
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

NBC’s GEnesis Broadcast Automation System:
From Prototype to Production

Stephen J. Angelovich
NBC Broadcast and Network Operations
Kevin B. Kenny and Brion D. Sarachan
GE Corporate Research & Development

NBC’s GEnesis Broadcast Automation System:
From Prototype to Production

Stephen J. Angelovich
NBC Broadcast and Network Operations

Kevin B. Kenny
Brion D. Sarachan

GE Corporate Research & Development
kennykb@crd.ge.com

Abstract. GEnesis is a system in use at the NBC television network for automating the composition and distribution
of video. It works in a mission critical environment; a system failure could potentially result in a substantial loss of
revenue for the network. Tcl/Tk has been an integral part of the operator interface and data handling portions of the
GEnesis system from the earliest stages of prototyping. We originally planned to replace the system prototype based
on Tcl/Tk with a production system built in a compiled, object-oriented language and using commercial component
software. After the prototype phase was completed, the developers and management together decided to keep
numerous system components in Tcl, while migrating some complex and performance-critical functions from Tcl to
a C++ message passing architecture. This paper discusses that decision and presents our experience with converting
the prototype into a fully functional system.

1. Introduction
GEnesis is an upgrade to the NBC television

network to support the requirement for digital video and
to increase the network’s capacity from ten
simultaneous streams of video to forty. It is an
ambitious control system; it includes roughly 400
computer-controlled devices for processing, storing,
and routing video. Among its components are some
sixty devices for video storage and processing that

include RAID arrays totaling several tens of terabytes
of disk space, satellite uplink/downlink controls at over
two hundred stations, and high-bandwidth digital video
routers to interconnect the devices. The system does
not run production studios nor transmitters at the local
stations, but handles all the tasks needed in between:
video storage and playback, combining video segments
into an integrated stream, adding special effects, doing
voice-overs, and managing the satellite distribution
system for over 200 NBC affiliate stations. An
overview of the system appears in Figure 1.

Scheduling and
media management

systems

Integration
Controllers

Studios,
news sites,
sponsors, ...

Video storage
and processing

devices

Satellite
ground stations

at network

Satellite
ground stations

at affiliate

Spacecraft

Viewers

Video

Data/control

Figure 1. GEnesis system overview

Tcl/Tk was chosen over four years ago to build
prototypes for several user interfaces in the GEnesis
system. The idea at the time was to use Tcl/Tk to build
a working model, test new ideas, and expose a variety
of proposed user interfaces to the system operators. At
the time, there were no plans to preserve any of the
prototype into the deployed system.

As we described in the 1995 Tcl/Tk Workshop
[SSZ95], Tcl was well suited forprototyping the
GEnesis application. After the publication of our
previous paper, prototype development continued to
proceed rapidly. We completed 1995 with a
comprehensive GEnesis prototype, including simulators
for digital video servers and routers, all implemented
using Tcl/Tk, with database access using sybtcl
[Poin97] and interprocess communication using Tcl-
DP [SRY93].

When we started building the production system,
we decided to take the radical step of keeping Tcl/Tk
when building the Integration Controllers — the
computers that accept the network schedule from
database systems upstream, provide the user interface to
the network operators, and deliver commands to the
video devices. Performance-sensitive components, and
components that required access to third-party
interfaces, were migrated to C++. The user interface
continued to be built with Tcl/Tk. The C++ code
supported extensive accessor functions that allowed it
to be configured and commanded from Tcl. This
design had several advantages. It allowed extensive
configurability: the same executable is now used to
build six different types of operator station, plus a wide
array of plug-in test harnesses. It allowed us continued
access to the Tk text and canvas widgets; no other user
interface toolkit seems to have anything nearly as
effective for customizable user interfaces. It allowed us
to have a working version of the system at all times;
there was no early period when the system was “still
under development” with nothing available to
demonstrate. Perhaps most important, Tcl’s
embeddable nature allowed us to develop interfaces to
the actual devices even though they came from several
vendors and had widely varied interface conventions.

