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Abstract

IBM made a business decision to promote an open,
secure, interoperable and integrateable environment by
embracing the IETF’s Public Key Infrastructure
(X.509) standards, developing a reference
implementation of the core set, and giving it away as
freeware. We discuss the architecture of this reference
code, emphasizing lessons learned from implementing
the standards in an integrated PKI system.

1 Introduction
The explosion of the Internet and the Web has forced
the distribution of information and resources. Various
types of trust relationships must span these resources
and the applications that use them. Application and
middleware developers have responded to the
challenge by creating their own security solutions,
which are unfortunately non-interoperable. Thus,
organizations of every kind are finding the
management of security to be difficult and costly and
interoperability of their applications impossible without
major intervention. From a business perspective, with
projected growth of business to business Internet
commerce going from $8 billion in 1997 to $327
billion by 2002, it was seen by IBM as crucial that the
infrastructure be in place to provide an open, secure,
interoperable, and integrateable environment.
Unfortunately, the trend so far has been for vendors to
go their own way, trying to follow standards as they
emerge, and otherwise interoperate in a pairwise
fashion as the market dictates.

Customer feedback and internal technical advice
caused us to focus on creating a common Public Key
Infrastructure (PKI). IBM decided that the best strategy
to fulfill its business requirements was to find the most
mature standard for PKI available and throw its
support behind that standard, by developing and
making available a freeware reference implementation,
and integrating that standard into its products. A freely
available reference implementation allows potential
integrators to try it out without a large investment, and
provide a baseline for interoperability testing. In
addition, feedback from the development experience

enhances the quality of the specifications. By providing
leadership within the industry, IBM believes it
advances Internet computing and ultimately drives
faster acceptance/implementation of electronic
business. IBM’s goal is to help the industry converge
on one security infrastructure for the web, thus
allowing faster deployment of a secure interoperable
underpinning for electronic business. We have learned
over the years that disparate infrastructures slow
evolution and acceptance of technology; the true
market is in applications that exploit common
infrastructures.

After surveying the body of work already done in this
area, as well as the realities of the commercial world,
we chose the Internet Engineering Task Force’s (IETF)
Public Key Infrastructure (PKIX [PKIX]) drafts as our
architectural basis. These standards were the
beneficiaries of much hard work on the part of many
companies, and included the X.509v3 certificate
format, which had emerged as a de facto standard.
They cover the certificate life-cycle: enrollment and
initial certification, key-pair update, certificate update,
certificate and Certificate Revocation List (CRL)
publication, and certificate revocation. Jonah, our
freeware project, currently implements the following
PKIX standards: Internet X.509 Public Key
Infrastructure Certificate Management Protocols
[RFC2510], Certificate Request Message Format
[RFC2511], Internet Public Key Infrastructure X.509
Certificate and CRL Profile [RFC2459], and Internet
X.509 Public Key Infrastructure LDAPv2 Schema
[LDAP98]. Besides implementing PKIX standards,
Jonah includes code for Common Data Security
Architecture (CDSA) [CDSA97] from Intel, which has
been accepted as a standard by The Open Group.
CDSA is a framework that can support multiple
security providers. The code is a freeware version of
IBM’s Keyworks product.

IBM then put together its first Iris/Lotus/IBM cross
company team. The team consisted mostly of a group
of engineers, representing different security and
technical specialties, who had different ideas about
PKI, yet were able to create a reference implementation
using the IETF RFCs that were available at the time.



This team takes advantage of Iris’ Domino PKI
experience and the pool of talent in PKIs in the
Massachusetts area, Lotus’ expertise in security
product management, and IBM’s long history of
cryptography and security standards experience, as
well as their broad pool of internal expertise. The next
section discusses how the architecture was designed
and implemented, in spite of moving specifications that
had gaps. With Jonah one can run an EE, an RA and a
CA. The architectural discussion covers our design for
ASN.1 support, implementation of the transaction
protocol and extensions to support RA to CA
communication, architectural support for portability,
use of CDSA as an abstraction layer to cryptography
and data storage, our server API and persistent storage
support. We then discuss trust policy, also accessed via
CDSA, including our support for chain building
(which is not specified in the PKIX standards). The
discussion of smart card usage includes our layering of
PKCS#11 and CDSA. The challenges of implementing
a freeware Graphical User Interface (GUI) are outlined
in the next section. After that, the section on porting
issues discusses how we are porting our NT code to
UNIX, and the section on testing emphasizes the issues
that arose with testing freeware. We conclude with a
look at current status and issues.

2 Description and Evolution of the
Jonah Server Architecture

In this section we describe the Jonah architecture as it
evolved over time. The architecture was affected by
both high- and low-level considerations. The PKIX
architecture [RFC2459] describes three PKI
components that are involved during enrollment: the
End Entity (EE), the Registration Authority (RA), and
the Certification Authority (CA). The End Entity acts
as the agent of the end-user, participating in the
enrollment and other protocols with the RA on the
user’s behalf. The RA is responsible for enforcing most
policy decisions (for example, choice of a distinguished
name for the user). The CA is responsible for taking
final actions that can occur offline (such as actually
creating and signing a certificate).

Since certificates and all PKIX protocols are specified
using ASN.1 [ASN.1], a component was needed to
perform ASN.1 parsing and generation. A commercial
ASN.1 compiler could not be used for freeware.
Instead, we opted to construct a C++ class library to
handle these tasks. The class library directly
implements basic ASN.1 types (e.g., character string)
and provides constructs for building up more
complicated objects (e.g., sequences). The primary
design goal of the class library was that the resulting

C++ structures should be programmer-friendly. They
should manage their own memory, provide
straightforward access to the values within an ASN.1
stream, and hide from the programmer as much as
possible ASN.1 concepts (like optional and default
values) that relate more to the encoding of values than
to their use. The class library enables the construction
of high-level objects (like certificates) that know how
to encode themselves as an ASN.1 Distinguished
Encoding Rules (DER) stream and set their values
from an ASN.1 Basic Encoding Rules (BER) stream
[ISO8825]. This allows us to treat certificates and
protocol messages as straightforward C++ objects,
eliminating the need for a specialized “syntax” layer
that converts between BER-encoded external messages
and internal C++ objects. This decision had a
significant impact on the design and implementation of
the rest of Jonah. Having a single consistent internal
representation of all the high-level PKI constructs as
first-class objects greatly simplifies the software, and
allows the developers to easily understand one
another’s code. The library’s ease of use is
demonstrated by the fact that we chose to use it for
encoding much of our on-disk storage (see Section
2.1.2), in spite of there being no requirement to use
ASN.1 encoding for purely local storage. In addition,
groups within IBM are freely integrating the Jonah
ASN.1 objects into their products.

2.1 Certificate Management Protocol
Transaction Support

2.1.1 Certificate Management Protocols

PKIX defines protocols by which an EE can
communicate with an RA. At the time that the Jonah
project commenced, only Certificate Management
Protocols (CMP) was at a stage suitable for
implementation. CMP is derived from the Entrust PKI
management protocol. It targets management functions
for the entire certificate/key life. CMP defines message
formats in the Certificate Request Message Format
(CRMF), and describes various transports and how
message protection should be done independent of
transport. CMP is the only registration protocol that
Jonah currently implements.

