
The following paper was originally published in the

Proceedings of the 8th USENIX Security Symposium
Washington, D.C., USA, August 23–26, 1999

B R U T E F O R C E A T T A C K O N U N I X
P A S S W O R D S W I T H S I M D C O M P U T E R

Gershon Kedem and Yuriko Ishihara

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Brute Force Attack on UNIX Passwords with SIMD Computer
Gershon Kedem, Yuriko Ishihara

Computer Science Department

Duke University

Box 90129

Durham, NC 27708-0129

Abstract

As computer technology improves, the security of spe-
cific ciphers and one-way hash functions periodically
must be reevaluated in light of new technological ad-
vances. In this paper we evaluate the security of the
UNIX password scheme. We show that the UNIX
password scheme is vulnerable to brute-force attack.
Using PixelFlow, a SIMD parallel machine, we are able
to “crack” a large fraction of passwords used in practice
[12] in 2-3 days of computation. We explain how a
SIMD machine built in today’s technology could
“crack” any UNIX password in two days. We also de-
scribe in this paper a simple modification to the UNIX
password scheme that makes it harder to break encrypted
passwords using dictionary and brute force attack, thus
extending the useful life of the UNIX password scheme.
The modified password scheme is compatible with the
existing password scheme.

0. Introduction.
Single Instruction Multiple Data (SIMD) machines

is a class of parallel machines that are made of a large
number of simple processors all executing in unison the
same instruction sequence, each processor computing on
a different data set. It is relatively inexpensive to build
SIMD machines with a very large number of proces-
sors. Since the processors are simple (typically 8-bit
processors), processors use near neighbor connections,
and processors do not use local instructions decoding, it
is possible to integrate a large number of SIMD proces-
sors into a single IC. In current technology (0.2µ
CMOS) it is possible to integrate 512-1024 processors
each with 1-2 KB of RAM on a single IC. Moreover,
since instruction decoding is external to the processors,
it is easy to pipeline the processors and make them run
at high frequency. In today’s technology it is possible
to build a SIMD processor array that execute one in-
struction per clock cycle at 1-GHz.

SIMD machines are very effective for performing regu-
lar computation on large data sets. Examples of appli-
cations that require large computing power and could
effectively use SIMD machines are: real-time image
analysis and real-time image generation. Both applica-
tions do relatively simple calculations on a large set of
pixel data. Computation at each pixel is, for the most

part, independent from the values of all but a few
neighboring pixels.

SIMD machines are currently out of vogue since SIMD
machines perform poorly on applications that require
complex decisions and applications that have complex
data dependencies. In either case the SIMD processor
array could not be used effectively. In the first case,
only a small fraction of the processors actually do use-
ful work. In the second case, the machine spends a large
portion of the time moving data between processors
rather than doing useful work. SIMD machines are
notorious for being hard to program. The SIMD ma-
chine programming-model is very different from the
conventional programming model, and it is hard to port
applications that run on conventional machines to
SIMD machines.

However, SIMD machines are very effective for brute
force cryptanalysis. First, most ciphers are very simple
algorithms, made up of loops and straight-line code.
Therefore, it is relatively straightforward to implement
ciphers on SIMD machines, and the resulting programs
harness the full power of the machine. Second, brute
force cryptanalysis is “embarrassingly parallel”. By
assigning a different key to each processor it is possible
to simultaneously check a large number of keys. The
processors do not communicate, and all the processors
execute most of the time. As a result, brute force crypt-
analysis can achieve a system performance that is close
to the theoretical performance-limit of the machine.

We have used the PixelFlow machine [2] to show that
UNIX passwords are vulnerable to brute force crypt-
analysis. The PixelFlow machine is an experimental
graphics engine built at the Computer Science Depart-
ment at UNC-Chapel Hill in cooperation with Hewlett
Packard Corporation. The PixelFlow machine includes
a large SIMD array of 8-bit pixel processors running at
100MHz. We programmed 147,456 PixelFlow SIMD
processors to do brute force cryptanalysis of 40-bit RC4
cipher and the UNIX crypt password scheme.

In section 1. we describe the PixelFlow machine, and
the SIMD array we used for the computation. Section 2.
describes a brute-force attack using PixelFlow and its
implications for UNIX security. We also describe the
capabilities of a SIMD machine that one could build
with today’s technology and its security implications.

In section 3. we propose a way to modify the UNIX
password scheme to make it resistant to brute force
crypt-analysis.