2. From prototype to deployed system
We continued development with a natural iteration

among prototype development, use case definition,
requirements understanding, and architecture
development. The development was much the same as
the "star" approach described in [HH89]. We felt that
this development process was ideal for a project like
GEnesis, in which the resulting system was to be much
different from the system being replaced; understanding
and defining the requirements was part of the ongoing

development process. The requirements could not
possibly have been laid out at the outset according to
the traditional "waterfall" development process. The
“star” approach has allowed us to converge on the
requirements in close collaboration with our colleagues
at NBC.

One of the keys to our success in this project was
to migrate gracefully from prototype to deployed
system. We have had a working system at all times
since we began in late 1994, with increased levels of
functionality, reliability, and performance. We have
never allowed ourselves the luxury of a "big bang" that
would break the system for an extended period. In the
later phases of development, we have constructed daily
builds of the software, complete with automated
installation scripts. Nearly every build has been tested
immediately at NBC.

As stated above, our initial prototypes were
implemented entirely using Tcl. This section
summarizes some of the key steps as we migrated to a
highly reliable, production quality software system.

2.1 Message passing architecture
The Integration Controller supports a complex set

of functions, which include such things as simulating
the device-level execution of the network television
schedule, and reconciling the simulation against status
returned by the actual devices, to determine whether
execution was correct. We originally implemented
much of this logic in Tcl. This exercise was highly
valuable for prototyping the logic and understanding
the requirements.

 The complexity of this implementation in a
scripting language did eventually become unwieldy. In
particular, we fell victim to namespace pollution.
Global arrays (representing, for instance, all events
using a given device in time sequence, all events
referring to a particular video clip, and so on)
proliferated, and maintaining a dictionary of their
names became unwieldy. Moreover, the arrival of each
event resulted in the execution of many thousands of
lines of Tcl code to maintain the data structures. The
pure Tcl implementation had trouble keeping up with
its workload.

We developed a C++ object-oriented architecture,
known as "NetSys," to provide a maintainable and
extensible infrastructure for the Integration Controller's
processing. (NetSys itself has many interesting aspects
to its design, which are beyond the scope of this paper.)

2.2 Extensible Tcl event loop
The Integration Controller is an event-driven

application that receives data, control signals, and
device status through a variety of communication

protocols, including TCP and UDP sockets and
proprietary protocols. We were able to make
appropriate extensions to and callbacks from the Tcl
event loop to support all of these interfaces, in addition
to the user interface events that it already supported.

Integrating additional event sources into the Tcl
event loop proved to be extremely simple. Only two
areas were really cause for concern. The first of these
was the fact that non-blocking interfaces are unnatural
on the Windows platform, where multithreaded
applications are the rule rather than the exception.
Some of the third-party interfaces that we must use,
therefore, freeze the event loop for longer than we
would like while they are performing their tasks. We
deal with this situation by the expedient of putting the
code that uses these interfaces into separate processes,
and communicating with them using sockets. If the
event loop stops responding temporarily, our message
queues hold the traffic for these processes until it starts
again. We may revisit this decision when the thread-
safe Tcl core becomes available in release 8.1.

The second cause for concern is the stability of the
interfaces. It seems that any C code that uses the Tcl
event management primitives breaks with every release
of Tcl, since the protocols change so rapidly. Tracking
these changes over the life of the project was a major
headache, and some of the changes seemed gratuitous.
We hope that the multi-threaded notifier will represent
the last round of major incompatible changes.

2.3 Uniform interfaces
On several occasions we replaced prototype

functionality while keeping the interfaces constant. This
greatly facilitated our goal of always having a working
system. For example, the early prototype code often
used Tcl associative arrays as data structures. When
moving to C++, we have often provided bi-directional
mappings from C++ objects to Tcl associative arrays,
allowing for interoperability between the Tcl and C++
implementations.

The NetSys library provides a uniform messaging
interface to socket connections, database access, device
drivers, user interface displays, and internal processing.
By using Tcl interfaces like the ones presented here,
functionality can be organized in different
configurations through Tcl scripts which configure the
NetSys message handlers.

The mapping between objects and associative
arrays turns out to be surprisingly easy to do. Each C++
class has a few stylized static methods that hook it into
Tcl. The constructFromTclArray method
(Figure 2) extracts the values from the Tcl array and

invokes the C++ constructor.* It then installs the
newly-created object into the Tcl command namespace.

