
The following paper was originally published in the

Proceedings of the 8th USENIX Security Symposium
Washington, D.C., USA, August 23–26, 1999

O F F L I N E D E L E G A T I O N

Arne Helme and Tage Stabell-Kulø

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Offline Delegation�

Arne Helme† Tage Stabell-Kulø
Department of Computer Science

University of Tromsø, Norway
farne,tageg@acm.org

Abstract

This article describes mechanisms for offline delegation
of access rights to files maintained by a distributed “File
Repository”. The mechanisms are designed for a tar-
get environment where personal machines are used at
times when critical services, such as authentication and
authorization services, are not accessible. We demon-
strate how valid delegation credentials can be transferred
verbally without the use of shared secrets.

Our main result shows that delegation of access rights
can be accomplished in a system that uses public-key
encryption for secrecy and integrity, without forcing the
user to rely on a trusted third party, and without requiring
connection to the infrastructure.

The implementation runs on a contemporary Personal
Digital Assistant (PDA); the performance is satisfac-
tory.

1 Introduction

When personal machines are incorporated into distrib-
uted systems, privacy becomes important. In our view,
the mere existence of personal machines implies a new
direction in computer security research. Rather than
solely protecting centralized resources from unautho-
rized access, protecting the interests of the individual
becomes the focus. For example, users will want to de-
cide for themselves when and to whom access to their
resources should be granted. In contrast, consider a sys-
tem with centralized control, such as Kerberos [Steiner
et al., 1988]. In Kerberos, the trust relation between the
system and its users is asymmetric and the organization

�Funded by the GDD project of the Research Council of Norway
(project number 112577/431)

†Funded by the GDD-II project of the Research Council of Norway
(project number 1119400/431)

maintaining the system dictates when and to whom ac-
cess to resources should be granted. It is impossible for
a user to generate credentials, either inside or outside
Kerberos, that will be valid outside of its realms. Con-
sequently, users cannot delegate access to their own re-
sources at will. This lack of control over personal re-
sources is an architectural concern, and not in any way
related to the cryptographic technology that is applied in
the system (symmetric or asymmetric cryptography).

Armed with a Personal Digital Assistant (PDA), users
will challenge centralized models of authentication and
access control by demanding to be in authority of their
own resources. In essence, a PDA can provide the user
with a Trusted Computing Base (TCB) [Department of
Defense, 1985]. The TCB gives leverage in situations
where the user accesses resources remotely or wants to
delegate access rights to other users.

A system that relies on PDAs for a part of its security
creates a new set of engineering challenges. This ar-
ticle examines a problem that is rather specific to mo-
bile computing: how to cope with circumstances where
there is low or no connectivity between a user’s machine
and the system components critical to some operations.
Our focus is on how authority can be delegated from one
user to another without the requirement of communica-
tion with any kind of server.

PDAs are often not connected to a computer network.
Even so, delegation of authority should be possible. Del-
egation may have to take place indirectly and possibly
over unconventional paths — such as part of a telephone
conversation. Consider the following scenario: Alice
and Bob are having a conversation on the phone, and Al-
ice wants to grant Bob access to a file of hers. Since she
has her TCB at hand, she should be able to generate suf-
ficient credentials to enable Bob to access the file. This
problem is denoted “offline delegation of access rights”
(initially described in [Helme and Stabell-Kulø, 1996]).
We describe how the problem comes about and mani-
fests itself, what the implications are, and presents a so-

lution to it. Some relevant details of an implementation
are also presented.

The remainder of this article is structured as follows.
Section 2 starts out by arguing why offline delegation
is desirable, and presents the environment in which a so-
lution has been implemented. Section 3 discusses the
security constraints while Section 4 discusses the proto-
cols that are used. Section 5, describes some relevant
implementation details. Then, Section 6 discusses as-
pects of the TCB, the assumptions made about the PDA
and the (secure) channels that are present in the system.
Finally, the conclusions are drawn in Section 7.