1. The PixelFlow Machine.
PixelFlow is a heterogeneous parallel machine designed
for a special purpose, high-speed and high-quality image
generation. A PixelFlow system consists of at least
one chassis, which includes up to nine Flow units.
Each Flow unit has a SIMD array of 8,192 (8K) Proc-
essing Elements (PEs) running at 100MHz.

As shown in Figure-1, each Flow unit includes both a
Geometry Processor (GP) board and a Rasterizer Board
(RB). The GP board has two 180 MHz. PA-RISC-8000
CPUs, 128MB SDRAM memory, and a custom ASIC,
the RHInO (Runway Host and I/O) that connects the
processors with memory, the geometry network and the
Rasterizer Board. The geometry network is a high-speed
packet-routing network that connects the GPs to each
other. In addition an I/O interface card connects the
network to a host workstation.

The heart of the Rasterizer board is a SIMD (128x64)
array of 8192 processing elements (PEs). The PE array
is implemented on 32 logic-enhanced memory chips
(EMCs), each containing 256 PEs. Figure-2 shows a
block diagram of an EMC. Each PE is an eight-bit
wide processor consisting of an arithmetic-logic unit
(ALU), two registers and 384 bytes of local memory.
This includes 256 bytes of main memory and four 32-
byte partitions associated with two I/O ports. A linear
expression evaluator computes values of the bilinear
expression A•x+B•y+C in parallel for every PE; the pair
(x,y) is the address of each PA in the SIMD array. In

addition, the Rasterizer board has a Texture/Video Sub-
system that we did not use and will not describe here.
For a full description of the PixelFlow system the
reader should refer to [1, 2, 3].

Two Image Generation Controller ASICs (IGCs) con-
trol the rasterizer. The IGCs parse the instruction
stream from the Geometry Processor board and issue
micro-instructions to the SIMD PE array. A DMA unit
transfers a stream of instruction from the GP SDRAM
memory to IGC units and the SIMD array.

To program the SIMD array one loads a program into
one of the GP CPUs. The GP processor, by executing
the program, generates a sequence of microcode instruc-
tions for the SIMD array. The GP is used to control
the SIMD array and to communicate with a host work-
station. Since the system was designed for image gen-
eration, the SIMD array has a high bandwidth connec-
tion to the Texture/Video subsystem, but only a very
limited (1-bit) connection back to the GP.

The programming environment for the SIMD array is
limited. A set of C++ functions implements an as-
sembly language instruction set for the SIMD array. A
functional level simulator is used for program develop-
ment and debugging. The SIMD-array instruction set
was designed to efficiently execute image generation
code. Instructions can operate on a single byte, two,
four, or eight bytes of data. Most instructions take two
or three clock cycles per byte to execute. The SIMD
instruction set is quite conventional except the set of
linear expression-evaluation instructions. The instruc-
tions are memory to memory instructions. The instruc-
tion set includes the usual integer and bit-wise logical

P
A

-8
00

0
C

P
U

P
A

-8
00

0
C

P
U

R
H

in
O

Memory
128 MB

32 EMCs

SIMD Array

128x64 PEs

G
eN

Ie

E
IG

C

8
T

A
S

IC
s

64 M
B

64 M
B

64 M
B

64 M
B

Texure
Memory

R
un

w
ay

 B
us

76
8

M
B

/S

Geometry
Network 800 MB/S

E
IG

C

Geometry Processor Raster Board

Figure-1: PixelFlow Unit, Block Diagram.

instructions. However, the PixelFlow SIMD array is
missing indexing instructions. The PixelFlow hardware
does not support the ability to take a memory value and
use it as an index into memory. The PixelFlow ma-
chine was designed with image generation in mind, and
the designers did not see the need for such capability. It
turned out to be a major performance issue for imple-
menting both the RC4 cipher and the UNIX crypt
function (See section-2).

2. Brute Force Cryptanalysis with Pixel-
Flow
Brute force cryptanalysis is the most straightforward
cryptanalysis attack. The attacker uses raw computing
power to find a key for the cipher by trying all possible
keys. Typically the attacker has either a ciphertext-
cleartext pair or ciphertext only. When the attacker is
analyzing passwords, only the encrypted password is
needed. Typically, brute force attack is carried either by
using a collection of general-purpose computers or by
using special-purpose hardware.