The tclCommandDeleteFunction method
(Figure 3) is a trivial connection to the destructor.

The tclCommandFunction method provides
whatever method calls are needed from Tcl. One
interesting technique that we use frequently is to pass a
C++ object by reference to a method in another C++
object. The Tcl interface is to pass the name of the Tcl
command that represents the object. The
Tcl_GetCommandInfo library function is used to
validate that the string is the name of an object of the
correct type, by examining the command function
pointer (Figure 4).

When filling an associative array with the contents of a
C++ object, we have usually found it more convenient
to create a list of alternating keywords and values,
return that list to Tcl, and use the [array set]
command to install the values in the Tcl array. This
trick meant that the C++ code did not need to be
prepared to deal with possible error status returned by
Tcl_SetVar2.

2.4 User interface evolution
 Several of our prototype user interface screens

were shown in our earlier paper [SSZ95]. One result of
our “star” development process was to continually
refine these screens based on user feedback. Tk
provided an ideal tool for easy changes to the user
interface. We wholeheartedly agree with the sentiments
expressed by Brian Kernighan in [KERN95]; the Tk
text and canvas widgets provide power and flexibility at
least as good as anything else on the market.

One specific change that the NBC users requested
early was to replace our early “busy” screens with a
simpler layout, and provide a rich assortment of
application views as “notebook tabs,” as is familiar in
many modern Windows-based applications. It might
not have been inordinately difficult to implement this
look and feel using the canvas widget (as Harrison and
McLennan do in [HM98]), but it would have been time-
consuming. Instead, we took advantage of the Tcl
community and adopted Ioi Kim Lam's Tix widget set,
which provided us with a notebook widget off-the-
shelf.

* All of the illustrative code is targeted to Tcl 7.6,
which is now obsolete. The GEnesis project continues
to use it because it works adequately well, and the
benefits to be gained from moving forward to the Tcl 8
object APIs are not yet worth the effort of converting
the C++ code.

int
myClass::constructFromTclArray (Tcl_Interp* interp,
 char* arrayName)
{
 char* string; // working storage
 int parameter1; // constructor parameters
 char* parameter2;
 if (string = Tcl_GetVar2 (interp, arrayName,
 “parameter1”, TCL_LEAVE_ERR_MSG) == NULL)
 return TCL_ERROR;
 if (Tcl_GetInt (interp, string, ¶meter1)) != TCL_OK)
 return TCL_ERROR;
 if (parameter2 = Tcl_GetVar2 (interp, arrayName, “parameter2”,
 TCL_LEAVE_ERR_MSG) == NULL)
 return TCL_ERROR;
 myClass* newObject = myClass (parameter1, parameter2);
 char instName[24];
 sprintf (instName, “myClass_%p”, (void*) &newObject);
 Tcl_CreateCommand (interp, instName, myClass::tclCommandFunction,
 (ClientData) newObject,
 myClass::tclCommandDeleteFunction);
 Tcl_SetResult (interp, instName, TCL_VOLATILE);
 return TCL_OK;
}

Figure 2. Constructing a C++ object from a Tcl array

static void
myClass::tclCommandDeleteFunction (ClientData clientData)
{
 delete (myClass*) clientData;
}

Figure 3. Destroying a C++ object from Tcl

Tcl_CommandInfo info;
if (Tcl_GetCommandInfo (interp, commandName, &info) == 0) {
 Tcl_AppendResult (interp, name, ": no such command", (char*) NULL);
 return TCL_ERROR;
 }
 if (info.proc != &DesiredClass::TclCommandFunction) {
 Tcl_AppendResult (interp, name,
 " is not an instance of DesiredClass",
 (char*) NULL);
 return NULL;
 }
 return (NodeBaseClass*) info.clientData;

Figure 4. Type-checking an object passed by name from Tcl

2.5 Port from Solaris to Windows NT
Another major benefit we derived from Tcl/Tk was

portability. Two years into the project, NBC decided to
change computer platforms from Solaris to Windows
NT. The porting effort was minor, thanks to the fact
that Sun’s first Windows port was released just in time.
We have evolved a team development environment that
uses Windows-based tools (Microsoft Developer's
Studio, MKS Source Integrity, Purify, pcAnywhere,
and other tools) and suits our purposes well. Had we
not chosen Tcl/Tk early on (the original proposal called
for implementation with OpenWindows and Motif), the
unexpected port to Windows could easily have been a
showstopper.