2 Overview

The setting is one with a file repository (called FR)
that manages replication and concurrency control of
files [Stabell-Kulø and Fallmyr, 1998]. FR has been
designed to support users with a variety of equipment,
ranging from PDAs to workstations. FR is the research
vehicle used to investigate the thesis that users should be
involved at the places in a system where decisions (either
implicit or explicit) are made. In particular, in a system
with PDAs disconnection will be common and consis-
tency problems occur frequently; FR has been designed
to allow users to deal with them in any way they choose.

Along the same line of thought: Why should users be
forced to contact FR simply to generate a delegation cer-
tificate? Stated differently: Is delegation only possible
when there is connectivity? Systems that are constructed
so that principals must be on line for delegation to take
place, effectively exclude PDAs. How to delegate au-
thority without connectivity is the theme central to of-
fline delegation.

In FR, users are represented as principals by their public
keys. Consequently, all communication channels can be
authenticated for integrity and encrypted for privacy. An
integrated part of FR´s design is that authority over files
can be delegated freely. More specifically, a delegation
certificate names a file and a user, together with an ac-
cess right (read, write or both), and the time of creation
(of the certificate) and when it will expire. The syntax
and semantics of delegation certificates are discussed in
detail below.

Making offline delegation possible requires that two
problems are solved. First, one must be able to gener-
ate a valid certificate by means of a PDA without hav-

ing access to FR. Second, it should be possible to con-
vey the certificate verbally; without a computer network
messages must be sent by means of the communication
channel that is available; that is, by means of human
speach. This constraint rules out every binary repre-
sentation of certificates in so far that it is unlikely that
anyone will be able or willing to read hundreds of digits
over the phone. Similar arguments also rule out the use
of digital signature schemes relying on long signatures
(RSA [Rivest et al., 1978], for example, with 1024–2048
signature bits).

The following sections describe both the cryptographic
techniques and the tools required in order to construct a
practical solution to the problems described above.

3 Security considerations

Design of an offline delegation mechanism must care-
fully trade off convenience against availability without
compromising the overall system security. This section
explores the design space, and in particular the require-
ments for the delegation certificates. A solution must
fulfill the following design criteria:

1. A delegation (i.e., a certificate) should not enable
any principal to impersonate the delegator or dele-
gatee.

2. The credentials must form valid and meaningful ac-
cess rights. In particular, all objects (principals,
machines and files) must be unambiguously named.

3. The authority granted by a signed statement should
not be transferable, and a certificate containing the
signature in question should be valid for usage only
once.

To ease the task of verbally transferring access rights—
while retaining security—the following strategy is used.
Generally, of all the information in a typical certifi-
cate only the digital signature constitutes binary data.
Because delegation certificates contain a wealth of in-
formation that can easily be read out, such as dates,
file names, Internet addresses, domain names, etc, the
amount of binary information that needs to be exchanged
is limited. The key issue is then becomes to simplify and
ease the exchange of the signature bits.

In order to delegate access rights based on digital signa-
tures, the number of bits that needs to be exchanged is

critical to the security of the system. Shared-key sys-
tems have shorter keys (64–128 bits) than public-key
systems, but can not be used in this system, because they
undermine the entire security regime in FR [Helme and
Stabell-Kulø, 1997]; we elaborate on this in Section 6.
Decreasing the length of the signature then implies using
a crypto system with a denser key space. We have opted
for the latter, and chosen a crypto system based on el-
liptic curves in finite fields. For a general description of
elliptic-curve cryptography, see [IEEE, 1997, Menezes
et al., 1996].

In addition to the requirements described above, to en-
sure that “once only” semantics can be enforced, each
certificate must be unique. We know from experience
that it takes (much) more than one second to generate a
certificate, so rather than adding a serial number to them,
we add the time of creation. With a resolution of the
clock of (less than) one second, all certificates (from one
principal) will be unique. To some extent, the time of
creation can be viewed as a non-contiguous serial num-
ber. Including in each certificate its time of expiration,
on the other hand, ensures an implicit revocation of old
(unused) certificates.