The other PKIX protocol is Certificate Management
Protocol using CMS (CMC [CMC98]). It is co-
authored by representatives of Netscape and Microsoft
(among others). Its purpose is to be compatible with
PKCS #7 [PKCS7] wrapped responses and PKCS #10
[PKCS10] certificate requests which web browsers
currently use. The authors of Certificate Management
Messages over CMS (CMC) have also added support



for CRMF. CMC attempts to finish all transactions in a
single round trip, an important consideration for the
Internet where bandwidth and lagtime can be
important.  At time CMP has become an RFC, while
CMC is still a internet-draft. Also, CMP includes its
own message protection, so it does not rely on a secure
transport for message security. The CMP specification
includes a description of TCP, SMTP, or HTTP as
transport mechanisms. We chose to implement TCP as
the primary transport for CMP, but want to allow
additional transport mechanisms to be added
reasonably easily. Thus we created an abstraction layer
over sockets that could support additional transports.
Jonah plans to implement the following CMP
messages: Certificate Request/Reply, Revocation
Request/Reply, CRL Announce, Proof of Possession
Request/Reply, Cross Certification Request/Response,
CA Key Update, Confirmation, and our extended
General Messages. The EE only talks to the RA. Since
the CA can be offline at any given time, or located on
an isolated network, direct communications to the CA
are kept to a minimum. (For the same reason, all
LDAP interactions happen on the RA.)

After we decided to use CMP for EE communications,
we needed to decide how the RA and the CA should
share information. Nothing in PKIX specified such a
protocol. We had the choice of specifying a new
protocol or extending an existing one. Since we were
implementing CMP and it seemed reasonably full
featured and extensible, we decided to use CMP as the
RA to CA protocol. In addition, since this is a standard
published protocol it would be possible for others to
write RAs and CAs that interoperated with ours. So
far, we have only had to extend CMP in two areas,
CRL requests and RA enrollment (RA to CA
association). While CMP supports RA initiated
certificate revocation, there is no message defined to
allow an RA to request an on-demand CRL. Secondly,
while CMP defines the RA and CA, it does not
describe how they are introduced. For RA enrollment,
we use the standard certificate request message,
extending its control information to indicate that it is a
request to become an RA for the target CA. We also
defined a certificate extension that indicates the
certificate is for one of the issuer’s RAs. We expect this
extension to be useful when an end-entity is looking for
RAs. We added new general messages for an RA
request a CA to generate and  publish a new CRL, and
for announcing that an RA is de-enrolling from a CA.
We would like to standardize the extensions necessary
for extending CMP to RA/CA communications.

2.1.2 Object-Store

Since the enrollment process may require human
intervention at any of the three servers, a round-trip
enrollment can take a significant amount of time. The
system had to be designed to withstand any of its
servers being stopped and restarted, without loss of
transaction data. For this, each server has a disk-based
object-store where short-term state data is stored. For
example, an enrollment request is constructed at the
End Entity by creating an empty request in its object-
store, setting various fields in the request (e.g.
SubjectName), then submitting the completed request
to the RA. When the request is submitted, the object in
the EE’s object-store is marked as a surrogate,
indicating that the real object is active on another
server. Since CMP is a polling protocol when operating
over TCP, the surrogate object stores the data needed to
poll the RA for a response. When the enrollment
succeeds, the resulting certificate is retrieved and the
surrogate object becomes active once again.

Jonah views the object-store as a series of storage
locations, each of which can hold an object. The
objects stored in the object-store are constructed using
the ASN.1 class library discussed earlier in Section 2.
They are a sequence of a CMP message and additional
control information such as sender and recipient names
or addresses. To minimize the ASN.1 parsing
overhead, Jonah uses a layer above the object-store that
implements a write-through cache of object-store
objects. Generally, this means that an object-store
object need be parsed only the first time it is referenced
by the Jonah code after a server restart. This object-
cache layer also provides an additional per-object
storage area that is not backed by a disk file. This is
used for storing transient, security-related information
(for example, the password under which a CMP
preregistration record is protected [PKCS5]). An
additional feature provided by the object-cache is
locking of object-store objects, protecting against
simultaneous access by multiple threads.

2.1.3 CMP Issues

One of the goals of doing a reference implementation
is to verify the standards against an operational
environment. CMP’s most outstanding shortcoming is
its lack of support for the current de facto standard of
PKCS #10 and PKCS #7, as discussed in Section 2.1.
Beyond that we have found several small problems
with implementing CMP.  We discovered places where
CMP is vague. The most notable was discussion of the
support for multiple certificate requests and revocation
requests in a single message. The specification



supports them, but handling them is underspecified.
More information is needed on mapping multiple
replies to the requests. In addition, a compliant service
may not support multiples. However, its response to a
request with multiple entries is undefined. CMP also
mandates many out-of-band steps when initiating a
relationship with a new entity (for instance, an EE’s
first certificate request). An RA administrator may be
easy to identify and find in a corporate environment.
The approach is unlikely to scale well to the Internet.

We have several issues around CMP’s use of time. The
CMP TCP protocol uses an absolute time as a polling
time instead of a relative time (see Section 2.5 for a
description of polling). This makes the assumption that
all machine clocks are fairly well synchronized. The
polling  is represented by a 32-bit integer. CMP does
not specify whether it is signed or unsigned, which is
an interoperability issue. This integer stores when the
next poll should happen based on the number of
seconds from January 1, 1970 GMT. If it is signed, it
will run out of space in the year 2038. If it is unsigned,
it does not run out of space until 2106. If this field was
a relative time, the longest amount of time you could
have between polling events would be around 136
years, give or take a few months.

The specification should make transaction IDs and
polling references more homogenous and consistent. A
message transaction is labeled with a transaction ID,
an octet string that must be included with every
message. It is used to track the transaction from server
to server. The polling reference in the protocol is a 32-
bit integer value set by the recipient used for
associating the recipient’s delayed response with the
initial request. It would be much easier to track a
request from EE to RA to CA and back if these two
fields shared the same value. For example, our test
team would like to drive many transactions per minute,
and track them easily with a value they control. In
addition, we use transaction ID to associate a
certificate request with the password for it specified via
out of band means to the RA. CMP leaves open the
exact value used for this purpose.

The PKIX LDAPv2 Schema segregates the list of
revoked CAs into Authority Revocation Lists (ARLs),
while other revoked certificates are listed in CRLs.
Both CMP and the CRL profile are silent about ARLs.
We use the Issuing Distribution Point extension to
indicate whether a particular CRL contains only user
certificates (CRL) or only CA certificates (ARL). We
would like to see this method of defining an ARL
explicitly called out as such, to minimize the chance of
future interoperability problems.

Finally, as is often the case with policy-based
decisions, there is some useful information not
included in certificate requests. The most obvious
missing feature is that there is no algorithm-
independent way of determining the key length of the
private key associated with a public key supplied in the
certificate request.

