i

The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop
San Diego, California, September 14-18, 1998

Using TCL/TK for an Automatic Test Engine

C. Allen Flick
DSC Communications Cor poration
James S. Dixson
Slicon Valley Networks Corporation

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Using TCL/TK for an Automatic Test Engine

C. Allen Flick

DSC Communications Corporation
aflick@wss.dsccc.com, http://www.dscec.com
James S. Dixson

Silicon Valley Networks Corporation

jdixson@svnetworks.com, http://www.svnetworks.com

Abstract

Test Automation Programming Interface with Object Controlled Authentication, TAPIoca, is a Tcl/ Tk based
automatic test environment. It grew out of the need to construct automatic tests at the system level that
could send commands to a System Under Test (SUT), get responses from the SUT, and control signal
generation equipment connected to the same SUT. Tcl/Tk was chosen as the basis for this automatic test
environment because of the wealth and maturity of its “language” features, as well as its ease of extensibility.

1 Introduction

Automatic testing has been a widely discussed topic
and desired goal for over twenty years in the elec-
tronics and software industries. Despite this, there
is not one test engine, test management tool, or even
test standard that meets all the needs, or desires, of
every organization that might use it.

There is a plethora of reasons behind this phe-
nomenon, not the least of which is the necessity for
rapid turn around in authoring test cases and col-
lecting their associated metrics to satisfy the needs
of managerial reporting. This obligation was the
main reason that drove us to choose Tcl/Tk as the
language on which to base our TAPIoca automatic
test environment. Tcl/Tk, and its extensions, gave
us what we needed for the test engineers to generate
well formed test cases.

The test cases written in the TAPIoca system could
be assembled into scripts that allowed the test or-
ganizations to track the progress made in the devel-
opment of the SUT. Using Tcl/Tk as the language
basis of TAPIoca made it easy to assemble scripts
and suites of scripts at a pace which could track the
development of the SUT. This way tests could be

ready for execution when the SUT was ready for
testing. TAPIoca has also allowed our organization
to quickly change test scripts, if the requirements of
the product change (as they quite often do).

TAPIoca is still evolving. Our test engineers who
use the tool continue to dream up new features they
would like incorporated into it. We’ve always been
advocates of the creeping elegance style of devel-
opment, that is, software should be functional and
usable before it can be feature rich. Our approach
with TAPIoca has been that it should be used in
real testing as early as possible in its development.
This has allowed it to mature earliest in the areas
which were most needed in our testing environment.

2 The Quest for the Ideal Tool

Fine cuisine for one is fodder for another. This is
also true when trying to define an ideal test tool.
Ask anyone with any significant experience in test-
ing and test automation and you will get a long list
of desired functionality ranging from the practical
to the impossible.

2.1 A Reality Check

For some, automatic testing means only automatic
“collecting” of test results, i.e., a system that
prompts the user to perform an action, then asks
for the result. The automation system is nothing
more than a data entry system for the results of a
fundamentally manual activity.

For others, automatic testing means telling a piece
of software “verify feature 'xyz’ on test-bed '123”’.
The test software proceeds to magically configure
the ’123’ device, find the requirements of feature
'xyz’, construct and elaborate a set of commands
and signals to send to ’123’, send them to '123’,
then, using some embedded artificial intelligence,
produce a conclusion about the feature 'xyz’.

In truth, reality lies somewhere in between these two
extremes.

2.2 Good Automated Testing

Automatic test should do a lot more than just ask
questions of a tester, but it most certainly will not
be able to infer everything about what to do to per-
form a test.

Good automated testing requires that the test
tool/environment have many domain specific fea-
tures above and beyond general capabilities. To us,
this meant that the tool had to be able to commu-
nicate with:

e RS-232 Devices
e GPIB Instrumentation

e Simulated development devices

In addition, we wanted the tool to have several gen-
eral qualities:

e A short learning curve.

Ease of GUI generation.

Device Control Extensibility.

A full featured scripting language.

A standard, structured output format for all
tests.

2.3 An Existing Tool

We were fortunate not to be designing in a vac-
uum. We already had an in-house developed test
tool called Autotest, written approximately 10 years
ago to address domain specific requirements. Au-
totest included a rudimentary scripting language
that testers used to program their tests. It had
many of the above mentioned general capabilities,
and, overall, most were happy with Autotest, but,
it had serious drawbacks:

It ran only on MS-DOS.

Its’ scripting language was not full featured.