4 Protocol description

This section describes the protocols used to delegate ac-
cess rights from one user to another. In order to ob-
tain a copy of a file a user must interact with FR by
means of a protocol. The protocol is named File Reposi-
tory Transport Protocol (FRTP) [Stabell-Kulø, 1995]. It
resembles the Simple Mail Transport Protocol (SMTP)
and Network News Transport Protocol (NNTP) proto-
cols in that all commands and responses are encoded in
ASCII with short numerical status-codes being returned
for each command.

FR requires that users are authenticated and it provides
users with the means to establish the authenticity of the
server. At connection setup time, a secure channel is
established between the user and FR. Certificates can
be presented to FR without having to be signed by the
delegatee when sent on an authenticated channel. The
certificate can also be signed and subsequently sent un-
encrypted. In the latter case, the file will be returned on
the same connection (but not on a secure channel). The
latter approach is naturally equivalent with the former
except that secrecy is not achieved. FR supports both
kinds of interactions mentioned above.

4.1 Certificate creation

Before a protocol run can take place the delegator (file
owner) creates a delegation certificate. This delegation
certificate contains a digital signature that vouches for
his delegation of access rights for a particular file to the
other user. The certificate grants the delegatee access to
the file. The certificate components that can easily be
conveyed verbally are the following:

� the names of the file, the delegator and the delega-
tee,

� time of creation and expiration

� specification of delegated access rights. In the cur-
rent design, access rights can be eitherread or
write. A certificate will, thus, enable the delegatee
to access the file according to the delegated access
rights specified in the delegation certificate.

The verbal delegation ends with the exchange of the bits
resembling the signature. Together with the other infor-
mation exchanged, the signature enables the delegatee
to (re)construct a machine readable representation of the
certificate. These certificates, obviously, must be read-
able not only by computers but also by humans. To fa-
cilitate this, certificates are encoded in a syntax similar
to SDSI [Rivest and Lampson, 1996].

4.2 Access-request protocol

Theaccess-requestprotocol performs a forward authen-
tication of access rights from the delegator to the server
via another user (the delegatee). In short, to access a
file the delegatee signs the delegation certificate with his
own private key and transmits the result to the file server
(FR). The following messages are exchanged:

Message 1 A! B : fA;B;F;AC;T;Sg
K�1

A
(= X)

Message 2 B! S: fB;S;X;WDg
K�1

B
(=Y)

Message 3 S! B : fS;B;H(X);H(Y);RD;WDg
K�1

S

In the protocol description,A andB represent the users
Alice and Bob,S is the FR (server),F is the name of
the file in question,AC are the delegated access rights,
andT are two time stamps, one making the certificate
unique the other ensuring that the certificate expire.K�1

A
is the private key belonging toA. Message 1 (orX, in
short) is the delegation certificate.H(X) is the message

A B S
1

2

3

Figure 1: Messages in the protocol

digest ofX, and is essentiallyB’s receipt fromS. The
field RD is data that has been read whileWD is data to
be written. If the access-right isread, WD must benil.
The protocol does not distinguish between conventional
(networked) or verbal transfer of the first message —
in both cases the same information is presented to the
server in Message 2.

4.3 Analysis

The protocol consists of three messages, as illustrated in
Figure 1. The messages are explicit, and contain suffi-
cient information that their meaning can be established
without context. That is, the meaning of messages does
not depend on a (set of) previous message(s).

