The following paper was originally published in the

Proceedings of the"8JSENIX Security Symposium

Washington, D.C., USA, August 23-26, 1999

A STUDY IN USING NEURAL NETWORKS FOR
ANOMALY AND MISUSE DETECTION

Anup K. Ghosh and Aaron Schwartzbard

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved
For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWWhttp://www.usenix.org
Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

A Study in Using Neural Networks for Anomaly and Misuse
Detection*

Anup K. Ghosh & Aaron Schwartzbard
Reliable Software Technologies
21351 Ridgetop Clircle, Suite 400
Dulles, VA 20166
poc:aghosh@rstcorp.com
http://www.rstcorp.com

Abstract

Current intrusion detection systems lack the abil-
ity to generalize from previously observed attacks
to detect even slight variations of known attacks.
This paper describes new process-based intrusion
detection approaches that provide the ability to gen-
eralize from previously observed behavior to rec-
ognize future unseen behavior. The approach em-
ploys artificial neural networks (ANNs), and can be
used for both anomaly detection in order to detect
novel attacks and misuse detection in order to detect
known attacks and even variations of known attacks.
These techniques were applied to a large corpus of
data collected by Lincoln Labs at MIT for an intru-
sion detection system evaluation sponsored by the
U.S. Defense Advanced Research Projects Agency
(DARPA). Results from applying these techniques
for both anomaly and misuse detection against the
DARPA evaluation data are presented.

1 Introduction

Results from a recent U.S. Defense Advanced Re-
search Projects Agency (DARPA) study highlight
the strengths and weaknesses of current research ap-
proaches to intrusion detection. The DARPA scien-
tific study is the first of its kind to provide inde-
pendent third party evaluation of intrusion detec-

*This work was funded by the Defense Advanced Research
Projects Agency (DARPA) under Contract DAAH01-97-C-
R095. THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOC-
UMENT ARE THOSE OF THE AUTHORS AND SHOULD NOT BE
INTERPRETED AS REPRESENTING THE OFFICIAL POLICIES, EI-
THER EXPRESSED OR IMPLIED, OF THE DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY OR THE U.S. GOVERNMENT.

tion tools against such a large corpus of data. The
findings from this study indicate that a fundamen-
tal paradigm shift in intrusion detection research
is necessary to provide reasonable levels of detec-
tion against novel attacks and even variations of
known attacks. Central to this goal is the ability
to generalize from previously observed behavior to
recognize future unseen, but similar behavior. To
this end, this paper describes a study in using neu-
ral networks for both anomaly detection and misuse
detection.

Research in intrusion detection research has begun
to shift from analyzing user behavior to analyzing
process behavior. Initial work in analyzing pro-
cess behavior has already shown promising results
in providing very high levels of detection against
certain classes of attacks. In particular, process-
based anomaly detection approaches have shown
very good performance against novel attacks that
result in unauthorized local access and attacks that
result in elevated privileges — a vulnerable area for
most intrusion detection tools [6]. In spite of the
good detection capability of process-based anomaly
detection approaches, the results indicate high rates
of false alarms that can make these tools unusable
for the practical security administrator. Current
wisdom is that false alarm rates must be reduced
to the level of one to two false alarms per day in
order to make the system usable by administrators.

One of the largest challenges for today’s intrusion
detection tools is being able to generalize from pre-
viously observed behavior (normal or malicious) to
recognize similar future behavior. This problem
is acute for signature-based misuse detection ap-
proaches, but also plagues anomaly detection tools
that must be able to recognize future normal behav-
ior that is not identical to past observed behavior,

in order to reduce false positive rates.

To address this shortcoming, we utilize a simple neu-
ral network that can generalize from past observed
behavior to recognize similar future behavior. In the
past, we have applied backpropagation networks in
addition to other neural networks with good per-
formance to the problem of anomaly detection [8].
Here we present using a neural network for both
anomaly and misuse detection. The approach is
evaluated against the DARPA intrusion detection
evaluation data.

2 Prior Art in Intrusion Detection

Some of the earliest work in intrusion detection was
performed by Jim Anderson in the early 1980s [1].
Anderson defines an intrusion as any unauthorized
attempt to access, manipulate, modify, or destroy
information, or to render a system unreliable or un-
usable. Intrusion detection attempts to detect these
types of activities. In this section we establish the
foundations of intrusion detection techniques in or-
der to determine where they are strong and where
they need improvement.