3. Using Tcl in critical systems
The GEnesis system had tight requirements in a

number of critical areas. It required very high
reliability: system failures must be few or nonexistent
(the eventual system is targeted to have less than 20
minutes of unscheduled outage in a year’s operation). It
has several tight performance requirements: it has a
complex graphical user interface that may have several
dozen objects updated in a second. It also has a
longevity requirement: the operator’s workstation
cannot be interrupted more than about once a week, and
the applications have to be able to run that long without
restarting. After a small number of issues were
resolved, as summarized below, Tcl/Tk together with
custom extensions provided a robust platform which
supported the reliability, performance, and longevity
requirements of GEnesis.

3.1 Reliability
Our experience has been that Tcl/Tk has presented

few reliability problems. In the course of deploying the
system, we discovered several bugs in the Tcl/Tk
implementation that resulted in program crashes. In all
cases, the Sun staff were able to find and correct the
problems in short order. In the last several months of
operation (since the bugs that we encountered were
fixed or worked around), no system failures have
occurred that can be ascribed to problems with the
Tcl/Tk core.

3.2 Performance
As we have already discussed, the Tcl interpreter

was too slow for various operations in the system that
involved complex data structures. We reworked these
operations in C++. Ultimately, the parts of the system
dealing with device control and data management
evolved to being built entirely from C++ objects, with
Tcl used as a configuration language to string these
objects together.

Performance of the graphical user interface has
been a more difficult problem; we ran into several
entirely unexpected performance problems, some of
which proved hard to characterize. The first of these is
simply the vast amount of memory allocation activity
that Tcl requires (another culprit here is the Rogue
Wave libraries [RW96], which we use extensively).
Our initial development environment used the
“debugging” versions of malloc and free, which
cleared memory and had basic integrity checking.
When we replaced these with the non-debugging
versions and instrumented the code, we saw a 50%
performance gain for the common operations of starting
and stopping video clips. We have not resorted to the
non-debugging libraries in practice, feeling that the
additional checking gives us a safety net. Nevertheless,
the temptation is there, and we may succumb to it at
some time in the future.

A second user-interface performance issue is the
Tk console on Windows NT, which is simply too slow
to use for more than a tiny volume of output. In
addition, its performance appears to degrade rapidly as
more text is added to it — a console with a few hundred
lines of text in it is noticeably sluggish. Using the
console as a message log is a longevity issue as well,
since printing to the console consumes memory rapidly,
using the better part of a kilobyte of heap space to
display a one-line message. One part of our testing
procedure is to inspect the Tcl code rigorously to make
sure that all puts directives to the console are
removed. In addition, to cover any console output that
may escape this net, we have added to our initialization
a script that looks like Figure 5.

proc keepConsoleClean {} {
 console eval {
 .console delete 1.0 end-100l
 }
 after 15000 keepConsoleClean
}
keepConsoleClean

Figure 5. Script to limit the console display

Another performance issue that recurred several
times in the course of development was the
management of tags in the text widget. One central part
of the GEnesis system is the display of lists: lists of
video to play, list of files to transfer among the
playback devices, lists of available video clips, and so
on. These lists are displayed in columns in the text
widget, and the operator is provided with a quick-and-
dirty query mechanism in which a double-click in any
item highlights all lines having the same value in the
item’s column. This mechanism allows very quick
answers to questions like, “what events use playback

device CDX-01?” or “at what times are we scheduled to
run the latest Third Rock promo?”

Our original design for the system used multiple
text tags on each line, one for each field value, and did
the highlighting by changing the display attributes of
those tags. When we tried this scheme with hundreds or
thousands of lines, however, we found that it was
totally unworkable. The double click sometimes
required many seconds to produce results, and the
entire user interface was frozen for that length of time.
To avoid this issue, we developed a complex scheme of
tag management, which is of sufficient interest that we
present it separately in Section 4.