A BAN logical analysis of the protocol begins with
the observation that Message 1 (denotedX in the pro-
tocol description) is received byB over a “real time”
channel, implying thatB j�](X) (see [Abadi et al.,

1991]). The assumptionB j�
KA7! A makes it possible

for B to believe thatA j� X; a similar argument also
holds for S. If B believes thatS is honest [Syverson,
1992], we obtainB j� S j� data becauseB j�](X)
and B j� Sj� (X;data) (derived from Message 3). In
other words,B believes that he has received the correct
file from S.

At a higher level [Lampson et al., 1992], Message 1 con-
tains two statements (we only deal with reading, writing
is similar):

A saysBjA) B for A (1)

and
A saysB for A may read file F: (2)

Statement(1) says says that the combined principalBjA
may speak forB for A, while (2) says thatB for A may
read from fileF. WhenB includes Message 1 in Mes-
sage 2, it is interpreted as

BjA saysread F: (3)

Statement(3) enablesS to deduce thatB (by quotingA)
indeed speaks forB for A. Consequently, ifA owns the
file F, then(3) should be honored.

5 Implementation details

This section describes the implementation of the offline
delegation mechanism in greater detail. The implemen-
tation of the File Repository currently runs on Unix and
Windows NT. As PDA we have used the Palm-III from
3Com with PalmOS as the operating system. The offline
delegation mechanism is hosted both on the PDA and on
Unix workstations.

In addition to FR itself, the implementation consists of
a library with cryptographic functions, a library to parse
and generate SDSI objects and a graphical user inter-
face to create/send and receive/verify certificates on the
PDA. First we will describe the user interface of the
offline-delegation application running on the PDA. It is
by means of this application that the users cancreate,
sendandreceivecertificates. Then we will focus on the
two libraries that are part of our implementation. The
first library contains cryptographic functions to create
short digital signatures. The second library converts cer-
tificates between internal and external representations.

5.1 User interface

The bandwidth of the channel defined by human conver-
sation is relatively low. The core of an offline delegation
system is the dual ability to generate a valid certificate
on a PDA and making it “readable” in a form which is
simple to both send and receive on such low-bandwidth
communication channels. To facilitate offline delega-
tion, we have designed and implemented a supporting
application on the PDA. The appearance is such that it
enables two users to exchange sufficient information to
send a certificate on one end, and receive it on the other.

In general, the process of building a certificate consists
of entering the required information into the application,
and then let the application generate it. The following
information is required:

Filename: It is the users’ responsibility to ensure that
file names are unique within the scope of a server;
the name of the file is prefixed by the name of a
server. In the implementation, applications syn-
chronize with the file server and has a cache of
filenames available. If access is delegated to a file
which name is not available, the name must be en-
tered manually.

Delegatee:In all systems where users are represented
by their public keys, names must be unique within

(a) Setting the time (b) Information

Figure 2: Elements from the user interface components to create delegation certificates

the system. More precisely, the name appearing in
the certificates must be unique. As with file names,
the software keeps a cache of frequently used user
names.

Created, Expire: In order to ease the process of enter-
ing dates, calendars are used (with the current date
as default). Figure 2(a) shows how time is entered
into the application; the user taps the boxes with the
stylus.

Rights: A certificate can delegate authority [Lampson
et al., 1992]. In our setting, such authority can be
read or write (or both).

Figure 2(b) shows how general information is entered
into the application.

The assumed operational procedure is that Alice enters
information into the data fields on her PDA while she
talks with Bob, and Bob enters the same information into
his PDA. The software has been designed to be used in
this way, that is, the order in which information is en-
tered when a certificate is created is matched on both
sides. By going through the fields together, they build
up the certificate. When Alice is finished entering infor-
mation, she will sign the data with her private key.

As will be explained below, the signature is 256 bits
long. On the sending side, the bits are presented to Al-
ice as 16 4-digit hexadecimal numbers; see Figure 3(a).
Notice that the checksum in the right hand column is a
simple error detection scheme. She can now read the
signature bits out to Bob, one group at a time.