2.1 Anomaly detection vs. misuse de-

tection

Intrusion detection techniques are generally clas-
sified into two categories: anomaly detection and
misuse detection. Anomaly detection assumes that
misuse or intrusions are highly correlated to ab-
normal behavior exhibited by either a user or the
system. Anomaly detection approaches must first
baseline the normal behavior of the object being
monitored, then use deviations from this baseline
to detect possible intrusions. The initial impe-
tus for anomaly detection was suggested by An-
derson in his 1980 technical report when he noted
that intruders can be detected by observing depar-
tures from established patterns of use for individual
users. Anomaly detection approaches have been im-
plemented in expert systems that use rules for nor-
mal behavior to identify possible intrusions [15], in
establishing statistical models for user or program
profiles [6, 4, 22, 19, 16, 18, 17], and in using ma-
chine learning to recognize anomalous user or pro-
gram behavior [10, 5, 2, 14].

Misuse detection techniques attempt to model at-
tacks on a system as specific patterns, then system-
atically scan the system for occurrences of these pat-
terns. This process involves a specific encoding of
previous behaviors and actions that were deemed
intrusive or malicious. The earliest misuse detec-
tion methods involved off-line analysis of audit trails
normally recorded by host machines. For instance,
a security officer would manually inspect audit trail
log entries to determine if failed root login attempts
were recorded. Manual inspection was quickly re-
placed by automated analysis tools that would scan
these logs based on specific patterns of intrusion.
Misuse detection approaches include expert systems
[15, 3], model-based reasoning [13, 7], state tran-
sition analysis [23, 12, 11, 21], and keystroke dy-
namics monitoring [20, 13]. Today, the vast major-
ity of commercial and research intrusion detection
tools are misuse detection tools that identify attacks
based on attack signatures.

It is important to establish the key differences be-
tween anomaly detection and misuse detection ap-
proaches. The most significant advantage of misuse
detection approaches is that known attacks can be
detected fairly reliably and with a low false positive
rate. Since specific attack sequences are encoded
into misuse detection systems, it is very easy to de-
termine exactly which attacks, or possible attacks,
the system is currently experiencing. If the log data
does not contain the attack signature, no alarm is
raised. As a result, the false positive rate can be
reduced very close to zero. However, the key draw-
back of misuse detection approaches is that they
cannot detect novel attacks against systems that
leave different signatures. So, while the false pos-
itive rate can be made extremely low, the rate of
missed attacks (false negatives) can be extremely
high depending on the ingenuity of the attackers. As
a result, misuse detection approaches provide little
defense against novel attacks, until they can learn
to generalize from known signatures of attacks.

Anomaly detection techniques, on the other hand,
directly address the problem of detecting novel at-
tacks against systems. This is possible because
anomaly detection techniques do not scan for spe-
cific patterns, but instead compare current activities
against statistical models of past behavior. Any ac-
tivity sufficiently deviant from the model will be
flagged as anomalous, and hence considered as a
possible attack. Furthermore, anomaly detection
schemes are based on actual user histories and sys-
tem data to create its internal models rather than

pre-defined patterns. Though anomaly detection
approaches are powerful in that they can detect
novel attacks, they have their drawbacks as well.
For instance, one clear drawback of anomaly de-
tection is its inability to identify the specific type
of attack that is occurring. However, probably the
most significant disadvantage of anomaly detection
approaches is the high rates of false alarm. Because
any significant deviation from the baseline can be
flagged as an intrusion, non-intrusive behavior that
falls outside the normal range will also be labeled
as an intrusion — resulting in a false positive. An-
other drawback of anomaly detection approaches is
that if an attack occurs during the training period
for establishing the baseline data, then this intru-
sive behavior will be established as part of the nor-
mal baseline. In spite of the potential drawbacks
of anomaly detection, having the ability to detect
novel attacks makes anomaly detection a requisite
if future, unknown, and novel attacks against com-
puter systems are to be detected.

2.2 Assessing the Performance of Cur-
rent IDSs

In 1998, the U.S. Defense Advanced Research
Projects Agency (DARPA) initiated an evaluation
of its intrusion detection research projects.! To
date, it is the most comprehensive scientific study
known for comparing the performance of different
intrusion detection systems (IDSs). MIT’s Lincoln
Laboratory set up a private controlled network en-
vironment for generating and distributing sniffed
network data and audit data recorded on host ma-
chines. Network traffic was synthesized to repli-
cate normal traffic as well as attacks seen on ex-
ample military installations. Because all the data
was generated, the laboratory has a priori knowl-
edge of which data is normal and which is attack
data. The simulated network represented thousands
of internal Unix hosts and hundreds of users. Net-
work traffic was generated to represent the following
types of services: http, smtp, POP3, FTP, IRC, tel-
net, X, SQL/telnet, DNS, finger, SNMP, and time.
This corpus of data is the most comprehensive set
known to be generated for the purpose of evaluating
intrusion detection systems and represents a signif-
icant advancement in the scientific community for
independently and scientifically evaluating the per-
formance of any given intrusion detection system.

ISee wuw.1l.mit.edu/IST/ideval/index.html for a sum-
mary of the program.