3.3 Longevity
Achieving the longevity needed for a system in

24×7 operation was also a challenge. The problem here
was a variety of resource leaks. The initial prototype for
the system [SSZ95], which was built in Tk 3.6 on a
Unix system, was awful in this regard, because of the
way that Xlib leaked resource identifiers, and often
crashed within a few hours. We are grateful to John
Ousterhout for having fixed this problem in release
4.0.) The problem of memory leaks on the X11
platform is still intractable (we have found that X11
servers from several vendors need to be restarted every
week or so); fortunately, it appears to be less of an issue
on Windows NT, where we routinely run Integration
Controllers for weeks at a time.

Of course, we continually have to scrub our C++
code for leaks. One recurring issue with Tk results in
memory leaks: the Tk_Uid data type. This data type is
used internally to Tk for making single copies of the
names of objects: widget names, text and canvas tag
names, and so on. The copies are kept in a hash table,
and pointers to the strings may be compared with a
simple comparison of pointers rather than a full string
comparison.

Unfortunately, the Tk_Uid scheme assumes that
there will be some small fixed set of names. If any tags
or widgets are assigned names based on their content or
based on an incrementing sequence number, the
corresponding Tk_Uid objects are created and never
recycled, resulting in a constant memory drain. This
problem hit us unexpectedly several times. The most
difficult was in the area of text and canvas tag
management. We wished to tag lines of text and canvas
items so that we could rapidly find the items displaying
particular data. Since some of the data are never reused
(in particular, the start time of video events
continuously advances), any obvious tag scheme caused
Tk_Uid objects to be created endlessly. We eventually
developed a complicated tag management scheme to
deal with this problem.

We found ourselves unable to resolve some of the
issues of managing Tk_Uid objects, and dealt with
them by negotiating away requirements. In particular,
the customer once requested that the title bar of the
main user interface window show a summary status
line, with the current time and various parameters
relating to the load on the system. We spent half an
hour or so coding up this functionality in Tcl, only to
discover that the wm title command creates a
Tk_Uid object for the window title. This leak
consumed memory at a rapid enough rate to crash the
application after only a few hours. When we analyzed
the problem, we decided that the functionality was not
worth the amount of time that it would take to fix the
problem in the Tcl core. (To the best of our knowledge,
this is the only Tcl/Tk bug that we encountered but
didn’t actually fix.)

4. Tk tag management
In order to address the problems of text and canvas

tag management, we were forced to develop our own
tag maintenance system that layered on top of Tk’s
system. The system was designed to meet the following
constraints:

• Inserting and deleting tagged items must be fast.

• Every item must have a unique tag, so that no tag
will span a large fraction of the text widget or
canvas display list.

• Tags must be drawn from a limited set of
identifiers that are recycled to avoid leaking
Tk_Uid objects.

The solution that we chose was to represent the tag
structure in a family of global variables. Each of these
has a window path name as part of the array name; they
are brought into scope with the upvar command:

upvar #0 next_unused_tag$w \
 next_unused_tag
upvar #0 free_tags$w free_tags
upvar #0 id_for_tag$w id_for_tag
upvar #0 tag_for_id$w tag_for_id
... and so on ...

When inserting an item into a widget, the first
thing that the code must do is locate an available tag to
label the item. It does so with code like the following:

set searchKey \
 [array startsearch free_tags]
if {[array anymore \
 free_tags $searchKey]} {
 set tag [array nextelement \
 free_tags $searchKey]

} else {
 set tag [incr next_unused_tag]
}
array donesearch \
 free_tags $searchKey

Similarly, when deleting an item, its unique tag
must be recycled:

set free_tags($tag) {}

Note that the set of recycled tags is maintained as
the subscripts of a Tcl array (whose values are
immaterial), and not as a Tcl list. We do this to avoid
yet another performance problem. If the system has
been under heavy load and subsequently is unloaded,
there may be a great number of recycled tags. The code
that removes one tag from the list:

set freeTagList \
 [lrange $freeTagList 1 end]

would have to copy the entire list. Recycling N tags
would take O(N2) CPU time. This behavior surprised
the original programmer, whose experience with Lisp
suggested that there should be a constant-time operation
analogous to Lisp’s cdr function.