As Bob listens to Alice, he needs means to enter the sig-

nature bits as fast as Alice reads. To facilitate this, a
dedicated form is presented on the PDA. By tapping on
the screen of the PDA he is able to enter data (receiveas
it were). The design is such that users can receive bits
fast enough for the system to be usable. See Figure 3(b)
for a signature that has been partly received.

The checksum is calculated as data is entered. Although
only a proper verification of the signature can deter-
mine whether it was properly transferred, the check-
sum is used to give Alice and Bob some confidence in
its integrity. In this implementation the checksum is
an exclusive-or function computed over the four 16-bit
numbers. As a result, two bits in any number of row
of bits will go undetected. If experience shows that a
stronger integrity check is required, it can easily be in-
corporated into the application.

In the Unix client, the method used in the S/KEY one-
time password system [Haller, 1994] has been adopted
and the signature bits are conveyed in the form of Eng-
lish words.

5.2 Crypto library

The cryptographic library provides functions to create
and verify digital signatures. Currently the library is
available on both Unix and PalmOS platforms. The li-
brary provides the Nyberg-Rueppel version of elliptic
curve signatures [Nyberg and Rueppel, 1993] and the
SHA1 message digest function.

The implementation of elliptic curve cryptography is

(a) Sending (b) Receiving

Figure 3: Elements from the user interface to send and receive delegation certificates

based on the algorithms for fast operations in finite
fields. [Win et al., 1996] that has been tuned to fit
the limited processor and memory resources on a small
PDA. The current implementation uses a finite field of
orderGF(136)with fast operations on elements in a sub-
field of orderGF(8). The order of the fixed point on the
curve is a 241 bit prime number. This yields Nyberg-
Rueppel scheme digital signatures with a total length of
256 bits for both components of the signatures.

The security of the elliptic-curve signature scheme re-
lies on the difficulty of finding discrete logarithms in fi-
nite fields of special form. With the current field size
and chosen curve parameters the security of the system
is estimated to be at least of similar strength as 1024
bits RSA signatures. Digital signature schemes based
on elliptic curves show not only promising results with
respect to performance (signing speed, in particular), but
also when it comes to strength per bit and memory uti-
lization [IEEE, 1997].

5.3 SDSI library

All keys, certificates and protocol messages used in the
implementation of the offline delegation mechanism are
specified in a format similar to SDSI [Rivest and Lamp-
son, 1996]. Only the syntax specification of SDSI has
been adopted, however, and not its associated public-key
infrastructure. We have chosen an external representa-
tion that is “human readable”. That is, the majority of
data in the certificate is represented in ASCII. In our ex-
perience it is valuable to be able to “look at” certificates
to compare the fields one by one.

SDSIlib is based on the SEXP library designed and im-
plemented by Ronald Rivest. The library has been ex-
tended to support a syntax similar to SDSI and contains
sufficient functionality to build parsers and generators
for new protocols with SDSI encoding of the protocol
messages. The SDSIlib API [Helme, 1998] specifies the
external representation of data in SDSI objects, and a set
of library functions to manipulate such objects. The li-
brary contains basic functions to parse and generate ba-
sic SDSI objects. In the SDSIlib port for the Palm-III,
most of the library’s functionality has been retained. The
library can be configured to read and write SDSI objects
from and to TCP/IP streams, Unix-like file I/O, or Pal-
mOS databases.

As an example, consider the specification of aSigna-
ture object containing a signed delegation statement
in Figure 4. TheSignature object contains an of-
fline delegation certificate. More specifically, the signed
object consists of the information that has been signed
(Object), and information (Algorithm) about the
signature algorithm that has been used to create the
signature in question. TheAlgorithm field also
holds information about the hash algorithm and signa-
ture algorithm that have been used to create the dig-
ital signature. The format of theAlgorithm field
is signature-algorithm-with- hash-algorithm. The
name of the algorithm-dependent hash field ishash-
algorithm-Hash . The name of the algorithm-specific
signature field issignature-algorithm-Signature .
The fieldsObject-ref and Object-perms iden-
tify the file subject to delegation and the delegated ac-
cess rights.