TCP/IP data was collected using a network snif-
fer and host machine audit data was collected using
Sun Microsystem’s Solaris Basic Security Module
(BSM). In addition, dumps of the file system from
one of the Solaris hosts were provided. This data
was distributed to participating project sites in two
phases: training data and test data. The training
data is data labeled as normal or attack and is used
by the participating sites to train their respective
intrusion detection systems. Once trained, the test
data is distributed to participating sites in unlabeled
form. That is, the participating sites do not know
a priori which data in the test data is normal or
attack. The data is analyzed off-line by the partici-
pating sites to determine which sessions are normal
and which constitute intrusions. The results were
sent back to MIT’s Lincoln Labs for evaluation.

The attacks were divided into four categories: de-
nial of service, probing/surveillance, remote to local,
and user to root attacks. Denial of service attacks
attempt to render a system or service unusable to
legitimate users. Probing/surveillance attacks at-
tempt to map out system vulnerabilities and usu-
ally serve as a launching point for future attacks.
Remote to local attacks attempt to gain local ac-
count privilege from a remote and unauthorized ac-
count or system. User to root attacks attempt to
elevate the privilege of a local user to root (or super
user) privilege. There were a total of 114 attacks
in 2 weeks of test data including 11 types of DoS
attacks, 6 types of probing/surveillance attacks, 14
types of remote to local attacks, 7 types of user to
root attacks, and multiple instances of all types of
attacks.

The attacks in the test data were also categorized as
old versus new and clear versus stealthy. An attack
is labeled as old if it appeared in the training data
and new if it did not. When an attempt was made to
veil an attack, it was labeled as stealthy, otherwise
it was labeled as clear.

The reason we present this evaluation study is be-
cause we believe it to represent the true state of
the art in intrusion detection research. As such, it
represents the foundation of more than 10 years of
intrusion detection research upon which all future
work in intrusion detection should improve. From
this study, we can learn the strengths of current
intrusion detection approaches, and more impor-
tantly, their weaknesses. Rather than identifying
which systems performed well and which did not,
we simply summarize the results of the overall best

combination system.

Lincoln Laboratory reported that if the best per-
forming systems against all four categories of at-
tacks were combined into a single system, then
roughly between 60 to 70 percent of the attacks
would have been detected with a false positive rate
of lower than 0.01%, or lower than 10 false alarms
a day. This result summarizes the combination of
best systems against all of the attacks simulated in
the data. It shows that even in the best case sce-
nario over 30% of the simulated attacks would go
by undetected. However, the good news is that the
false alarm rate is acceptably low — low enough
that the techniques can scale well to large sites with
lots of traffic. The bad news is that with over 30%
of attacks going undetected in the best combination
of current intrusion detection systems, the state of
the art in intrusion detection does not adequately
address the threat of computer-based attacks.

Further analysis showed that most of the systems
reliably detected old attacks that occurred within
the training data with low false alarm rates. These
results apply primarily to the network-based intru-
sion detection systems that processed the TCP/IP
data. This result is encouraging, but not too sur-
prising since most of the evaluated systems were
network-based misuse detection systems. The re-
sults were mixed in detecting new attacks. In two
categories of attacks, probing/surveillance and user
to root attacks, the performance in detecting new
attacks was comparable to detecting old attacks. In
the other two categories — denial of service and re-
mote to local attacks — the performance of the top
three network-based intrusion systems was roughly
20% detection for new denial of service attacks and
less than 10% detection for new remote to local at-
tacks. Thus, the results show that the best of to-
day’s network-based intrusion detection systems do
not detect novel denial of service attacks nor novel
remote to local attacks — arguably two of the most
concerning types of attacks against computer sys-
tems today.

3 Monitoring Process Behavior for
Intrusion Detection

In the preceding section, intrusion detection meth-
ods were categorized into either misuse detection
or anomaly detection approaches. In addition, in-

trusion detection tools can be further divided into
network-based or host-based intrusion detection.
The distinction is useful because network-based in-
trusion detection tools usually process completely
different data sets and features than host-based in-
trusion detection. As a result, the types of attacks
that are detected with network-based intrusion de-
tection tools are usually different than host-based
intrusion detection tools. Some attacks can be de-
tected by both network-based and host-based IDSs,
however, the “sweet spots”, or the types of attacks
each is best at detecting, are usually distinct. As
a result, it is difficult to make direct comparisons
between the performance of a network-based IDS
and a host-based IDS. A useful corollary of distinct
sweetspots, though, is that in combination both
techniques are more powerful than either one by it-
self.

Recent research in intrusion detection techniques
has shifted the focus from user-based intrusion
detection to process-based intrusion detection.
Process-based monitoring intrusion detection tools
analyze the behavior of executing processes for pos-
sible intrusive activity. The premise of process mon-
itoring for intrusion detection is that most computer
security violations are made possible by misusing
programs. When a program is misused its behav-
ior will differ from its normal usage. Therefore, if
the behavior of a program can be adequately cap-
tured in a compact representation, then the behav-
ioral features can be used for intrusion detection.

