 Conclusions

In this paper we have argued that small hand-held com-
puters can be used instead of smart cards. Moreover,
they provide a direct interface to the user. We imple-
mented a PKCS#11 library for Netscape Communicator
and corresponding smart card functionality for a 3COM
PalmPilot.

In our implementation, the PalmPilot provides a trusted
authentication path and gives the user a choice where an
encrypted email message should be displayed: in Com-
municator on the PC or on the PalmPilot itself. This
increases the user’s privacy above the level provided by
traditional smart cards.

We also propose to generalize from our experience and
to introduce a new programming paradigm. Under this
new paradigm, applications are split into two parts: One
part runs on a trusted, but small and only moderately
powerful, device; the other part runs on a bigger, more
powerful, but possibly untrusted, device like a PC in a
public place. Splitting applications will give us both cer-
tain security assurances on one hand, and convenience
and speed on the other hand. We plan to provide mid-
dleware to assist the process of splitting applications.

7 Related Work

In [Yee, 1994] Yee introduces the notion of a secure co-
processor. A secure coprocessor is a tamper-resistant
module that is part of an otherwise not necessarily
trusted PC. Certain goals (notably copy protection) can
be achieved by splitting applications into a critical and
uncritical part; the critical part runs on the secure copro-
cessor. While this idea is very similar to ours, the con-
text is different: In the world of secure coprocessors the
user is not necessarily trusted (the coprocessor secures
information from, among others, the user using it). On

the other hand, the user always trusts the secure copro-
cessor, even if it is part of an otherwise unknown PC. In
our world, the user/owner of the PalmPilot is trusted by
definition (the whole point of our design is to protect the
user). The PC, or any of its parts (even if it looks like a
secure coprocessor) is never trusted.

Gobioff et al. notice in [Gobioff et al., 1996] that smart
cards lack certain security properties due to their lack
of user I/O. They propose that smart cards be equipped
with “additional I/O channels” such as LEDs or buttons
to alleviate these shortcomings. Our design meets their
vision, but we come from the opposite direction: We
take a hand-held computer that already has user I/O and
implement smart card functionality on it.

Boneh et al. implemented a electronic cash wallet on a
PalmPilot, which is quite similar to what we describe in
Section 5 [Boneh and Daswani, 1999].

Cryptographers have dealt with the “splitting trust” sce-
nario for some time now, even though the work is of-
ten not presented from that perspective. For example,
Blaze et. al [Blaze, 1996, Blaze et al., 1998] want to use
a powerful PC in concunction with a smart card for sym-
metric key encryption because the PC provides higher
encryption bandwidth. However, the PC is not trusted
to learn the secret key. “Function hiding” work (e.g.
[Sander and Tschudin, 1998]) is usually presented from
a persective of copyright protection, but essentially it is
also an instance of splitting trust. Boneh et al. use re-
sults from multi-party threshold cryptography to speed
up RSA key pair generation on the PalmPilot with the
help of an untrusted server, which participates in the key
pair generation, yet will not learn the private key (see
[Modadugu et al., 1999]).

8 Acknowledgments

We would like to thank Ian Goldberg for porting SSLeay
to the PalmPilot, enhancing Copilot, and providing valu-
able Pilot programming tips. We also extend our thanks
to Bob Relyea for help with some PKCS#11 details.

References

[Blaze, 1996] Blaze, M. (1996). High-bandwidth en-
cryption with low-bandwidth smart cards. In Pro-
ceedings of the Fast Software Encryption Workshop,

volume 1039 of Lecture Notes in Computer Science,
pages 33 – 40. Springer Verlag.

[Blaze et al., 1998] Blaze, M., Feigenbaum, J., and
Naor, M. (1998). A formal treatment of remotely
keyed encryption. In Proceedings of Eurocrypt ’98,
volume 1403 of Lecture Notes in Computer Science,
pages 251 – 265. Springer Verlag.

[Boneh and Daswani, 1999] Boneh, D. and Daswani,
N. (1999). Experimenting with electronic commerce
on the PalmPilot. In Proceedings Eurocrypt ’99, vol-
ume 1648 of Lecture Notes in Computer Science,
pages 1 – 16. Springer Verlag.

[DES, 1993] DES (1993). Data Encryption Standard.
National Institute of Standards and Technology, U.S.
Department of Commerce. NIST FIPS PUB 46-2.

[DSA, 1994] DSA (1994). Digital Signature Standard.
National Institute of Standards and Technology, U.S.
Department of Commerce. NIST FIPS PUB 186.

[Dusse et al., 1998a] Dusse, S., Hoffman, P., Ramsdell,
B., Lundblade, L., and Repka, L. (1998a). S/MIME
Version 2 Message Specification. IETF - Network
Working Group, The Internet Society. RFC 2311.

[Dusse et al., 1998b] Dusse, S., Hoffman, P., Ramsdell,
B., and Weinstein, J. (1998b). S/MIME Version 2 Cer-
tificate Handling. IETF - Network Working Group,
The Internet Society, RFC 2312 edition.

[Freier et al., 1996] Freier, A. O., Karlton, P., and
Kocher, P. C. (1996). The SSL Protocol Version 3.0.
IETF - Transport Layer Security Working Group, The
Internet Society. Internet Draft (work in progress).

[Gobioff et al., 1996] Gobioff, H., Smith, S., Tygar,
J. D., and Yee, B. (1996). Smart cards in hostile en-
vironments. In Proceedings of The Second USENIX
Workshop on Electronic Commerce, Oakland, CA.

[Gutmann, 1997] Gutmann, P. (1997). How to recover
private keys for microsoft internet explorer, internet
information server, outlook express, and many oth-
ers - or - where do your encryption keys want to go
today? http://www.cs.auckland.ac.nz/
˜pgut001/pubs/breakms.txt.

[Modadugu et al., 1999] Modadugu, N., Boneh, D., and
Kim, M. (1999). http://theory.stanford.
edu/˜dabo/abstracts/RSAgenkey.html.

[PKCS#11, 1997] PKCS#11 (1997). PKCS#11: Cryp-
tographic Token Interface Standard, Version 2.0.
RSA Laboratories.

[PKCS#11, 1998] PKCS#11 (1998). Implement-
ing PKCS#11 for the Netscape Security Li-
brary. Netscape Communications Corpora-
tion, Mountain View, California. http:
//developer.netscape.com:80/docs/
manuals/security/pkcs/pkcs.htm.

[Rivest, 1998] Rivest, R. (1998). A Description of
the RC2(R) Encryption Algorithm. IETF - Network
Working Group, The Internet Society. RFC 2268.

[Rivest et al., 1978] Rivest, R. L., Shamir, A., and Adle-
man, L. M. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126.

[Sander and Tschudin, 1998] Sander, T. and Tschudin,
C. (1998). On software protection via function hid-
ing. In In Proceedings of the Second Workshop on
Information Hiding, Lecture Notes in Computer Sci-
ence. Springer Verlag.

[Schneier, 1996] Schneier, B. (1996). Applied Cryptog-
raphy, chapter 15.2 Triple Encryption, pages 358–
363. John Wiley.

[Yee, 1994] Yee, B. S. (1994). Using Secure Coproces-
sors. PhD thesis, Carnegie Mellon University.

[Young et al., 1998] Young, E. et al. (1998). SSLeay
and SSLapps. http://psych.psy.uq.oz.
au/˜ftp/Crypto/.