(Signature:
(Object:

(Delegate-From: "Alice in Wonderland")
(Delegate-To: "Bobs Country Bunker")
(Object-ref: frtp://server/foo/file.text)
(Object-perms: read)
(Created: "1999-03-24T13.32.26.000+0000"))
(Expire: "1999-03-24T13.32.26.000+0000"))

(Algorithm: ECNR-with-SHA1)
(SHA1-Hash: |c+1xi/6oE4k5Hr8JPR1T4Q==|)
(ECNR-Signature:

(Signing-Key: |B3ZbHXKyBwQ=|)
(Galois-Field: #88#)
(R: |Gk/PrhBpnNdXinxC11krrQ==|)
(S: |DPI7aahT4A9c5MeG7EF/VQ==|)))

Figure 4: Specification of a delegation certificate in a syntax similar to SDSI

6 Discussion

This section discusses some aspects of offline delegation
in distributed systems, and in our system in particular.
First we argue why offline delegation does not weaken
the security of the system, then we discuss issues related
to the trusted computing base, revocation of certificates
and performance of the prototype implementation.

6.1 Security concerns

We believe that the provision of offline delegation does
not weaken the security of FR in any way. This hinges
on the fact that the file owner is solely responsible for the
security policy he implements. The increased flexibility
offered by offline delegation comes with the price of re-
sponsible and competent users. However, for each dele-
gation there is only a single file involved, and other files
are not involved in any way, so a user can not compro-
mise the security of any other user. The security problem
intrinsic to stolen PDAs is treated in the section on the
TCB.

A file can be handed out erroneously if it is given the
same name as an old file, and access to the old file has
been delegated. A new file with the same name as an
old file can be regarded as if the contents was altered on
the old file. FR can thus not distinguish between rightful
access to new data in the old file and incorrect access to
a new file with the same name as an old file. By ensuring
that all certificates expire properly (within a reasonable
time frame) names of files can be reused after that time.

We do not consider this a security problem.

The security regime of the system is built on public key
cryptography. It is a goal that FR should be able to
produce a certificate for each and every transaction that
takes place. In such a system, a scheme built on shared
keys is very hard to conceive. Any secret shared with FR
can be used by FR to convince itself about the origin of
a message, but such “proof” has no value to others.

6.2 Trusted Computing Base

The single most intriguing issue with the concept of
PDAs is the possibility that every user can have a Trusted
Computing Base (TCB) under his control which does
not include resources controlled by others. That is, if
the system is designed in such way that the user’s PDA
constitutes his TCB, then keys and credentials can safely
be stored in it. More specifically, a trusted PDA can act
on its owners’ behalf when the owner delegates access
rights. In particular, when it comes to the case of bind-
ing a public key to a human, the TCB consists only of
the user’s PDA. This, of course, stems from the use of
public-key technology rather than offline delegation per
se.

Recall the scenario with Alice delegating authority to
Bob while speaking on the phone. In this scenario, FR is
not part of the TCB because it is “only” used to store
files. The result is that FR is unable to impersonate
the user, neither when interacting with other instances
of FR, nor when interacting with other users.

6.3 Revocation

Disconnected operation is common in our system and re-
vocation of access rights is consequently a concern. Ef-
fective revocation of access rights in distributed systems
is generally considered a hard problem to solve [Lamp-
son et al., 1992], and lack of connectivity makes the
problem even more difficult. This places limits on when
revocation can be performed. In order to revoke a cer-
tificate there are essentially two approaches: either to

1. limit the time frame in which certificate is valid,

2. let the certificate be valid only once.