2.2 Portability Concerns: Threads,
Messages and Configuration

Although the primary development platform for Jonah
is Windows NT, portability to various UNIX platforms
is essential, both for Jonah to succeed as a reference
implementation, and also for internal consumption
within IBM. The next stage of architectural refinement
after protocol definition was to abstract three areas that
can be significant sources of portability problems:
threading, message catalogs, and configuration. The
threading primitives used by Jonah are based on Draft
10 of the POSIX 1003.1c threading standard
[ISO9945]. The only significant differences are that the
ORFN primitive for mutexes has been extended with an
optional timeout  parameter (which allows a thread
that has been waiting on a mutex for a significant
amount of time to perform another task before re-trying
to acquire the mutex, as well as permitting deadlock
recovery) and that once-blocks are not supported. The
Jonah primitives are expected to be implemented over
whatever native thread services are available on the
target platform. Implementing them on Windows NT
was fairly straightforward.

Jonah uses a message catalog, based on the XPG.4
[UNIX] standard, for all its status codes, both internal
and exposed. It is intended that a port to a platform
with a real XPG.4 system would use the native catalog,
rather than the lightweight implementation provided as
part of the freeware. One unexpected complication on
Windows NT was that the Microsoft C Run Time
Library implementation of SULQWI�� does not support the
positional parameters required for handling
internationalized messages. The Jonah freeware
includes an implementation of SULQWI�� that supports this
feature.

Configuration is handled in Jonah via a Windows 3.1-
style initialization file, encapsulated in a C++ class. A
productized version of Jonah would most likely replace
this implementation with a platform-specific
configuration data repository (e.g., the system registry
on Windows NT) and GUI access. One of the major
uses of this file is to configure policy information
indicating how the CA handles certificate requests and
revocations, and how any application uses the trust



policy code to determine the validity of a certificate
chain (Section 3 discusses the latter use).

The RA does all the policy verification of the EE for
the CA. The CA trusts the RA for policy decisions like
identity verification. The CA also checks all requests
against its policy, and may involve an administrator in
the final decision. Certificate policy in the
initialization file indicates which optional fields the
CA supports and which fields the RA must specify the
value for. Currently, Jonah CAs can specify whether
key usage is supported (and whether it’s required), and
whether a Policy is required. Policy configuration also
indicates whether the RA (or the EE) may specify the
certificate validity start time, whether Policy is marked
critical in certificates from a CA (and is therefore used
to constrain chains of certificates), and which signature
algorithms the CA supports. Certificate revocation
policy at the RA specifies whether an EE may request
the revocation of any certificate, only one of their own
certificates, or no certificates. CRL policy at the CA
specifies how often CRLs are issued, how long each is
valid, and which algorithm should be used to sign
them (if the CA maintains more than one type of valid
CRL signing key).

Other policy configuration information includes the
server’s name and the names of its RAs or CAs, and
the URLs used to communicate with them. These
URLs are of the form pkix://hostname:port. The
initialization file is also used for LDAP configuration
information at the RA and for text to object identifier
(OID) translation. The latter use allows for extensions
to the processing of Distinguished Names and
algorithms. General configuration information
specifies which signing and encryption algorithms a
CA supports. The administrator must be careful to
specify only algorithms that are supported in software.
This is one of several examples of configuration
information that motivates the need for a GUI in the
future. A GUI could query the CDSA interface (see
Section 2.3) to determine what algorithms are
supported in software. Another issue with the use of
the initialization file is the need to keep CA policy
values in synch between CAs and their supporting
RAs. Managing configuration information dynamically
would allow CAs to notify their RAs of policy changes.

2.3 CDSA
Jonah uses Intel’s Common Data Security Architecture
(CDSA [CDSA97]) for access to cryptographic and
data storage services. CDSA is a framework that
supports dynamic loading of modular, pluggable low-
level service providers. The Common Security Services

Manager (CSSM) layer provides a consistent API to
the underlying service provider modules, provides
management services for loading and unloading
providers, and determines their capabilities. By
adopting CDSA, we were able to use existing code for
virtual smart card and directory access, as well as
allowing easy switching between our two supported
cryptographic libraries: The Cylink Foundation Suite
and RSADSI’s BSAFE [BSAFE]. In Jonah, we decided
not to use the Certificate Library (CL) component,
since the ASN.1 class library is both more powerful
and easier to use than the CDSA CL API. The Jonah
reference implementation includes a stripped-down
version of IBM’s KeyWorks Toolkit, which is a
product implementation of CDSA 1.2. The reference
implementation removes KeyWorks’ value-add
features such as mutual authentication of framework
and providers, and key recovery features.

Although the CDSA API is powerful, it is not
particularly easy to program. Each routine takes
parameters that specify the particular provider(s) to
use. In Jonah, we preferred to be able to set providers
at startup based on information in the configuration
file. In addition, the objects that are passed across the
CDSA API are CDSA-defined data structures with
associated memory management semantics, whereas
the natural structures within Jonah are ASN.1 objects.
Another drawback to CDSA, which persists with
CDSA 2.0, is that applications generally need to know
the details of which providers they're dealing with,
e.g., the supported interfaces and data structure
conventions.  Several groups within IBM have tackled
this problem by creating an object-oriented layer on top
of CDSA that protects the application from these
details and presents a uniform interface to CDSA.
Supporting a new provider requires only an update to
the object-oriented shim, not the calling application.
To address all these problems, we wrote a set of
wrapper APIs that encapsulate the CDSA Data Storage
Library (DL) and Cryptographic Service Provider
(CSP) APIs.  (Our CDSA Trust Policy support is
discussed in Section 3.) They are relatively lightweight
shims that provide a great deal of functionality by
leveraging the Jonah ASN C++ classes and existing
CSP and DL providers. The Jonah Krypto Library
(JKL) provides useful domain-related APIs like
JKL_SignCertificate, JKL_VerifyCRL, and
JKL_GenerateRandomData. It deals with application
domain objects like certificates, CRLs, and public keys
in Jonah ASN C++ classes. The Jonah Directory
Library (JDL) also takes ASN objects as parameters. It
can manipulate all of the PKIX LDAP schema object
classes and attributes through the CDSA DL interface.



We have extended the LDAP schema to include
communications information (URLs) for contacting a
CA. This is used for RA enrollment.

Although the architecture provides a framework for
pluggable service providers, generally an application
needs to know specifically which add-in providers it is
dealing with. For example, while the Cylink and
BSAFE CSPs present the same interfaces through
CSSM, the data formats for each differ. The BSAFE
CSP returns keys in Distinguished Encoding Rules
(DER) format; the Cylink CSP returns the same objects
in flattened uint32 length/data buffers. The calling
application must be aware of the data formats expected
for common cryptographic data like public keys,
private keys, signed data, hashes, and so on.

Applications that use CDSA generally need to develop
an interface layer that provides easy-to-use, domain
specific interfaces that encapsulate the low-level details
of CSSM. The result is an unfortunate loss of
generality (one of the goals of CSSM) and less plug-
and-play functionality. The Jonah CDSA-wrapper
layers are the types of middle-tier interfaces needed on
top of CDSA to make it useful to a wide range of users.

2.4 Unified Server Architecture and API
Figure 1 illustrates the three Jonah PKIX servers. The
EE is a lightweight service that does not require much
of the storage and authorization support that exists in
the RA and CA. Future versions can integrate stripped
down EE functionality into a variety of applications.
The RA is the heavyweight process that approves and
forwards transactions and interacts with LDAP. The
CA is separate to enable offline processing to protect
its key, and to enable separation of duty between the
RA and CA administrators. This three server model is
supported by PKIX transactions.