Two possible approaches to monitoring process be-
havior are: instrumenting programs to capture their
internal states or monitoring the operating system
to capture external system calls made by a program.
The latter option is more attractive in general be-
cause it does not require access to source code for
instrumentation. As a result, analyzing external
system calls can be applied to commercial off the
shelf (COTS) software directly. Most modern day
operating systems provide built-in instrumentation
hooks for capturing a particular process’s system
calls. On Linux and other variants of Unix, the
strace(1) program allows one to observe system
calls made by a monitored process as well as their
return values. On Sun Microsystem’s Solaris op-
erating system, the Basic Security Module (BSM)
produces an event record for individual processes.
BSM recognizes 243 built-in system signals that can
be made by a process. Thus, on Unix systems, there
is good built-in support for tracing processes’ exter-
nally observable behavior. Windows NT currently

lacks a built-in auditing facility that provides such
fine-grain resolution of program behavior.

Most process-based intrusion detection tools are
based on anomaly detection. A normal profile for
program behavior is built during the training phase
of the IDS by capturing the program’s system calls
during normal usage. During the detection phase,
the profile of system calls captured during on-line
usage is compared against the normal profile. If
a significant deviation from the normal profile is
noted, then an intrusion flag is raised.

Early work in process monitoring was pioneered by
Stephanie Forrest’s research group out of the Uni-
versity of New Mexico. This group uses the anal-
ogy of the human immune system to develop intru-
sion detection models for computer programs. As in
the human immune system, the problem of anomaly
detection can be characterized as the problem of
distinguishing between self and dangerous non-self
[6]. Thus, the intrusion detection system needs to
build an adequate profile of self behavior in order
to detect dangerous behavior such as attacks. Us-
ing strace(1) on Linux, the UNM group analyzed
short sequences of system calls made by programs
to the operating system [6].

More recently, a similar approach was employed by
the authors in analyzing BSM data provided under
the DARPA 1998 Intrusion Detection Evaluation
program [9]. The study compiled normal behavior
profiles for approximately 150 programs. The profile
for each program is stored in a table that consists
of short sequences of system calls. During on-line
testing, short sequences of system calls captured by
the BSM auditing facility are looked up in the table.
This approach is known as equality matching. That
is, if an exact match of the sequence of system calls
captured during on-line testing exists in the pro-
gram’s table, then the behavior is considered nor-
mal. Otherwise an anomaly counter is incremented.

The data is partitioned into fixed-size windows in
order to exploit a property of attacks that tends to
leave its signature in temporally co-located events.
That is, attacks tend to cause anomalous behavior
to be recorded in groups. Thus, rather than averag-
ing the number of anomalous events recorded over
the entire execution trace (which might wash out an
attack in the noise), a much smaller size window of
events is used for counting anomalous events.

Several counters are kept at varying levels of gran-

ularity from a counter for each fixed window of sys-
tem calls to a counter for the number of windows
that are anomalous. Thresholds are applied at each
level to determine at which point anomalous behav-
ior is propagated up to the next level. Ultimately,
if enough windows of system calls in a program are
deemed anomalous, the program behavior during a
particular session is deemed anomalous, and an in-
trusion detection flag is raised.

The results from the study showed a high rate of de-
tection, if not a low false positive rate [9]. Despite
the simplicity of the approach and the high levels
of detection, there are two main drawbacks to the
equality matching approach: (1) large tables of pro-
gram behavior must be built for each program, and
(2) the equality matching approach does not have
the ability to recognize behavior that is similar, but
not identical to past behavior. The first problem
becomes an issue of storage requirements for pro-
gram behavior profiles and is also a function of the
number of programs that must be monitored. The
second problem results from the inability of the al-
gorithm to generalize from past observed behavior.
The problem is that behavior that is normal, yet
slightly different from past recorded behavior, will
be recorded as anomalous. As a result, the false
positive rate could be artificially elevated. Instead,
it is desirable to be able to recognize behaviors that
are similar to normal, but not necessarily identi-
cal to past normal behavior as normal. Likewise,
the same can be said for a misuse detection system.
Many misuse detection systems are trained to recog-
nize attacks based on exact signatures. As a result,
slight variations among a given attack can result
in missed detections, leading to a lower detection
rate. It is desirable for misuse detection systems to
be able to generalize from past observed attacks to
recognize future attacks that are similar.

To this end, the research described in the rest of
the paper employs neural networks to generalize
from previously observed behavior. We develop an
anomaly detection system that uses neural networks
to learn normal behavior for programs. The trained
network is then used to detect possibly intrusive
behavior by identifying significant anomalies. Sim-
ilarly, we developed a misuse detection system to
learn the behavior of programs under attack sce-
narios. This system is then used to detect future
attacks against the system. The goal of these ap-
proaches is to be able to recognize known attacks
and detect novel attacks in the future. By using
the associative connections of the network, we can

generalize from past observed behavior to recognize
future similar behavior. A comparison of the two
systems against the DARPA intrusion data is pro-
vided in Section 5.