Both approaches have their merits and disadvan-
tages [Helme, 1997]. FR provides offline delegation
and it supports both mechanisms. To ensure that cer-
tificates are used only once, once they are used they
are stored by the server until they expire. This policy
facilitates that certificates have “once-only” semantics
(see [Helme, 1997]). Users can not override this policy,
but if there is a need to grant another user access on a
more permanent basis, Access Control Lists (ACL) can
be implemented. A discussion of ACLs in FR is beyond
the scope of this article.

Timestamps are used as an additional source of infor-
mation for revocation purposes. Since individual users
specify access policies, the correctness of the time stamp
encoded into each delegation certificate depends entirely
on this user’s ability to determine what the current time
is. However, timestamps are only used to recognize and
refuse old certificates. The use of time to discard once-
only delegation certificates is not entirely without risks
(for a discussion, see, for example, [Gong, 1992]).

6.4 Performance

On the platform for which we have made our imple-
mentation, entering information is time consuming. The
graphical user interface is pen-based, and writing is
rather slow. Some fairly long strings (such as file names
with an associated path) have to be entered to uniquely
identify a file, or selected from a list of frequently used
strings.

On the PDA, to create a digital signature on a certifi-
cate takes about 5 seconds while verifying a signature
takes about 10–15 seconds. While the process of sign-
ing certificates is mandatory, verifying the signature on

the PDA is not. The receiver may choose to pass the cer-
tificate on to FR without verifying that it is correct. FR
runs on Unix, and verification of a signature in this en-
vironment takes fractions of a second and does not pose
a performance problem in the intended target environ-
ment.

6.5 Future work

The File Repository is the research vehicle for several
other projects on data consistency and distributed ap-
plications, and the offline delegation mechanism will be
used by these other projects whenever feasible.

One related project uses the File Repository to hold in-
formation about appointments. The offline delegation
mechanism enables users to delegate access rights to
other users in order to let them either read diary informa-
tion or to (selectively) update it. The Global Distributed
Diary (GDD) project explores these issues further.

7 Summary and conclusions

We have described how offline delegation is a natural
extension to the services already offered by FR. The
argument is focused on the concept of “user in the de-
cision loop”, and offline delegation is a consequence of
this design philosophy. Offline delegation is used to del-
egate access rights from one user to another, in a setting
where communication with FR is impossible at the time
(or undesirable for some reason). To ease the exchange
of delegation certificates, a method has been developed
that enables two users to convey a certificate verbally.
Cryptographic techniques based on elliptical curve en-
cryption are used to facilitate short signatures so that as
little data as possible has to be conveyed while maintain-
ing a high level of security. The increased complexity in
the implementation is outweighed by the advantage of
short signatures.

The PDA of choice is the Palm-III, manufactured by
3Com. It was shown that performance is satisfactory
even on this class of hardware. Furthermore, by utiliz-
ing the graphical user interface on the PDA, it is possible
to transfer certificates (using speech) as part of a conver-
sation between humans. Security is preserved and the
performance is satisfactory.

Acknowledgements

The authors want to thank Feico Dillema, Jaap-Henk
Hoepman,Åge Kvalnes, Sape Mullender, Per Harald
Myrvang, and the anonymous referees for valuable com-
ments. The first author also wants to thank George Bar-
wood and Paulo Barreto for providing source code and
useful information on how to implement elliptic curve
cryptography.

References

[Abadi et al., 1991] Abadi, M., Burrows, M., Kaufman,
C., and Lampson, B. (1991). Authentication and
Delegation With Smart-cards.Theoretical Aspects of
Computer Software, pages 326–345. Springer-Verlag.

[Department of Defense, 1985] Department of Defense
(1985). DoD 5200.28-STD: Department of Defense
(DoD) Trusted Computer System Evaluation Criteria
(TCSEC).

[Gong, 1992] Gong, L. (1992). A Security Risk of De-
pending on Synchronized Clocks.ACM Operating
Systems Review, 26(1).