General-purpose machines provide a very flexible crypt-
analysis platform. The machines can be programmed to
attack many different ciphers. Nowadays when most
computers are networked, it is not unusual to mount a
brute force cryptanalysis attack using hundreds or thou-
sands of computers. The attack is carried most often at
off-hours, using the computers’ “idle cycles”. However,
general-purpose computers are relatively slow. Using
today’s general-purpose computer cluster, it is practical
to attack 40-bit keys, but 56-bit or 64-bit ciphers, in
practice, are still out of reach.

Building special-purpose hardware for brute force crypt-
analysis provides a very effective (but expensive) way to

attack ciphers. Using today’s technology (say, 0.2µ
CMOS technology) one can build special-purpose ma-
chines that can “crack” 56-bit and 64-bit ciphers in a
few seconds to a few days of computation. However,
building special purpose hardware is time consuming
and very expensive. A typical hardware development
project could cost $10+ million and could last two to
three years. At the end, all one has is a machine that
can break a single cipher. If breaking the cipher is im-
portant enough, this approach makes sense; otherwise
special-purpose hardware is too expensive for all but a
few very large organizations or governments. Cryptana-
lysis attack using special-purpose hardware could be
defeated by choosing another cipher or by making slight
modifications to existing ciphers.

Building a programmable machine for cryptanalysis is
an in-between approach. On one hand, the machine is
programmable and could be used to analyze different
ciphers; on the other hand, the machine could bring
large computing power to the attack. Blaze et. al. [13]
proposed using Field Programmable Gate Arrays
(FPGAs) for mounting such an attack. Using FPGAs
to implement ciphers in hardware could still require a
large design effort. Designing circuits to implement
ciphers at gate-level is a hard and error-prone task. De-
bugging the system is also hard and error-prone. How-
ever, once the design is complete, it could be mapped
relatively quickly into FPGA arrays. FPGAs suffer
from two problems: capacity and speed. FPGAs devote
large portion of the silicon area to switches and wires.
As a result, the number of gates one could actually use
is much lower than the number of gates the technology
supports. Second, since the on-chip gates are connected
via switches, in practice the system clock speed is much
lower than advertised. As a result, using FPGAs one
could only built cryptanalysis systems with moderate
performance.

We set out to evaluate the use of SIMD machines for
brute force cryptanalysis. As was explained in the in-
troduction, SIMD machines could provide cost effective
way to mount brute force attacks. SIMD machines are
fully programmable, and therefore it is quite easy to
implement complex algorithms and search strategies.
As noted before, when running brute force cryptanalysis
code, the machine can approach its theoretical perform-
ance limit.

We used PixelFlow, an existing SIMD machine, in
order to answer the following questions:

a. How hard is it to program ciphers and complex
search strategies on a SIMD parallel machine?

b. What performance can one get out of the system
when mounting realistic attacks?

Li
ne

ar
 E

xp
re

ss
io

n
E

va
lu

at
io

n

25
6

P
ix

el
 A

L
U

s

Pixel
Main
Memory

256 Byte

25
6

P
ix

el
s

Lo
ca

l I
np

ut
 b

uf
fe

r
(3

2
by

te
)

Lo
ca

l O
ut

pu
t b

uf
fe

r
(3

2
by

te
)

L
 to

 R
 tr

an
sf

er
 b

uf
fe

r
(3

2
by

te
)

R
 to

 L
 tr

an
sf

er
 b

uf
fe

r
(3

2
by

te
)

I/O Control

I/O Control

A, B, C
Data Input

ALU
Microinstructions Memory Address

Figure-2: PixelFlow Enhanced Memory Chip (EMC),
 Block Diagram.

c. What special features should SIMD systems have so
they could support effective cryptanalysis attacks?

d. How powerful is the PixelFlow system? Can we
compromise the security of ciphers used in practice?

e. If one is to design a new SIMD machine using cur-
rent technology (0.2µ CMOS), a machine designed
specifically for brute force crypt-analysis, how pow-
erful a system one can build and at what cost?

We programmed two ciphers for the PixelFlow ma-
chines: RC4 [11] and the UNIX crypt algorithm [5,
6, 8, 9, 11]. The programming was done in machine
assembler. Learning how to use the tools took longer
than we expected, but the programming task proved to
be no harder than writing assembler for any machine.
The only difficulty we ran into was the fact that Pixel-
Flow does not have index registers and it does not grace-
fully support table lookups. This turned out to be a
major performance issue. On a “normal” machine array-
lookup takes one or two instructions. On PixelFlow it
takes time proportional to the array size. Using some
clever programming, we were able to reduce it to time
proportional to the square root of the array size [4].
Since the RC4 and DES algorithms both are dominated
by table lookups, the performance we were able to
achieve fell far short of the performance we expected.
We estimate that a PixelFlow machine that supports
indexing would run the RC4 code ~32X faster and run
DES ~16X faster.