4 Using Neural Networks for Intru-
sion Detection

Applying machine learning to intrusion detection
has been developed elsewhere as well [5, 2, 14]. Lane
and Brodley’s work uses machine learning to dis-
tinguish between normal and anomalous behavior.
However, their work is different from ours in that
they build user profiles based on sequences of each
individual’s normal user commands and attempt to
detect intruders based on deviations from the es-
tablished user profile. Similarly, Endler’s work [5]
used neural networks to learn the behavior of users
based on BSM events recorded from user actions.
Rather than building profiles on a per-user basis,
our work builds profiles of software behavior and at-
tempts to distinguish between normal software be-
havior and malicious software behavior. The advan-
tages of our approach are that vagaries of individual
behavior are abstracted because program behavior
rather than individual usage is studied. This can be
of benefit for defeating a user who slowly changes
his or her behavior to foil a user profiling system. It
can also protect the privacy interests of users from
a surveillance system that monitors a user’s every
move.

The goal in using artificial neural networks (ANNs)
for intrusion detection is to be able to generalize
from incomplete data and to be able to classify on-
line data as being normal or intrusive. An artifi-
cial neural network is composed of simple processing
units, or nodes, and connections between them. The
connection between any two units has some weight,
which is used to determine how much one unit will
affect the other. A subset of the units of the net-
work acts as input nodes, and another subset acts
as output nodes. By assigning a value, or activation,
to each input node, and allowing the activations to
propagate through the network, a neural network
performs a functional mapping from one set of val-
ues (assigned to the input nodes) to another set of
values (retrieved from the output nodes). The map-
ping itself is stored in the weights of the network.

In this work, a classical feed-forward multi-layer

perceptron network was implemented: a backprop-
agation neural network. The backpropagation net-
work has been used successfully in other intrusion
detection studies [10, 2]. The backpropagation net-
work, or backprop, is a standard feedforward net-
work. Input is submitted to the network and the
activations for each level of neurons are cascaded
forward.

Our previous research in intrusion detection with
BSM data used an equality matching technique to
look up currently observed program behavior that
had been previously stored in a table. While the
results were encouraging, we also realized that the
equality matching approach had no possibility of
generalizing from previously observed behavior. As
a result, we are pursuing research in using artificial
neural networks to accomplish the same goals, al-
beit with better performance. Specifically, we are
interested in the capability of ANNs to generalize
from past observed behavior to detect novel attacks
against systems. To this end, we constructed two
different ANNs: one for anomaly detection and one
for misuse detection.

To use the backprop networks, we had to address
five major issues: how to encode the data for in-
put to the network, what network topology should
be used, how to train the networks, how to perform
anomaly detection with a supervised training algo-
rithm, and what to do with the data produced by
the neural network.

Encoding the data to be used with the neural net-
work is in general, a difficult problem. Previous ex-
periments indicated that strings of six consecutive
BSM events carried enough implicit information to
be accurately distinguished as anomalous or nor-
mal for programs in general. One possible encod-
ing technique was simply to enumerate all observed
strings of six BSM events, and use the enumera-
tion as an encoding. However, part of the motiva-
tion of using neural nets was their ability to classify
novel inputs based on similarity to known inputs.
A simple enumeration will fail to capture informa-
tion about the strings. Therefore, a neural net will
be less likely to be able to correctly classify novel
inputs. In order to capture the necessary informa-
tion in the encoding, we devised a distance met-
ric for strings of events. The distance metric took
into account the events common to two strings, as
well as the difference in positions of common events.
To encode a string of data, the distance metric was
used to measure the distance from the data string

to each of several “exemplar” strings. The encod-
ing then consisted of a set of measured distances.
A string could then be thought of as a point in a
space where each dimension corresponded to one of
the exemplar strings, and the point is mapped in the
space by plotting the distance from each dimension.

Once an appropriate encoding method was devel-
oped, an appropriate network topology must be em-
ployed. We had to determine how many input and
output nodes were necessary, and if a hidden layer
was to be used, how many nodes should it con-
tain. Because we seek to determine whether an in-
put string is anomalous or normal, we use a single
continuously valued output node to represent the
extent to which the network believes the input is
normal or anomalous. The more anomalous the in-
put is, the closer to 1.0 the network computes its
output. Conversely, the closer to normal the input
is, the closer to 0.0, the output node computes.

The number of input nodes has to be equal to the
number of exemplar strings (since each exemplar
produced a distance for input to the network). With
an input layer, a hidden layer, and an output layer,
a neural network can be constructed to compute any
arbitrarily complex function. Thus, a single hidden
layer was used in our networks. A different network
must be constructed, tuned, and trained for each
program to be monitored, since what might have
been quite normal behavior for one program might
have been extremely rare in another. The number
of hidden nodes varied based on the performance of
each trained network.