Its’ code required high maintenance.

Its’ extensibility was difficult

It lacked a “batch” execution mode.

Much of our early effort focused on porting Autotest
to a Unix environment. But, we realized that to do
it right we would have to formalize the Autotest
language. This was determined to be a significant
effort. So much so, that it opened us to the possi-
bility of using other tools or languages instead.

2.4 Commercial Tool Search

At the time Autotest was written there were no com-
mercial products which could fit the bill. Ten years
later when rewriting/replacing Autotest became im-
perative, we were disappointed to learn that little
had changed.

The only two significant commercial contenders
for the honor of one true test tool were Lab-
View/LabWindows from National Instruments and
HP-VEE from Hewlett-Packard. Both of them com-
municate quite well with GPIB-based test boxes
and are relatively easy to learn. Several of our col-
leagues had developed some quite good, though very
specific, automated tests in these environments. If
these tools could be proven to do the more general

domain testing that Autotest could do, then our
quest would be over.

However, trials of both of these tools revealed a
great deal of work would be required to implement
communication with our SUT’s. Furthermore, we
found that while the graphical programming envi-
ronments of LabView and HP-VEE are easy and
fun to learn, when we tried to implement a repre-
sentative sample of automated tests, the graphical
programming environment became a real burden.

Using the LabWindows ’C’ environment was even
worse. It would require the testers to code every-
thing in C. While it was certainly possible to in-
vent a set of LabWindows C-API functions to make
test authoring easier, this would have been just as
much an effort as porting the Autotest communica-
tion code (also in ’C’) to Unix.

2.5 Our Dilemma

At this time pressure was building to produce some-
thing that would be useful in doing real testing, and
real soon. Our evaluation concluded that what our
testers really wanted was a scripting environment
like our internal Autotest tool, but with modern
language features and capabilities.

Again, rewriting Autotest would have required far
more time than was practical. Extending environ-
ments like LabWindows to include send/expect fea-
tures and be easy to use was just as involved.

3 Our Big Discovery

Our first attempt at a redesign was through Perl,
because of previous experience. So, Internet news-
groups were searched for extensions, or meth-
ods of using Perl, to meet our requirement of
send/expect communication. Noting comments
therein to Tcl/Tk and Expect, we looked into their
newsgroups. There we found postings from some
people right in our own backyard, DSC Commu-
nications. Then, further investigation into Tcl/Tk
and the Expect extension showed us we had found
the “treasure” we were hoping for.

Now that we had discovered Tcl/Tk and Expect,

the solution to our dilemma was obvious. Tcl con-
tained all of the fundamental language features that
we were looking for. Tk provided us with easy GUI
building that we felt we would need. And, further-
more, the Expect extension could easily do the
send/expect pattern matching that we had imple-
mented in the Autotest tool.

We also realized that we could easily create some
wrapper functions around the Expect calls and end
up with a language syntax that was not too different
from the syntax of Autotest. This was a big win.
This meant that both learning the new environment
and converting legacy Autotest code to the Expect
environment would be very straightforward.

4 The Prototype

The prototype of this Expect-based testing tool
was coded and dubbed TAPI, for Test Applica-
tion Programming Interface. It was a command-line
driven application which accepted little more than
the name of the script to be run and a few options.

It took little more than two weeks to code and test
all the included functionality of Autotest, except
GPIB instrument control. It became immediately
obvious that TAPI had inherited some capabilities
from Expect that made it far more useful than Au-
totest could have been. In particular, it was now
trivial for a test script to be directed to a simulated
SUT, rather than a real device. This would allow
our testers to develop and debug tests without the
need for time on expensive hardware.

TAPI also differed from Autotest in its Object-
Oriented approach to devices under test. One of the
things which made it so easy to develop tests within
Autotest was that a tester simply had to identify a
SUT by the port to which it was connected and send
messages to it. Responses were automatically cap-
tured, formatted, logged, and compared to specified
patterns. If the patterns did not match, an error
condition was automatically logged. The tester had
to do very little overhead coding to communicate
with different SUT’s, or log results in a standard
format. We decided to adapt this model into a fully
0O view of devices under test for TAPL.

Despite all these advantages, TAPI met with some
resistance from the test group. The principle com-

plaint was that while the language was far more
capable than Autotest, the command-line nature of
TAPI was intimidating. The Autotest application
had a nice menu-driven front-end which made it
easy to start/stop tests and monitor output. TAPI
did not have that easy interface and, therefore, was
not as good as Autotest despite the improved func-
tionality. Appearances can be everything.