We used a PixelFlow system with two full chassis for a
total of 18 SIMD arrays. Each array has 8K (8192)
PEs, so the total number of PEs we used is 147456.
At any given iteration the machine checks 147456 dif-
ferent keys in parallel. We used the linear expression
evaluation unit to distribute a unique key to each PE.
All PEs run in unison, and at the end of each iteration,
the PEs check to see if any of the keys produced a
match. The RC4 algorithm was timed at approximately
1000 key checks every 3.725 seconds per each PE.
Since we have 147456 PEs, the system checks
38,804,210 keys per second. This enables us to check
all 40-bit combinations in ~28,335 seconds (~ 7.87
hours) and on the average find a key in less than four
hours.

2.1 Checking UNIX Passwords.
Checking UNIX passwords proved a bit more complex.
To be able to check passwords rather than DES keys we
devised a simple algorithm that translates a number into
a unique password in a given class. Assume that we
want to check all possible passwords with lower case
letters. We construct a character array with 26 characters
with the lower case letters. Translating the number I
into the password P is just a base translation from bi-

nary to base 26, using the characters as the base digits.
This assigns a unique password to each number. Sim-
ple modifications to the base translation algorithm let
us check different classes of passwords. For example,
checking all passwords with lower case letters and one
digit in the third position is done with a base-change to
base-26 in all positions except a base-10 change in the
third position. Similar modifications let us check many
different password classes. The idea is to check pass-
word classes that are most commonly used in practice.
Eugene H. Spafford reports [12] that 28.9% of all pass-
words observed in his study had lower case letters only,
and 38.1% had a mixture of lower and upper case letters.
Brute-force attacks on these two password-classes alone
make it very likely that a password would be compro-
mised in a short time. For example, Table-1 shows
that all lower case only passwords could be checked in
3.19 hours.

The UNIX crypt algorithm took approximately 6
seconds per 1000 passwords checked per PE. This yield
a system level performance of 24,576,000 UNIX pass-
words checked per second (or 614,400,000 DES encryp-
tions per second). Table-1 shows the time it would take
to check all passwords in a given class. In the table we
used LC for lower case letters, UC for upper case let-
ters, D for digits, and P for all other characters.

2.3 Building SIMD machine in today’s
technology
The PixelFlow machine was built in the mid-90’s using
0.5µ CMOS technology with three layers of metal.
Today’s CMOS technology has 0.18µ-0.2µ features,
and the technology supports up to six layers of metal.
Linear shrink alone yields a factor of ~6x improvement
in density and a factor of ~4x improvement in speed.
The PixelFlow machine was designed for high-speed
image generation, and the SIMD array is only a small
part of the overall system. Moreover, the SIMD array
was not optimized for performance since it is already
more powerful than other system components. The
SIMD array is never the limiting factor in image gen-
eration, and rarely if ever is it used to its full potential.
If one is to design a SIMD machine for brute force cryp-
tanalysis, one could do better than just scale up the Pix-
elFlow design.

We have constructed a “paper design” of a SIMD ma-
chine optimized for brute force cryptanalysis, using
what we have learned from programming PixelFlow.
Most of the design decisions for PixelFlow were carried
over to our new design. The system is a heterogeneous
machine made up of many SIMD arrays. Each SIMD
array is controlled by a general purpose (GP) computer
that also serves as a communication controller. The

SIMD arrays are connected to an ethernet network and
are controlled by a general-purpose workstation. Like
PixelFlow the GP processor has large SDRAM mem-
ory. The GPs are used to generate instruction streams
for the SIMD array, and a DMA controller is used to
load the instruction into the array.