There is overlap in the infrastructural services used by
each server, so Jonah is built as a single logical “back-
end”, which can be configured as EE, RA or CA at

run-time. The only difference between the three servers
is the GUI that starts them (see Section 5). The GUI
calls the API to configure the server as either an EE,
an RA or a CA. This call is an obvious place to
perform initialization functions in a layered fashion. In
addition, initialization that is local to a single module
is handled by declaring a static object in that module
and performing the necessary initialization in the
constructor of that object. We planned on per-module
finalization in the corresponding destructors. However,
a bug in Microsoft Visual C++ (present up to at least
Version 5) causes such destructors not to run for
modules in a DLL, so we were forced to eliminate any
finalization code.

Figure 1.  Jonah Architecture

We decided to expose the CDSA Trust Policy (TP) API
as the end application API for Jonah (the API to
evaluate chains of certificates, see Section 3), limiting
the Jonah-specific API to certificate high-level life-
cycle management functions (JNH API). Given the
unified-server architecture, the entire JNH API is
available on all servers. Services that are not
appropriate at all servers (for example, the EE or RA
cannot sign certificates) will return a “Wrong Server”
status if invoked on an inappropriate server.

The majority of the API consists of accessor functions.
These are routines that extract or modify individual
fields of an object in the object-cache. Before invoking
an accessor function, the API caller must first reserve
the target object, which both locks the object against
access by other threads and, if necessary, reads it into
the object-cache from the object-store. After a series of
accessor calls, the object may either be stored back in
the object-store, or discarded, and unlocked. This
mechanism allows for some degree of transactional
behavior when updating object-store objects. The caller
makes a series of changes to an object, then saves all
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the changes back to the object-store in a single
operation. Most of the other API functions transfer an
object from one server to another, by forwarding,
fulfilling or rejecting a request. For example, the CA
invokes a JNH_Create_Certificate routine to create a
signed certificate. The routine creates a certificate and
places it back in the object-store, marking the object-
store entry complete, so that the certificate will be
returned on the next poll from the RA.

The transaction model means that objects will
sometimes appear and disappear in a server’s object-
store independent of any explicit user action. Any
Jonah GUI should be able to present a dynamic view of
the contents of the server’s object-store, so that
certificate and revocation requests can be directly
manipulated by the user. This leads naturally to an
event-notification mechanism across the JNH API,
whereby the back-end sends events to the GUI
whenever an object-store object changes state. That
state consists of several distinct pieces of information,
encoded in a 32-bit integer value: an actual state value,
a field that indicates whether an error has been
reported or whether a password or PIN is required, a
flag that says whether the GUI or the back-end
currently “owns” the object, and a flag that indicates
whether the object is active or a surrogate. On startup,
the GUI makes a JNH call to request that the back-end
send a series of events describing the current state of
all object-store objects, allowing it to initially populate
its view of the object-store.

2.5 Timers and Persistent Storage
CMP over TCP is a polling protocol, which requires a
timer component at the RA and EE (the CA never
initiates any communication that requires a delayed
response). Whenever a message is sent for which a
delayed response is expected, the sending server (RA
or EE) will record the “next poll time” in the
appropriate object-store entry, and queue a timer event
to occur at that time for the object. On startup, a server
walks through its object-store, and requeues timer
events for any surrogate objects it finds, according to
their next poll time. When the event fires, the
corresponding object-store entry is used to poll the CA
or RA to see if the delayed response is ready  If not,
another timer event is queued.  In addition to polling,
the CA must create CRLs on a regular basis, and both
the RA and CA must handle key rollover. The
scheduler saves queued events on disk, so that they will
automatically be delivered on time if the server is
running, or otherwise the first time the server runs
after the scheduled time.

Creation of CRLs also requires that the CA maintain a
secured on-line history of the certificates that it has
issued. In Jonah, this history is stored in the Issued
Certificate List, or ICL. The ICL contains a copy of
each certificate issued, indexed by serial number. Since
the index is implemented as a general-purpose skip-list
[Pugh90], additional indices may be added reasonably
easily. Since the ICL is mostly write-only (certificates
are never changed, and can only be removed from the
ICL by a pruning operation that deletes contiguous
blocks of expired certificates from the start of the list),
maintenance of these additional indices is relatively
straightforward. In the future, we might want to
provide a way for verifiers to ask the CA directly about
the current status of a given certificate (for example, to
support the PKIX Online Certificate Status Protocol).

On the CA, we need to store counters to maintain the
serial numbers that will be used for certificates and
CRLs. In addition, the CA and RA need a place to
store their own certificates, and certificates for other
RAs and CAs they trust. To satisfy these needs, we
created a binary bin, a catch-all place where any
persistent binary data is placed. The BinBin has a
simple structure. The three serial numbers (for
certificates, end-user CRLs and authority CRLs) appear
first, followed by a BER-encoded sequence of
certificates. The file is read in on server startup and
cached in memory. Any modifications to serial
numbers or certificates are written back to the file
immediately.

3 Trust Policy (TP)
The Trust Policy (TP) module is implemented as a
CDSA add-in (see Section 2.3). The TP interfaces are
intended to be called directly by PKIX-based
applications that build and validate certificates chains.
Both of these activities are expected to be common
functions of PKIX certificate using systems, like SSL
[FKK96] and S/MIME [S/MIME]. The Jonah TP can
be used for both the chain building and chain
validation operations, via the CDSA CSSM interfaces
TP_CertGroupConstruct and TP_CertGroupVerify,
respectively. The other CDSA TP interfaces are not
implemented. The TP performs minimal caching of
data retrieved from the directory. Because of time
constraints, the freeware TP does not cache directory
data.  For high performance applications like SSL
which cannot afford to perform LDAP queries for each
session, this is an unacceptable limitation. Further
work is needed to create a trusted cache of certificates
and CRLs already retrieved from LDAP and verified.
The cache needs to age-out objects from the cache as
they expire.  Also needed would be options for



applications  to disable or flush the cache on demand,
as well as set the age-out parameter  (e.g., "all objects
in the cache older than 1 day should be flushed,
regardless of expiration time").  Some applications
may prefer no cache, and  trust only the latest data
from the directory. The Jonah cache is not persistent
across API invocations nor shared by running threads.

3.1 Validating Certificate Chains
TP_CertGroupVerify is used to validate PKIX
certificate chains and uses the algorithm suggested in
Section 6 of [RFC2459]. One exception is the
validation algorithm for policy constraints and policy
mapping, which was taken from [X.50997]. In our
opinion, the [X50997] algorithm for validating the
complex interaction among the certificate policies,
policy mapping, policy constraints extension is more
clearly explained and more rigorous that the algorithm
defined in  [RFC2459].  The X.509 algorithm also
allows the user finer control over the initial validation
state (via the initial-explicit-policy indicator, initial-
policy-mapping-inhibit indicator, and initial-policy-set
variables), unlike the [RFC1459] algorithm.
Therefore, the Jonah TP validation algorithm is a
faithful implementation of  Section 6 of [RFC2459],
with the exception of policy validation, which follows
Section 12 of [X50997]. The inputs to chain validation,
passed via parameters, are:

• A list of certificates ordered from an anchor
certificate to the end-entity in question. How the
chain is obtained is left unspecified in [RFC2459].
For example, the chain may have been sent as part
of some application-level protocol flow.
Alternatively, the caller may have previously
constructed the chain using the TP interface,
TP_CertGroupConstruct.