[Haller, 1994] Haller, N. M. (1994). The S/KEY One-
time Password System. InProceedings of the Internet
Society Symposium on Network and Distributed Sys-
tem Security, San Diego, CA.

[Helme, 1997] Helme, A. (1997).A System for Secure
User-controlled Eletronic Transactions. PhD the-
sis, Informatica, University of Twente, Enschede, the
Netherlands.

[Helme, 1998] Helme, A. (1998). SDSIlib API: Tutor-
ial and Programmer’s Reference Manual. In prepara-
tion.

[Helme and Stabell-Kulø, 1996] Helme, A. and Stabell-
Kulø, T. (1996). Off-Line delegation in a File Repos-
itory. In 1996 DIMACS WorkShop on Trust Man-
agement in Networks, Rutgers University. Work pre-
sented at workshop.

[Helme and Stabell-Kulø, 1997] Helme, A. and Stabell-
Kulø, T. (1997). Security Functions for a File Repos-
itory. ACM Operating Systems Review, 31(2):3–8.

[IEEE, 1997] IEEE (1997). Standards Specifications
for Public Key Cryptography (P1363, Draft Ver-
sion 7). IEEE Standards Draft.

[Lampson et al., 1992] Lampson, B., Abadi, M., Bur-
rows, M., and Wobber, E. (1992). Authentication
in Distributed Systems: Theory and Practice.ACM
Transactions on Computer Systems, 10(4):265–310.

[Menezes et al., 1996] Menezes, A. J., van Oorschot,
P. C., and Vanstone, S. A. (1996).Handbook of Ap-
plied Cryptography. CRC Series on Discrete Mathe-
matics and Its Applications. ACM Press.

[Nyberg and Rueppel, 1993] Nyberg, K. and Rueppel,
R. (1993). A New Signature Scheme Based on the
DSA Giving Message Recovery. InFirst ACM Con-
ference on Computer and Communications Security,
pages 58–61. ACM Press.

[Rivest et al., 1978] Rivest, R., Shamir, A., and Adle-
man, L. (1978). A Method for Obtaining Digital Sig-
natures and Public-key Cryptosystems.Communica-
tions of the ACM, 21(2):120–126.

[Rivest and Lampson, 1996] Rivest, R. L. and Lamp-
son, B. (1996). SDSI—A Simple Distributed Se-
curity Infrastructure. http://theory.lcs.-
mit.edu/ �rivest/sdsi10.ps . (Version 1.0).

[Stabell-Kulø, 1995] Stabell-Kulø, T. (1995). File
Repository Transfer Protocol (FRTP). Technical Re-
port CS-TR 95-21, Department of Computer Science,
University of Tromsø, Norway.

[Stabell-Kulø and Fallmyr, 1998] Stabell-Kulø, T. and
Fallmyr, T. (1998). User controlled sharing in a vari-
able connected distributed system. InProceedings
of the seventh IEEE International Workshop on En-
abeling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE’98), pages 250–255, Stan-
ford, California, USA. IEEE Computer Society.

[Steiner et al., 1988] Steiner, J. G., Neumann, B. G.,
and Schiller, J. I. (1988). Kerberos: An Authentica-
tion System for Open Network Systems. InProceed-
ings of the Winter 1988 Usenix Conference, pages
191–201.

[Syverson, 1992] Syverson, P. (1992). Knowledge, Be-
lief and Semantics in the Analysis of Cryptographic
Protocols.Journal of Computer Security, 1(3):317–
334. IOS Press.

[Win et al., 1996] Win, E. D., Bosselaers, A., Vanden-
berghe, S., Gersem, P. D., and Vandewalle, J. (1996).
A Fast Software Implementation for Arithmetic Op-
erations inGF(2n). In Kim, K. and Matsumoto, T.,
editors,Advances in Cryptology – ASIACRYPT’91,
volume 1163 ofLecture Notes in Computer Science,
pages 65–76. Springer-Verlag.