During training, many networks were trained for
each program, and the network that performed the
best was selected. The remaining networks were
discarded. Training involved exposing the networks
to four weeks of labeled data, and performing the
backprop algorithm to adjust weights. An epoch of
training consisted of one pass over the training data.
For each network, the training proceeded until the
total error made during an epoch stopped decreas-
ing, or 1,000 epochs had been reached. Since the
optimal number of hidden nodes for a program was
not known before training, for each program, net-
works were trained with 10, 15, 20, 25, 30, 35, 40,
50, and 60 hidden nodes. Before training, network
weights were initialized randomly. However, initial
weights can have a large, but unpredictable, effect
on the performance of a trained network. In or-
der to avoid poor performance due to bad initial
weights, for each program, for each number of hid-

den nodes, 10 networks were initialized differently,
and trained. Therefore, for each program, 90 net-
works were trained. To select which of the 90 to
keep, each was tested on two weeks of data that
were not part of the four weeks of data used for
training. The network that classified data most ac-
curately was kept.

4.1 Anomaly detection

In order to train the networks, it is necessary to
expose them to normal data and anomalous data.
Randomly generated data was used to train the net-
work to distinguish between normal and anomalous
data. The randomly generated data, which were
spread throughout the input space, caused the net-
work to generalize that all data were anomalous by
default. The normal data, which tended to be lo-
calized in the input space, caused the network to
recognize a particular area of the input space as
non-anomalous.

After training and selection, a set, of neural networks
was ready to be used. However, a neural network
can only classify a single string (a sequence of BSM
events) as anomalous or normal, and our intention
was to classify entire sessions (which are usually
composed of executions of multiple programs) as
anomalous or normal. Furthermore, our previous
experiments showed that it is important to capture
the temporal locality of anomalous events in order
to recognize intrusive behavior. As a result, we de-
sired an algorithm that provides some memory of
recent events.

The leaky bucket algorithm fits this purpose well.
The leaky bucket algorithm keeps a memory of re-
cent events by incrementing a counter of the neu-
ral network’s output, while slowly leaking its value.
Thus, as the network computes many anomalies, the
leaky bucket algorithm will quickly accumulate a
large value in its counter. Similarly, as the network
computes a normal output, the bucket will “leak”
away its anomaly counter back down to zero. As a
result, the leaky bucket emphasizes anomalies that
are closely temporally co-located and diminishes the
values of those that are sparsely located.

Strings of BSM events are passed to a neural net-
work in the order they occurred during program ex-
ecution. The output of a neural network (that is,
the classification of the input string) is then placed

into a leaky bucket. During each timestep, the level
of the bucket is decreased by a fixed amount. If the
level in the bucket rises above some threshold at any
point during execution of the program, the program
is flagged as anomalous. The advantage of the using
a leaky bucket algorithm is that it allows occasional
anomalous behavior, which is to be expected during
normal system operation, but it is quite sensitive to
large numbers of temporally co-located anomalies,
which one would expect if a program were really
being misused. If a session contains a single anoma-
lous execution of a program, the session is flagged
as anomalous.

4.2 Misuse detection

Having developed a system for anomaly detection,
we chose to evaluate how well the same techniques
could be applied to misuse detection. Our sys-
tem is designed to recognize some type of behavior.
Thus, it should not matter whether the behavior it
is learning was normal system usage, or attack be-
havior. Aside from trivial changes to the way the
leaky bucket is monitored, our system should not re-
quire any modification to perform misuse detection.
Having made the trivial modification to the leaky
bucket, we tested our system as a misuse detector.

Unfortunately, two issues particular to our data-set
made misuse detection difficult. The first issue was
a lack of data. In the DARPA data, there was be-
tween two to three orders in magnitude less intru-
sion data than normal data. This made it quite
difficult to train networks to learn what constituted
an attack. The second issue was related to the label-
ing of intrusions. Intrusion data were labeled on a
session-by-session basis. Whereas several programs
might be executed during an intrusive session, as
few as one might be anomalous. Thus, while all
data labeled non-intrusive could be assumed to be
normal, not all data labeled intrusive could be as-
sumed to be anomalous. Despite these stumbling
blocks, we configured our neural network system for
misuse detection.

5 Experimental Results

The anomaly and misuse detection systems were
tested on the same test data. The test data con-

sisted of 139 non-intrusive sessions, and 22 intrusive
sessions. Although it would have been preferable to
use a larger number of intrusive sessions for testing,
there were so few intrusive sessions in the DARPA
data that all other intrusion data were used to train
the misuse detection system.