• The validation time for which the chain is to be
evaluated. Usually, this is the current time, but one
could compute the validity of a chain at some point
in the past (with an extension to find necessary
archival CRLs).

• The initial-policy-set, zero or more certificate
policyIdentifiers, acceptable to the caller (e.g., a
caller may choose to only accept paths consistent
with some high-assurance certificate policy
identifier).

• Two boolean flags, initial-explicit-policy and
initial-policy-mapping-inhibit. These flags are
identical in meaning to the fields in the
PolicyConstraints extension [RFC2459]. The effect
is to allow the caller to set the policy constraints

state immediately, without waiting for the
extension to appear in the path. For example, the
user can set inhibit-policy-mapping to true to
make sure the identifiers in the initial-policy-set
are not mapped by a CA in the chain. The user can
set initial-explicit-policy to true to ensure the
critical certificate policies in the chain are
consistent with the initial-policy-set.

• An optional pointer to an LDAP directory server.
This pointer will be used, if necessary (and
allowed by TP initialization parameters (see
Section 3.3)), to retrieve CRLs to check certificate
revocation status. The TP uses the JDL interfaces
discussed in section 2.3.

• A pointer to a CSP to perform signature
verification. The TP uses the JKL interfaces
discussed in Section 2.3.

It is the caller’s responsibility to verify the signature
and revocation status of the top anchor certificate. It is
assumed that the calling application maintains a list of
trusted anchor certificates, which are deemed
acceptable terminal points for certificate chains. Other
implementations are possible (e.g., the TP could be
configured with its own internal list of anchor
certificates or trusted public keys). The application of
the PKIX validation rules is straightforward. The
Jonah TP performs the following checks:

• Name constraints: full support for permitted and
excluded subtrees applied to Distinguished Names
and alternative names for strings types
rfc822Name, dNSName, directoryName, and
uniformResourceIdentifier. Support for the legacy
PKCS-9 emailAddress attribute in DNs and name
constraint enforcement. The ASN C++ classes
provide strong support for such character
comparison.

• Policies: full support for certificate policies, policy
constraints, and policy mapping.

• Revocation checking: for each CA in the chain,
except the first, check issuer’s
authorityRevocationList (ARL) directory attribute
for revocation status. For the end-entity certificate,
check issuer’s certificationRevocationList (CRL)
directory attribute for revocation status. Other
revocation checking methods, like OCSP, delta-
CRLs, and CRLDistributionPoints, are not
supported in the freeware TP.

As suggested by [RFC2459] and [X.509], the TP
returns a list of evidence, or proof, collected as part of
the  validation process. The proof contains details of



any policy mapping that occurred, a list of CRLs/ARLs
used, and the list of certificate policyIdentifiers agreed
upon by the CAs in the chain as acceptable. As an
example, if validation fails because of revocation, the
calling application might present the CRL in a GUI
display. If validation succeeds, the caller still might
decide to reject the certificate based on the
policyIdentifiers returned.

3.2 Building Certificate Chains
Consider an application X, with a set of trusted anchor
certificates, that needs to authenticate user Y.
Authentication is possible if X can discover a
certification path from Y to at least one of its trusted
anchor certificates. This is expected to be a common
operation needed by PKIX-enabled applications and is
supported by the TP interface TP_CertGroupConstruct.

The PKIX LDAP schema [LDAP98] defines the
certificatePair directory attribute, which stores all the
cross-certificates issued to and by the CA. It holds both
forward-certificates (certificates issued to the CA), and
optionally, reverse-certificates (certificates issued by
the CA). Since Jonah builds chains from the bottom
up, only the forward element of the certificatePair is
used. The Jonah TP chain-building algorithm is as
follows:

1. For certificate Y, check if the issuer’s name
matches the subject name on one of the trusted
anchor certificates T. If so, check that T in fact
created certificate Y (by checking Y's signature). If
so, stop, and return certification path {Y, T}.
Otherwise, continue to step 2.

2. For certificate Y, retrieve all of issuer’s forward
certificates, F. Since Y’s issuer may have multiple
key pairs and multiple certificates for the same
key, perform the following filtering steps to avoid
following unpromising paths: (A) Discard any
forward certificates whose subject name does not
match Y’s issuer name. This protects against
bogus certificates in the directory and ensures
proper DN name chaining. (B) If Y contains an
AuthorityKeyIdentifier extension with the
keyIdentifier field, discard any forward certificates
that contain a non-matching SubjectKeyIdentifier
extension. This makes sure F’s certified public key
is the same one used to sign certificate Y.

3. From the remaining list of filtered forward
certificates F, check if any were issued by an
anchor certificate T. If so, check that T in fact
created F’s signature. If so, stop, and return

certification path {Y, F, T}. Otherwise, for each
forward certificate F, recursively apply step 2.

The algorithm stops when (1) a certification path is
found from Y to one of the anchor certificates T, (2)
the search fails to find a path connecting certificate Y
to one of trusted anchor certificate T, or (3) the search
depth in the directory exceeds the INI defined
MaximumChainSearchDepth (default value is 15). This
value sets a reasonable limit on how much effort to
expend building a certification path, and provides some
protection against a directory seeded with bogus
certificates.

Several important points were glossed over in the
discussion above. Jonah implements a breadth-first
search of the directory. As a result, the shortest chain is
returned to the caller. Another possible algorithm is a
depth-first search of the directory, which might return
a different chain than a breadth-first search. For
performance reasons, a depth-first search was avoided
because of concerns over lengthy, recursive searches
through the directory. Other algorithms were not tried;
therefore our comments about one algorithm being to
slow are speculative.  We really did not have enough
sample data to properly weight the merits of each
approach.  We expect to tune the TP caching model
and directory search method based on real world
scenarios.

In addition, there is no guarantee that the first chain
found is in fact valid. Any of the intermediate
certificates in the chain could be revoked, expired,
invalid, or incorrectly signed. For performance reasons
these checks are not done when building the chain. In
fact, some of them cannot be done since extensions like
NameConstraints and PolicyConstraints can only be
checked from the top down. If the shortest chain
happens to be invalid, returning it is of little value. We
considered returning all chains (or all chains at a given
depth) or returning only those chains that can be
verified by TP_CertGroupVerify. These options require
a search of the directory for all possible paths and were
avoided for performance reasons. They also force the
caller to decide which chain is the best. We decided to
return the first chain that can be verified by
TP_CertGroupVerify as the best compromise between
accuracy and performance. Note that Jonah assigns
each chain equal weight; it has no concept of intra-
domain or inter-domain paths. All certificates in the
certificatePair attribute are treated equally. Product
versions of Jonah may apply additional rules that rank
chains based on some criteria (like closeness to local
name hierarchy).