The processing elements (PEs) are upgraded to improve
on the PixelFlow design. Like in PixelFlow, proces-
sors are 8-bit wide. Each processor has 1K bytes of lo-
cal memory and a set of 32 registers. The processors use
a four stage pipeline (register fetch, execute, memory
access, register store). Pipelining should improve sys-
tem speed by 3x-4x. We (conservatively) estimate that
512 processors could be integrated into a single IC. We
estimate the clock speed to be 1 GHz. Each SIMD ar-
ray has 64 processors’ ICs (32K PEs) with its own GP,
SDRAM buffer and ethernet connection. Each SIMD
array is implemented on a single printed circuit board.
We estimate the replication cost of each SIMD array
board to be $3,000. For a replication cost of about
$100,000 one could build a system with 1,048,576
(1Meg) PEs. We estimate that such a system will de-
liver at least 1000X better performance than the Pix-
elFlow system we used. Table-1 also lists the esti-
mated time it would take to check different password
combinations on the new machine.

Class Com-
bina-
tions

PxFl
hours*

New
Design
hours*

LC only 2.82E+11 3.19 0.003

LC + 1-UC 2.18E+12 24.59 0.025

LC + 2-UC 1.47E+13 165.77 0.166

LC + 1-D 8.37E+11 9.46 0.009

LC + D 3.51E+12 39.70 0.040

LC + UC 6.23E+13 703.71 0.704

LC + UC + 1-D 9.40E+13 1062.20 1.062

LC + UC + D 2.18E+14 2467.86 2.468

All passwords 5.13E+15 58008.14 58.008

All DES keys † 7.21E+16 32578.12 32.578

Table-1: Times for checking different password
classes. (*Estimated, †DES only)

3. Improving Password security.
Our brute force attack experiment, using PixelFlow’s
SIMD processor arrays, demonstrates that UNIX pass-
words are vulnerable to such an attack. Moreover, we
argue that it is possible to build a SIMD machine that
could check all possible UNIX passwords in about two

days. Some UNIX installations require that users use
“safer” passwords. They instrument the UNIX passwd
program to force users’ passwords to have characters
from at least two or three of the four categories: upper-
case letters, lower-case letters, digits, and other-
characters. This modification to the UNIX passwd
program only marginally improves performance against
brute force attack, since the attacker can use that knowl-
edge to direct her/his attack. For example: there are
1.67E+12 passwords that have one upper-case letter and
the rest are lower-case letters. The “more complex” class
of passwords that have exactly one upper-case letter, one
digit and the rest lower case letters has 4.50E+12 pass-
words, only a factor of 4 more passwords. This factor is
not large enough to make a difference. We also argue
that it is possible to build machines that are able to
“crack” any UNIX password in a day. Therefore we are
recommending that the UNIX community adopt a modi-
fication to the existing password scheme. This modifi-
cation is backward compatible; it is tunable to the
hardware “state of the art,” making it possible to make
the password scheme more secure when common com-
puters become faster, while keeping the login time to
about a second.

The main idea is to add random bits to the password
encryption, similar to the “salt” bits that are currently
used to protect passwords against dictionary attacks. We
call the new bits: “pepper” bits. Unlike the “salt” bits
that are saved with the encrypted password, the pepper
bits are used to encrypt the password, but are never
saved.

Let say that we are using k pepper bits for password
encryption. The k-bit vector P is repeated as many
times as necessary to form a 64-bit word V
(V=<P, P, ••• >). Let E(e, s , 0) stands for the normal
encrypted password, where e are the password bits, the s
are the salt bits, and 0 is a 64-bit zero constant that is
encrypted to get an encrypted UNIX password. Then the
new encrypted password is: V+E(e, s , V), where +
stands for bit-wise exclusive-or. That is, the crypt
algorithm is applied to the 64-bit word V (rather than to
0) and the result is XORed with V . Note that if the
pepper bits are all zero, V is zero and the new scheme is
identical to the current scheme. When a user selects a
new password the system generates a random k-bit vec-
tor P. The system generates the vector V by repeating
P as many times as necessary, and it uses <e, s, V> to
generate the encrypted password. The system saves the
encrypted password together with the salt bits, but it
does not save the vector V . When a user logs in, the
system checks the password supplied by the user as
before. The system runs crypt 2k times with all the

possible values for V , computing V+E(e, s , V). If any
of the 2k possible values match the encrypted password,
the login succeeds. Otherwise the login fails.