The performance of any intrusion detection system
must account for both the detection ability and the
false positive rate. We observed both of these fac-
tors while varying the leak rate used by the leaky
bucket algorithm. A leak rate of 0 results in all prior
timesteps being retained in memory. A leak rate of
1 results in all timesteps but the current one being
forgotten. We varied the leak rate from 0 to 1.

The performance of the IDS should by judged in
terms of both the ability to detect intrusions, and
by false positives—incorrect classification of secure
behavior as insecure. We used receiver operating
characteristic (ROC) curves to compare intrusion
detection ability to false positives. A ROC curve is
a parametric plot, where the parameter is the sensi-
tivity of the system to what it perceives to be inse-
cure behavior. The curve is a plot of the likelihood
that an intrusion is detected, against the likelihood
that a non-intrusion is misclassified for a particular
parameter, such as a threshold. The ROC curve can
be used to determine the performance of the system
for any possible operating point. The ROC curve
allows the end user of an intrusion detection system
to assess the trade-off between detection ability and
false alarm rate in order to properly tune the system
for acceptable tolerances.

Different leak rates produced different ROC curves.
Figure 1 displays two ROC curves—one for a low
leak rate, and one for a high leak rate. For the leak
rate of .2, to achieve detection better than 77.3%,
one must be willing to accept a dramatic increase
in false positives. At 77.3% detection, the false pos-
itive rate is only 3.6%. When the leak rate is .7, a
detection rate of 77.3% can be achieved with a false
positive rate of only 2.2%.

ROC curves were also produced for the performance
of our misuse detection system. While the perfor-
mance was not nearly as good as the anomaly de-
tection system in terms of false positives (which was
a high as 5% for even low sensitivity rates), the
misuse detection system displayed very high detec-
tion abilities—especially surprising due to the small
number of sessions used to train the system. As il-
lustrated in Figure 2, with a leak rate of 0.7, the sys-

Anomaly Detection - Leak Rate: .2

100

Percentage Of Intrusions Detected

False Positive Percentage

Anomaly Detection - Leak Rate: .7

0 2 0 60 80 100

False Positive Percentage

Figure 1: Anomaly detection results for two different leak rates.

Misuse Detection - Leak Rate: .2

Percentage Of Intrusions Detected

False Positive Percentage

g

Misuse Detection - Leak Rate: .7

B 3 8

Percentage Of Intrusions Detected

False Positive Percentage

Figure 2: Misuse detection results for two different leak rates.

tem was able to detect as much as 90.9% of all intru-
sions with a false positive rate of 18.7%. Other host-
based misuse detection systems can currently pro-
vide similar detection capabilities with lower false
positive rates. Thus, this approach to misuse de-
tection may not be suitable for detecting attacks
in comparison to signature-based approaches. How-
ever, our technique demonstrated the ability of the
system to detect novel attacks by generalizing from
previously observed behavior.

While that false positive rate is clearly unaccept-
able, it should be remembered that the misuse de-
tection system was trained on data which contained
not only intrusion data, but also normal data. This
would naturally lead this system to produce a large
amount of false positives. By eliminating the non-
intrusion data from the training data, it is believed
that significantly lower false positive rates could be
achieved, without lowering the detection ability.

The results of our experiments indicate that neural
networks are suited to perform intrusion detection

and can generalize from previously observed behav-
ior. Currently, the false positive rates are too high
to be practical for commercial users. In order to be
a useful tool, false positive rates need to be between
one and three orders of magnitude smaller. We con-
tinue to investigate how to improve the performance
of our neural networks. Tests of variations on our
techniques indicate that we have not yet achieved
optimal performance.

6 Conclusions

This paper began with an examination of current
intrusion detection systems. In particular, the
DARPA 1998 intrusion detection evaluation study
found that novel attacks against systems are rarely
detected by most IDSs that use signatures for de-
tection. On the other hand, well-known attacks for
which signatures from network data or host-based
intrusion data can be formed, perform very reli-

ably with low rates of false alarms. However, even
slight variations of known attacks escape detection
by signature-based IDSs. Similarly, program-based
anomaly detection systems have performed very well
in detecting novel attacks, albeit with high false
alarm rates. To overcome the problems in cur-
rent misuse detection and anomaly detection ap-
proaches, a key necessity for IDSs is the ability to
generalize from previously observed behavior to rec-
ognize future similar behavior. This capbility will
permit detection of variations of known attacks as

well as reduce false positive rates for anomaly-based
IDSs.

In this paper, we presented the application of a sim-
ple neural network to learning previously observed
behavior in order to detect future intrusions against
systems. The results from our study show the viabil-
ity of our approach for detecting intrusions. Future
work will apply other neural networks more suited
toward the problem domain of analyzing tempo-
ral characteristics of program traces. For instance,
applying recurrent, time delay neural networks to
program-based anomaly detection has proved to be
more successful than using backpropagation net-
works for the same purpose [8]. Our next step is
to apply these networks to misuse detection as well.