The id_for_tag array is used to map the unique
tags back to object names in our C++ system, and the
tag_for_id array maps the object names to the tags.
These arrays are updated whenever items are created
and destroyed.

Changing the appearance of an item or group of
items, and responding to event bindings, requires
executing foreach loops to locate the affected
objects. Surprisingly, this scheme is much faster than
the naïve scheme of tagging each item with its
attributes, in addition to avoiding the problem of
Tk_Uid leaks.

5. Troubleshooting resource management
problems
While working on performance and longevity

issues, the Genesis team used and developed a number
of tools to track down specific CPU “hot spots” and
memory management problems.

5.1 CPU performance measurements
It is virtually impossible to make headway with

performance problems without profiling the code to
find where it is spending its time. Tcl code, alas,
confuses most profiling systems. When addressing
performance issues, we tried profiling at the C/C++
level using tools like the profiler included with

Microsoft Visual C++ and Pure Quantify. These tools
were invaluable in isolating certain problems in our
C++ code, but were virtually useless for telling where a
Tcl program spends its time. (We already knew that it
spends its time in Tcl_Eval, thank you!)

The profiler supplied with NeoSoft’s Extended Tcl
[LeDi89] was more effective, since it showed the time
consumption based on the Tcl call tree. It showed only
the time spent locally to a procedure, however, rather
than the time spent in the procedure and the ones it
calls. Given that Tcl programs are usually structured as
many small procedures with complicated
interrelationships, isolating performance issues from
this output was also not easy.

Finally, in desperation, we implemented our own
data reduction atop the NeoSoft profiler. Our system
(Figure 6) uses the hierarchical list widget in Tix
[LAM95] to display the call tree, and shows the real
and CPU time spent in the procedure, and in the
procedure plus descendants, next to the procedure’s
entry. Browsing through the output in this form makes
the trouble spots obvious. (It would still be nice to tie
them to source file and line number. We hope that the
forthcoming TclPro product will finally make it
possible.)

5.2 Resource leak identification
We use the Purify system extensively to track

memory leaks. Unfortunately, we are handicapped by
the extensive volume of the output that it produces. Not
only Tcl, but also several other third-party software
libraries that we use allocate memory at initialization
time that is freed only by process exit rather than
explicit calls to free. This memory is reported as “in
use on exit” or “leaked on exit,” exactly as if it were
really leaked. We get around this problem by running
the system for long periods with synthetic workloads,
and then scanning the output of Purify for leaks
involving large numbers of blocks.

In addition, we have developed a few little Tcl
procedures that monitor the command and variable
namespaces and report changes. These can be used to
identify variables, array elements, and commands that
are created and never deleted.

In our experience, the most difficult leaks involve
the following areas:

• Traces established on nonexistent variables.

• Text and canvas tags that do not apply to any items
in the widget.

Figure 6. Hierarchical browser for profile information

• Bindings established to nonexistent text and canvas
tags, or to nonexistent binding tags.

The last two are easy to cause by accident, by
deleting a canvas item or block of text while neglecting
to delete its tags or bindings. These leaks are so
difficult to locate because a product such as Purify finds
only where they occur in the C source code, and cannot
inform the programmer what Tcl code was being
interpreted at the time. The Tcl system, moreover, does
not export any interfaces that allow the programmer to
write code to locate these abandoned items. We have
occasionally resorted to the expedient of running the
program for a while, stopping it under control of a
debugger, and then using the debugger to examine Tk’s
internal data structures for these items. We do not
recommend this activity as an amusing pastime.

6. Conclusions
Using Tcl/Tk has enabled us to develop and

integrate systems rapidly. Its unparalleled
embeddability has been a major productivity gain,
particularly considering that the integration controller,
as its name suggests, is intended to integrate the
interfaces of video equipment from a number of
different vendors.

A couple of worries that were raised during
development were easy to address. The first has been a
recurring concern that the interpretive nature of Tcl will
make the performance of the system unacceptable.

Since very little Tcl code is in the direct path of
handling device commands and status, this objection
really is not an issue. Moreover, the Tcl code in the
user interface is a good bit faster than comparable
interfaces implemented with toolkits other than Tk,
even when the interpreter overheads are taken into
account; Tk is fast. Another worry dealt with the
availability of downstream support. This concern, too,
was really not an issue. The source code for Tcl/Tk is
freely available, and amounts to only a fraction of the
total lines of code that the customer is already
committed to maintaining in the GEnesis system. The
extensive user community means that support will
always be available somewhere.