3.3 TP Initialization File Parameters
The Trust Policy has configuration parameters that
allow applications and users to set more lenient policy
on verifying chains of certificates. The default behavior
of the TP is to check the revocation of every certificate
in a path. An option allows you to disable CRL
checking. This may be useful in environments where a
directory service is not used, or CRLs are not issued, or
the revocation status is tracked external to the TP.
When checking revocation, the TP finds the most
relevant CRL available (usually the one with the
highest CRLNumber). Two flags allow CRLs with
nextUpdate dates in the past or with thisUpdate dates
in the future to be considered valid. The default
behavior of the TP is to reject them. Because of
possible clock skew between different computer
systems, CRLs issued on one system may not be active
on another system until a few seconds or minutes in the
future. Another flag allows a zero search result for a
CA’s CRL/ARL to be considered non-fatal. Every CA
should have at least one CRL and ARL, even if they
are empty. Since PKIX requires every CA to issue at
least an empty CRL, enabling this is not recommended.
The default TP behavior is to reject chains where CRLs
cannot be located. This flag might be useful in cases
where a CA publishes certificates to the directory, but
for some reason, does not publish CRLs.

Flags allow certificates with notAfter and validity dates
in the past or notBefore validity dates in the future to
be considered valid. The default TP behavior is to
reject them. The reasons for allowing them are the
same as for future CRLs. Turning on these flags turns
off certificate validity checking, which is not PKIX
compliant. Another flag allows name constraints to be
applied only to the end-entity certificate. During
validation, name constraints are enforced for every
certificate in the chain. Some practitioners believe that,
in practice, the two algorithms should give the same
results for any reasonable hierarchy of CAs, and that
any differences would not be important.

4 Smart Card Usage in Jonah
Smart cards are portable cryptographic devices that are
suitable for storing certificates and keys, as well as
performing cryptographic operations with the keys
without releasing the private key off the card
(specifically signing). Jonah contains a virtual smart
card (one implemented totally in software with private
keys and certificates stored in a file) which allows
experimental use of Jonah in environments without
smart card hardware. The EE, RA and CA servers each
have a smart card configured. The CA and RA each

initialize their smart cards to have a private key and
corresponding certificate that are self-signed. This
allows RAs to sign requests and CAs to sign CRLs
without exposing their private keys. PKCS#11
[PKCS11] provides the interface to a smart card.

Smart card support performs the following functions:
smart card initialization, changing a smart card
password, storing and retrieving a certificate, storing a
private key, retrieving information about a private key,
returning information about the certificates associated
with a private key, generating a key pair, signing, and
verification. CAs and RAs use it as a storage
mechanism if they need to distribute their certificate to
other entities. EEs also store certificates for verifiers
with whom they exchange data, although they are
limited by the available storage on the smart card.
Typically, a smart card will include its own software
package used to administer the smart card for functions
such as initialization and password management.
Administration of a PKCS#11 smart card was
somewhat problematic. This is because while the
PKCS#11 standard has administrative functions, most
smart cards provide their own non-standard
administration interfaces. While we provide functions
to administer the virtual smart card through PKCS#11,
administration of other smart cards will certainly be
specific to each smart card.

The Jonah smart card interface provides an API for
smart card operations to the rest of Jonah. It translates
Jonah ASN.1 data structures and semantics into CDSA
data structures and semantics, then calls CDSA to
access the smart card. Use of the CDSA framework in
our virtual smart card support provides consistency
across Jonah for access to our cryptographic providers.
We anticipate that CDSA will make it easier for Jonah
to use PKCS #11 compliant hardware smart cards. The
cryptographic operations provided by the virtual smart
card go back through the CDSA interfaces to CSPs that
are configured to work with Jonah. Since smart cards
devices typically work through a serial connection at
speeds around 9600 baud, and smart card
cryptographic functions are fairly slow, we do not think
this layering will cause any notable performance
problems.

The smart card CDSA support translates calls into
PKCS#11 calls. In the Jonah reference
implementation, a PKCS#11 virtual smart card is used.
A smart card must support PKCS#11 functions for key
pair generation, data storage, and signing to be fully
functional for the Jonah reference implementation.
Private keys are stored on a PKCS#11 smart card by
splitting the private keys into their base parts,



including a modulus. When keys are generated on the
smart card, a key identifier is created for indexing keys
on the smart card. In addition, the public key is
returned to Jonah for use in a certificate request. When
using the smart card for key pair generation, the
private key will usually never leave the smart card.
This is the safest way to generate and store private
keys. If archival of keys is required, the keys can be
generated in software and archived, then stored on the
smart card. We have struggled with issues around
protecting private keys. The best design for storing and
protecting keys for archival purposes seems to be to use
a secret key to protect the private keys while stored in a
PKCS#12 [PKCS12] file. Hardware smart cards may
not be willing to export private keys they generate.
There may be later interoperability problems between
such smart cards and applications that insist on having
private keys in their own local keyring. We also need
to protect virtual smart card data stored in a file. We
settled on utilizing hashes of the security officer and
user pins, as well as combinations of random and
secret keys.

We discovered several issues while integrating virtual
smart card support with the Jonah public key
infrastructure. We found several places needing
translation layers between what Jonah needs and what
smart cards traditionally provide. As discussed above,
we needed several translation layers to allow access to
the smart card via CDSA. In addition, the general
practice with smart cards is to use the index generated
by the card when referencing items stored on the card.
Jonah needs to index and manage multiple certificates
that correspond to a single private key. For example, a
CA may have different certificates for certificate
signing and for CRL signing, but both may reference
the same private key.

5 Jonah’s Graphical User Interface
The Jonah GUI, like the rest of Jonah, must run on
multiple platforms including Windows NT and various
platforms of UNIX (specifically Solaris and AIX). As
freeware, the GUI is downloaded and built on all of the
above platforms. Staffing issues and the initial
snapshot schedule meant that from concept to initial
release, the GUI had to handle certificate requests and
communicate with the back-end within 3 months. This
section describes how we met those goals, as well as
issues encountered so far.

While the portability layer (see Section 2.2) allowed us
to write the back-end in a portable, platform-neutral
fashion in plain C++, this approach is not suitable for
GUI implementation. We decided to build the GUIs in

Java [Java], taking advantage of its platform
independence, language safety, and object-oriented
classes. The Java Development Kit (JDK [Borl98a])
1.1, with its compiler and run-time virtual machine, is
free and is supported on all of our target platforms.
JDK 1.2 was not considered because of lack of support
for UNIX platforms like AIX. The GUI code invokes
the JNH API via a Java Native Interface (JNI [Cay98])
wrapper layer. We used the Java Foundation Classes
(JFC)/Swing classes [Nels98], and associated freeware
widgets, instead of the Java Active Window Toolkit
(AWT [Flan97]) to save development time. We chose
Borland JBuilder 2.0 as our Java development
environment because it produces 100% pure cross-
platform code, has a fully supported implementation of
the JFC, has an upgradeable path to future releases of
JDK 1.2 and beyond, shares its Interface Developer’s
Environment with Delphi (a mature environment for
building Pascal programs), and our team members
have had excellent experience with Borland products
in the past. We used JBuilder’s ability to create
individual freely releasable widgets as Java Beans for
Jonah-specific inputs like a spin button for dates and
X500 distinguished name input. The Jonah GUI
consists of three Jonah GUI executables for the CA,
RA and EE. This Java byte code is zipped up as JAR
[Borl98b] files into four packages, CA, RA, EE and
Base. The Base class, like the back-end, is used for the
common functionality shared by the servers. This code
sharing has already eased debugging and support. Use
of inheritance within the OO paradigm also paid off in
reusing code. The layering provided by the JNI
wrapper made it very easy to divide up the work and to
detect which layer crashes were in.