What we propose here is essentially a “whitening” tech-
nique [11]. Our proposed UNIX password scheme is
similar to a proposal made by Udi Manber [7], but it
improves on Manber’s scheme. Unlike the scheme
proposed by Manber, if one chooses k carefully, the
probability of hitting a false positive <password, pep-
per> combination is smaller than the one proposed by
Manber. The probability that V1+E(e1, s , V1) =
V2+E(e2, s , V2) when V1≠V2 and e1≠e2 is 2-(64-k) since
the encryption function is a strong one-way hash func-
tion, both as a function of the ciphertext and as a func-
tion of the keys. If one chooses k=11, the probability
of hitting a false positive combination is 2-53, about the
same probability as guessing a random password. Our
scheme protects passwords against dictionary and brute
force attacks by forcing the adversary to do 2048X more
work, while keeping the probability of “false positive”
guesses to the same probability of guessing a random
password. Our experiments show that on current ma-
chines, adding 11 pepper bits keeps login time to about
a second.

4. Conclusions:
In this paper we study the use of SIMD machines for
brute force cryptanalysis. We show that SIMD parallel
machines are very effective. We demonstrate that an
existing machine, PixelFlow, can break many UNIX
passwords that are used in practice. We argue that it is
possible and practical today to build a machine that
could “crack” any UNIX password in a day or two.
Moreover, this machine could be programmed to break
any 56-bit cipher in two days. We proposed a sim-
ple modification to the UNIX password scheme that
makes the scheme 2048X more resistant to dictionary
and brute force attack. We argue that as time goes by
and computer hardware becomes faster and less expen-
sive, reusable password schemes are becoming more
vulnerable. The source of vulnerability is the fact that
people must remember the password and should not
keep a written copy of the password or store the pass-
words electronically. In practice, the set of passwords
that people can remember is too small to offer strong
protection against adversaries with large computing
resources. The community will be well served by in-
troducing new authentication schemes.

Acknowledgements:
PixelFlow was designed and built by a research team at
the Department of Computer Science at UNC-Chapel
Hill and the Hewlett-Packard Corporation. We are grate-
ful to the UNC team for helping us use PixelFlow.

Special thanks are due to Anselmo Lastra and John Ey-
les for their help.

References:
[1] Lastra, Anselmo, Steven Molnar, Marc Olano, and

Yulan Wang, "Real-Time Programmable Shading",
Proc. of the1995 Symposium on Interactive 3D
Graphics, ACM Siggraph, April 1995.

[2] Eyles, John, Steven Molnar, John Poulton, Trey
Greer, Anselmo Lastra, and Nick England, “Pix-
elFlow: The Realization”, Proceedings of the Sig-
graph/Eurographics Workshop on Graphics Hard-
ware, Los Angeles, CA, August 3-4, 1997, 57-68.

[3] Eyles, J. and Molnar, S., “PixelFlowTM Raterizer,
Functional Description”. UNC CS Department in-
ternal document, 1997.

[4] Eyles, John, “Privet Communication”. 1998
[5] Feldmeier D.C., and P. R. Karen, “UNIX password

security – ten years later”, Proceedings, UNIX Secu-
rity Workshop, August 1989.

[6] Simon Garfinkel and Gene Spafford, Practical Unix
Security, O’Reilly & Associates, Inc., Sebastapol,
CA, 1991.

[7] U. Manber, “A Simple Scheme to Make Passwords
Based on One-Way Functions Much Harder to
Crack,” Computers & Security 15 (2) (1996), pp.
171-176.

[8] Alfred J. Menezes, Paul C. van Oorschot, and Scott
A. Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1996.

[9] Robert Morris and Ken Thompson, “Password Secu-
rity: a case history”. In UNIX Programmer’s Sup-
plementary Documentation, AT&T, November
1979.

[10] Poulton, J., J. Eyles, and S. Molnar, “Breaking the
Frame-Buffer Bottleneck with Logic-Enhanced
Memories,” IEEE Computer Graphics and Applica-
tions, November 1992, pp. 65-74.

[11] Bruce Schneier, Applied Cryptography, 2nd Edition,
John Wiley & Sons, Inc. New York, 1996.

[12] Eugene H. Spafford, “Observing Reusable Pass-
word Choices”, In Proceedings of the 3rd Security
Symposium, Usenix, September 1992.

[13] M. Blaze, W. Diffie, R.L. Rivest, B. Scheier, T.
Shimomura, E. Thompson, M. Weiner, “Minimal
Key Length for Symmetric Ciphers to Provide Ade-
quate Commercial Security”, A Report by an Ad
Hoc Group of Cryptographers and Computer Scien-
tists . URL: http://theory.lcs.mit.edu/~rivet/bsa-
final-report.ps