References

[1] J.P. Anderson. Computer security threat moni-
toring and surveillance. Technical Report Tech-
nical Report, James P. Anderson Co., Fort
Washington, PA, April 1980.

[2] J. Cannady. Artificial neural networks for mis-
use detection. In Proceedings of the 1998 Na-
tional Information Systems Security Confer-
ence (NISSC’98), pages 443-456, October 5-8
1998. Arlington, VA.

[3] W.W. Cohen. Fast effective rule induction. In
Machine Learning: Proceedings of the Twelfth

International Conference. Morgan Kaufmann,
1995.

[4] P. D’haeseleer, S. Forrest, and P. Helman. An
immunological approach to change detection:
Algorithms, analysis and implications. In IEEE
Symposium on Security and Privacy, 1996.

[5] D. Endler. Intrusion detection: Applying ma-
chine learning to solaris audit data. In Pro-
ceedings of the 1998 Annual Computer Security

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Applications Conference (ACSAC’98), pages
268-279, Los Alamitos, CA, December 1998.
IEEE Computer Society, IEEE Computer So-
ciety Press. Scottsdale, AZ.

S. Forrest, S.A. Hofmeyr, and A. Somayaji.
Computer immunology. Communications of the
ACM, 40(10):88-96, October 1997.

T.D. Garvey and T.F. Lunt. Model-based in-
trusion detection. In Proceedings of the 14th

National Computer Security Conference, Octo-
ber 1991.

A K. Ghosh, A. Schwartzbard, and M. Schatz.
Learning program behavior profiles for intru-
sion detection. In Proceedings of the I1st
USENIX Workshop on Intrusion Detection
and Network Monitoring. USENIX Associa-
tion, April 11-12 1999. To appear.

A K. Ghosh, A. Schwartzbard, and M. Schatz.
Using program behavior profiles for intrusion
detection. In Proceedings of the SANS Intru-
sion Detection Workshop, February 1999. To
appear.

A K. Ghosh, J. Wanken, and F. Charron.
Detecting anomalous and unknown intrusions
against programs. In Proceedings of the 1998

Annual Computer Security Applications Con-
ference (ACSAC’98), December 1998.

K. Ilgun. Ustat: A real-time intrusion detec-
tion system for unix. Master’s thesis, Computer
Science Dept, UCSB, July 1992.

K. Ilgun, R.A. Kemmerer, and P.A. Porras.
State transition analysis: A rule-based intru-
sion detection system. IEEE Transactions on
Software Engineering, 21(3), March 1995.

S. Kumar and E.H. Spafford. A pattern match-
ing model for misuse intrusion detection. The
COAST Project, Purdue University, 1996.

T. Lane and C.E. Brodley. An application of
machine learning to anomaly detection. In Pro-
ceedings of the 20th National Information Sys-
tems Security Conference, pages 366-377, Oc-
tober 1997.

W. Lee, S. Stolfo, and P.K. Chan. Learning
patterns from unix process execution traces for
intrusion detection. In Proceedings of AAAI97
Workshop on AI Methods in Fraud and Risk
Management, 1997.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

T.F. Lunt. Ides: an intelligent system for de-
tecting intruders. In Proceedings of the Sym-
posium: Computer Security, Threat and Coun-
termeasures, November 1990. Rome, Italy.

T.F. Lunt. A survey of intrusion detection tech-
niques. Computers and Security, 12:405-418,
1993.

T.F. Lunt and R. Jagannathan. A prototype
real-time intrusion-detection system. In Pro-
ceedings of the 1988 IEEE Symposium on Se-
curity and Privacy, April 1988.

T.F. Lunt, A. Tamaru, F. Gilham, R. Ja-
gannthan, C. Jalali, H.S. Javitz, A. Valdos,
P.G. Neumann, and T.D. Garvey. A real-time
intrusion-detection expert system (ides). Tech-
nical Report, Computer Science Laboratory,
SRI Internationnal, February 1992.

F. Monrose and A. Rubin. Authentication via
keystroke dynamics. In 4th ACM Conference
on Computer and Communications Security,
April 1997.

P.A. Porras and R.A. Kemmerer. Penetra-
tion state transition analysis - a rule-based
intrusion detection approach. In Eighth An-
nual Computer Security Applications Confer-
ence, pages 220-229. IEEE Computer Society
Press, November 1992.

P.A. Porras and P.G. Neumann. Emerald:
Event monitoring enabling responses to anoma-
lous live disturbances. In Proceedings of the
20th National Information Systems Security
Conference, pages 353-365, October 1997.

G. Vigna and R.A. Kemmerer. Netstat: A
network-based intrusion detection approach. In
Proceedings of the 1998 Annual Computer Se-
curity Applications Conference (ACSAC’98),
pages 25-34, Los Alamitos, CA, December
1998. IEEE Computer Society, [IEEE Computer
Society Press. Scottsdale, AZ.