Several technical issues, nevertheless, give us
cause for long-term concern. One of them is stability of
the application program interfaces. Each new release
has broken our C++ code, and we have had to back and
fill to get back on track. In practice, we have skipped
every other release or more; we have used, in
succession, releases 7.0, 7.4, and 7.6, and will most
likely (as of this writing) bypass 8.0 in favor of 8.1. The
more widely Tcl/Tk becomes deployed, the more
consideration the Tcl/Tk development team will have to
give to backward compatibility.

Another concern is the unexplained performance
“hot spots”. Some operations, such as copying
canvases, are simply unusable. The Tcl console, too,
becomes unworkably slow if thousands of lines are
displayed. The text widget, in general, has to be tuned

extremely carefully or it becomes too sluggish for our
displays. Some of these behaviors could almost be
characterized as “performance bugs” that could be
corrected with some development effort, for instance,
better indexing to support text tags that include large
subsets of the widget.

In spite of these concerns, Tcl/Tk has been a
wonderful framework for integrating systems. Each of
our worries earlier in the program — for example
portability to Windows NT, availability of appropriate
database interfaces, and availability of native sockets —
was available “just in time” for the next step in
development, and we are confident that our remaining
concerns will be addressed in the same way.

Acknowledgments
No project of this scale happens without the efforts

of dozens of people. In particular, however, the authors
would like to thank Steve Zahner, whose early
advocacy at NBC was critical to getting Tcl/Tk
accepted; David Rabinowitz, who has continued to
support our development of the IC to production
quality; John Ousterhout, Scott Stanton, Ray Johnson,
Brent Welch, and others among the Tcl/Tk
development team who freely provided hours of
telephone support when we struggled with critical
Tcl/Tk bugs; David Henderson, Chris Hammond, Mike
Kinstrey, Dana Downey, Joe Amaral, Ralph Minerva,
and the other GEnesis developers at GE and NBC.

References
[HH89] Hartson, H. R., and D. Hix. “Toward

empirically-derived methodologies and
tools for human-computer interface
development.” Intl. J. Man-Machine
Studies 31 (1989), pp. 477-494.

[HM98] Harrison, M., and M. McLennan. Effective
Tcl/Tk Programming. Reading, Mass.:
Addison-Wesley, 1998.

[KERN95] Kernighan, B.W. “Experience with Tcl/Tk
for Scientific and Engineering
Visualization.” Proc. Third Annual Tcl/Tk
Workshop, pp. 269–278. Berkeley, Calif.:
USENIX, 1995.

[LeDi89] Lehenbauer, K., and M. Diekhans. “TclX
- Extended Tcl: Extended command set
for Tcl.” Unpublished manual, available
over the Internet at
http://www.neosoft.
com/tclx/man/TclX.n.html

 [LAM95] Lam, I.K. “Designing Mega Widgets in
the Tix Library.” Proc. Third Annual
Tcl/Tk Workshop, pp. 53–59. Berkeley,
Calif.: USENIX, 1995.

[Poin97] Poindexter, T. “Sybtcl and Oratcl.” In
“Tcl/Tk Tools”, M. Harrison, ed., Tcl/Tk
Tools. Cambridge, Mass.: O’Reilly, 1997.

[RW96] Tools.h++: Foundation Class Library for
C++ Programming. Part #RW-30-01-2-
032596b. Corvallis, Ore.: Rogue Wave
Software, 1996.

[SRY93] Smith, B.C., L.A. Rowe, and S.C. Yen.
“Tcl Distributed Programming.” Proc
First Tcl/Tk Workshop, pp. 50-52.
Berkeley, Calif.: University of California,
1993.

[SSZ95] Sarachan, B.D., A.J. Schmidt, and S.A.
Zahner. “Prototyping NBC’s GEnesis
Broadcast Automation System in Tcl/Tk.”
Proc. Third Annual Tcl/Tk Workshop, pp.
251–260. Berkeley, Calif.: USENIX,
1995.