The event-notification mechanism required some effort
to integrate with a Java GUI. Java threads are not
necessarily implemented using the platform’s native
threading mechanism. A Java Virtual Machine (JVM
[Deit97]) may multiplex a single native thread to
service all Java threads [Davi96]. Therefore, a native
thread does not necessarily have sufficient thread
context data to be able to invoke Java code. Java
threads may invoke native routines, but the JNI does
not permit calls in the reverse direction. This
restriction required that the Java GUI implement an
event collection thread, whose sole purpose is to check
for events and pass them back to the main Java thread.
The JNI wrapper layer implements a message-queue to
pass event data from the native notification call-back
routine to the event collection thread. This, in turn,
required that the Jonah locking primitives be exposed
at the JNH layer, so that the event notification callback
routine and the Java event collection thread could use



them to synchronize access to the message queue.
Since the JVM might be implemented as a single
native thread, we could not block the collection thread
while it waited for an event, since this might block the
entire JVM. Therefore, if the collection routine finds
no events waiting, it calls back into Java and performs
a Java VOHHS�� operation before checking the message
queue again. Thus, apart from very brief periods when
the collection thread is holding a Jonah mutex to
inspect the contents of the message queue, it is using
pure Java synchronization mechanisms, which allow
the JVM to continue to run regardless of how it
implements Java threads. We added a second similar
notification mechanism to allow the back-end to send
text messages for display to the user, either on the GUI
status-bar, as pop-up dialog boxes, or in a scrolling log
window. The last was extremely useful during
debugging. The current GUI has three application
threads: the main thread that maintains the GUI itself,
and two event collection threads for events and text
messages.

One difficulty was providing a front-end that was user-
friendly and intuitive to the PKIX standard back-end,
supporting only standard data types for displaying
information. The PKIX standard does not always
provide the information one would choose while
designing a front-end. An example is validity dates.
The PKIX standard uses start and end dates for
certificate validity. An end-user or RA administrator
might more reasonably enter a validity duration to be
applied against the time the CA signs the certificate or
a start time and a duration. Extra code and checks are
required in the GUI to set up the data as PKIX
standard. Extra code keeps the user’s notion of
duration aligned with the beginning and ending
validity dates. Distinguished Name (DN) support is
also a challenge. The GUI is coded to understand the
full standard format of DNs. It contains a full encoding
of the attribute types and their ordering for the X.500
useful object classes, and can lead the user through the
creation of a DN by presenting the next valid attribute
type as a field for editing. This Java bean is fully table
driven and can therefore be easily extended to support
additional schema. Although the entire team has had
several discussions of how best to support DN input
and editing, we are not thoroughly satisfied with our
current solution. In addition, expertise in GUI
development and in security and PKIX standards is
split across team members. Every new GUI feature
generates a great deal of discussion on both sides of the
split. While this is a substantial investment in time, the
fresh ideas on both sides have produced many
breakthroughs. Having a single contractor develop the

entire GUI reduced coordination and code overhead,
and expertise also guaranteed that the front-end
followed standard Windows and Motif behavior,
although it necessitated many long hours of work.

6 Porting Jonah
This section discusses the build environment, Standard
Template Libraries (STL); Java portability; issues
between NT and UNIX; and CDSA, message, and
threads porting issues. The back-end, C++ portion of
Jonah was originally built using the MKS make
program [MKS97] with batch file wrappers to simulate
the OSF Development Environment (ODE [ODE]).
Both the NT batch files and the MKS Makefiles were
not portable, since the MKS syntax  is similar to but
not identical to systems provided by the AT&T UNIX
operating system. Our Java build environment,
JBuilder, is also an NT-specific tool. In order to port
all the build procedures to UNIX platforms, we used
ODE. ODE has been ported to many platforms
including UNIX, NT and Windows. We have not found
a software compilation environment that supports as
many platforms as the OSF ODE environment
supports. It supports both C++ and Java.

One area that turned out to be a problem in porting
Jonah from NT to AIX was the Standard Template
Libraries. The Standard Template Library [Step94]
provides a set of C++ container classes and generic
algorithms. It is based on research in generic
programming and generic software libraries. When the
template is instantiated or invoked, types are supplied
as parameters and methods are created for those types.
The Standard Template Library has been adopted as
part of the February 1998 ANSI/ISO C++ standard.
Microsoft Visual C++ conforms to this version of the
standard. Unfortunately, most compiler venders have
not had time to come out with conforming
implementations. The  C++ compiler that we use on
AIX is based on a 1992 version of the ANSI/ISO C++
standard. To allow programmers to use the STL on
platforms that do not have a compiler that conforms to
the February 1998 version of C++ standard, STL has
been heavily parameterized with conditional
compilation flags that indicate whether a compiler
supports various template features. For example, our
AIX compiler does not support default arguments for
templates, so we had to back out of using that feature.
It takes some investment of time to determine what
template features a compiler supports and how to
correctly set the corresponding flags. We may have
similar problems for any new platform Jonah is ported
to.  In addition, the AIX compiler also tends to be very
strict about what it allows. For instance, it  requires



that if a template class is defined then each method and
operator used by the class must be defined, even if the
application does not invoke it. The Microsoft Visual
C++ 5.0 compiler only requires the methods and
operators be defined if they are actually instantiated.

There was very little work to port the Java GUI to AIX.
We wrote some build rules for the ODE build
environment that compile the Java source and create a
JAR for each of the GUIs, and wrote a simple script
that invoked the GUIs under the JDK. No changes to
the Java source code were needed. By adhering to the
JDK’s JNI standard, the Java code is able to call the
native C++ code in a portable manner. In some cases,
native data types were incorrectly declared (for
instance, as “long” instead of “jlong”). This generated
some mapping bugs. The Java code was easier to port
than the C++ code, though based on efficiency of
generated code, we believe coding the back-end in C++
was the right decision.

We ran into some problems with general differences
between NT and UNIX. Since NT is case insensitive,
our developers were not careful when applying case to
new file names and then maintaining case sensitive
#include statements. Since the UNIX operating system
is case sensitive, there were several places where we
had to either change the name of the include file or the
#include directive in the code. Also, the initialization
files contain information about where to store various
Jonah files in the file system. On NT, you include the
drive specifier along with the path, while on UNIX
systems there is not a drive specifier. These directives
need to be modified to conform to the file system
structure of each operating system. Our CDSA code
contains routines for storing information about where
the plugins should be found and loaded. On the NT
platform, this information is stored in the NT registry
as the default database to store OS-specific
information. On AIX, the code stores the data in the
AIX Object Data Management (ODM) database, which
performs an equivalent function. The code to find
plugins needs to be changed for each operating system
to use a data store similar to the NT registry or the AIX
ODM. One possible option is to use a DB44 database
[Slee] if the OS does not have a common database.

Jonah attempts to segregate all of its platform-specific
code to a single layer, called the OSSRV layer.
Exceptions to this are found in the CDSA layer and a
few places where small changes are conditionally
compiled depending on the platform. The OSSRV
layer consists of support for the portability library (see
Section 2.2). We had one porting decision to make
around message files, and found one porting problem

in threads. Instead of converting the error messages to
the format that the native AIX message tools require,
and creating calls to AIX messaging routines, we
decided to port the message catalog routines used on
NT to AIX. The Jonah code supplies an XPG4 like set
of routines and a message catalog generating program
(gencat). Since the Jonah code only opens one catalog
file and most gencat routines expect to open a separate
catalog for each .msg file, we ported the gencat and
XPG4 routines provided with the Jonah delivery. In
addition, we ran into a problem where the default stack
size on AIX for each thread (100K) was not large
enough for the C++ code. This problem caused Jonah
to crash in a number of random ways.  We were
surprised to find that we needed to increase the default
stack size of the threads created by Jonah to 256K.

7 Testing
The final aspect of Jonah development is testing. As
discussed by Marick [Mari97], the role of a test team is
to find bugs. However, there is a distinction to be
drawn between a test designed to find a large volume
of bugs with minimal significance and one designed to
find bugs that will have a major impact on the core use
of the code. The goal of the Jonah test team is the
latter. This was defined as those bugs that users
encounter during basic use of the code, including
usability problems impacting the user's ability to
understand how to use the code. The focus of the test
is, therefore, on exercising the main paths of the Jonah
code (certificate creation, certificate revocation, and
issuing CRLs). While many of the challenges with
testing Jonah are familiar territory, some are
exacerbated by, or unique to, its status as a freeware
package. This section discusses the issues involved in
testing the Jonah freeware code. It describes differences
between freeware testing and regular product testing,
setting priorities, and the challenges the test team
faced.

Since Jonah is a freeware package that uses PKIX
drafts as requirements and specifications documents,
the test team believed that test processes needed to be
modified. In the usual process, testing is divided into
Functional Verification Testing (FVT) and System
Verification Testing (SVT) [IBM98]. FVT verifies that
the code functions correctly with respect to product
specifications. FVT exercises the external and internal
interfaces, functions, error handling capabilities, and
the maintainability and serviceability of the product.
SVT verifies that the code works correctly as a system.
The goal of SVT is to test products in a customer-like
environment (at times, utilizing industry customer
scenarios) thus ensuring delivery of high-quality



solutions that meet or exceed customer expectations.
SVT exercises scenarios that test not only product
requirements, but also load and stress; interoperability
and coexistence; installation, migration, configuration
and connectivity; reliability, system-level error
recovery, and internationalization. For Jonah, with a
goal of finding the most important defects, the test
team executed a mixture of traditional FVT and SVT
scenarios. We exercised the external interfaces (using
the GUI and some APIs) and functions using an
integrated system. We attempted to exercise the
product requirements (using the PKIX drafts as the
specifications), as well as product installation using
minimal configuration scenarios.

Another aspect of testing freeware code is that limited
resources (hardware, people, and time) are allocated to
the effort. As a result, the test team is much smaller
than usual. Thus, we had to set priorities. As
previously discussed, the test team chose to focus
mainly on the mainline paths through the code, using
defaults instead of making major modification to
different parameters. Additionally, since we understood
that the first potential customers (IBM product groups)
would use the APIs to exercise the Jonah code, the test
team chose to spend time using the API set. This also
allowed us to begin building our test suites, which
could be used for later product testing. For the API
testing, we chose the C interface since we had both
example code and a skill set in place to code C
applications. In respect to LDAP testing, we limited
the test to one LDAP server, choosing the IBM LDAP
2.0 server [IBMLDAP], since this was the easiest
server for us to install. We also developed a process to
document the important bugs requiring fixing.

The biggest testing challenge was the test team’s lack
of knowledge about the technology. Because of
organizational changes, within days of receiving the
Jonah test assignment, management expected a
positive contribution from the test team. Learning the
technology involved reading the Internet drafts, talking
with the developers, and practicing with the code at
every opportunity, and asking numerous questions.
Contributing to this challenge was the fact that the
Jonah code was itself lacking documentation and
continually referenced the PKIX drafts. Finally, the test
team came from a very structured test environment and
was used to testing mature products. Jonah required us
to adjust our thinking from a strict process driven
environment (including test plan execution plan, daily
status, and war room meetings) to a less structured
environment that focused on delivering the code as
soon as possible. Our test team has worked hard to

make the adjustment and they have contributed
substantially to the quality of our code.

8 Status and Conclusions
The Jonah code is being hosted by the Massachusetts
Institute of Technology (MIT), who assume
responsibility for code distribution and change control.
It is downloadable from the web site at MIT at
http://web.mit.edu/pfl. MIT agreed to host the code
because they have hosted security code with export
control issues in the past (such as Kerberos), and
because Jeff Schiller is both IETF Security Area
Director and is responsible for the MIT network. The
Internet Mail Consortium hosts the Jonah discussion
list at http://www.imc.org/imc-pfl/. Also, interest in
PKIX reference implementations is increasing. NIST
[NIST] and DSTC [Oscar] have also announced
reference implementations.

Interoperability is important to our goal of being a
reference implementation. We are currently involved in
a sequence of interoperability testing events with
Entrust, NIST, Xeti, and Baltimore Technologies. We
have exchanged certificate requests and responses to
test interoperability. This has uncovered both mistakes
in the different implementations and deficiencies in the
PKIX specifications.  The majority of the problems
discovered in the first round of testing were with the
ASN.1 encoding rules. The CMP specification uses
ASN.1 explicit tagging by default. The CRMF
specification uses ASN.1 implicit tagging by default.
ASN.1 also has rules about when you must use explicit
tagging.  For instance, explicit tagging is required
within a choice, which overrides the default of implicit
tagging in the CRMF specification. Another related
problem is that some of the ASN.1 structures have
changed from earlier drafts to the final RFC. The lack
of change control in versions of these RFCs means that
small changes are often not discovered until
interoperability testing. In addition, the specification is
vague about how to associate a certificate request with
the password for that request shared with the RA. The
purpose of the interoperability events is to identify
problem areas and feed then into the next version of
the protocol. Participants will be reporting on the
results at the July IETF meeting.

One of the largest challenges we have faced
implementing  freeware reference code has been
organizational. Our team crosses organizational units,
company cultures, geographical sites, and time zones.
We have worked hard to work together, and have been
recognized for it with two IBM teamwork awards.
Many of the organizational difficulties we had were



exacerbated when working across expertise or
geography. Even though our business case had been
made, we had continuing difficulty getting and keeping
resources in the face of pressure in nearby revenue-
making groups who also needed resources. With a
small team, some of whom were juggling other
commitments, we adopted a heads-down, lets-code
attitude without design documents or a detailed
schedule. This has produced the desired aggressively
timed freeware snapshots, but also placed an added
burden on areas such as GUI development, testing,
porting, and management. For example, testing has not
always been told just what was in a code drop, which
made it difficult for them to determine where to
concentrate their efforts. They are also located in
Texas, while the team leads work out of Massachusetts,
so special effort to communicate was required. As we
transition internally from freeware to internal product
support, we are producing more documents and
communicating more effectively.

We are not aware of many other papers on the topic of
developing and distributing freeware reference
implementations. Kerberos [SNS88] is a well
documented standard backed by freeware code.
However, most discussion of freeware implementations
occurs on email lists or informally at IETF sessions.
We hope others will document their systems and
experience implementing freeware reference
implementations.
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