4.1 TAPI gets GUI

Using Tk, we were quickly able to implement an
Autotest look alike interface for TAPI. The coding
of the basic interface took about a week and had
most of the same features of the Autotest interface.
Around the same time, it also became known to us
that a certain Redmond, WA, based software com-
pany had copyrighted the name TAPI, so a new
name was in order. We decided on the name TAPI-
oca , which meant internally to us “a Gooey (GUI)
version of TAPI”, but officially came to be known as
“Test Application Programming Interface with Ob-
ject Controlled Authentication”, to reflect the OO
nature of the test scripting extensions.

TAPIoca was, and still is, a big hit. It is being used
extensively by both our original test group as well
as several other organizations in the company. The
OO0 model for devices under test has allowed it to
be used successfully in software development groups
as well as test organizations.

4.2 GPIB Extension

We also implemented an extension to the basic Tcl
interpreter to support communication with GPIB
instruments. This turned out to be much simpler
than we expected.

The extension capabilities of Tcl really shined here.
All we did was create a set of “wrapper-functions”
around the desired GPIB calls in the NI-488.2M li-
brary and link them to the interpreter.

Once it was done, it was done. Now, it’s just another
set of primitive functions that we use to construct
higher level operations.

5 The TAPIoca Architecture

Like Caesar’s Gaul, the architecture for the TAPI-
oca system is composed of three parts:

e TAPIoca API Function Set
e A set of standard Test Objects

e A Graphical User Interface

5.1 The TAPIoca API

The TAPIoca API, simply stated, is a set of proce-
dures that implement functions in TAPIoca that are
used within all test scripts. These functions provide
the testers with the test structure, and overhead,
that manage the following:

o Test Group blocking & metric collection.
e Test Case blocking & metric collection.
e Setting Test Group/Case Results

e Adding User Defined Statistics

e Changing Execution Options

e Changing GUI Options

e Creating a Pseudo-Random Number

e User Defined Comments to Output Log
e Displaying User Info to GUI

e Pausing for User Defined Time

Now, some of these, like the User Defined Time may
appear redundant with core Tcl commands, but in
our test environment these are simple extensions
that do a little more than their Tcl counterpart.

Take the User Defined Time again. Very similar
to the Tcl after command, but we needed to add
to it a display to the GUI that shows the “count
down” of the wait time. This is a legacy feature
from Autotest that lets the user know the system is
NOT dead, but it’s actually waiting for something.
A similar “count down” is used after a command is
sent to the SUT while TAPIoca awaits a response
from the SUT. Again, appearances can be every-
thing.

TAFPIOCA - v1.10.Beta.7

Pause _l Interactive _l Stop

Options

Help Stats

d
t Start Time: 10:04:03 Fri Jun 51338

Script Title: Multiple Test Groups (TL1)
% Group ID: Test_Response_In_Lists
Case ID: SendErlistd

Script Hame: {tmp_mntfusers faflick/project/tapiftestimultigroup_tH .tapi

‘ Command: { 9} tapi_comment -by pink -fy blue { GeneralErrors in Send: 0}

il

Test Case SendErList4
Logfile: itmp_mntiusersfaflickiproject/tapistestimultigroup_tr .out [T

| Waiting for response -16 . Scroll Lock
STAT BEGIN TEST SCRIPT : /tmp mnt/users/aflick/project/tapi/test/multi|l
STAT UserID : aflick
STAT TAPToca : v 1.10.Beta.7
STAT gtart Time : 10:04:05 Fri Jun 5 1998
STAT Description : It starts on the next line.
STAT : Bea Title & Objective, above.
STAT Title : Multiple Test Groups (TL1)
STAT Rosid : Id
STAT Type : Just an Example
STAT Subsystem : None
STAT SRS : 123-4567-890
STAT Environment : Workstation w/TLl simulator
STAT Recuirement : R-4321098765 ¥
4 I
= il

Figure 1: TAPIoca GUI
5.1.1 API Structure code inspection process, to create procedures that

There is a standard format for all our TAPIoca API
and internal private procedures. This was deter-
mined to be the best approach because testers, in
their test scripts, can also “extend” Tcl by writing
any procedures they may need. So, we came up with
a standardized format and naming convention with
which our testers were familiar.

The basic format of our procedures is as follows:

tapi_<command> 7args?
or
tprv_<command> 7args?

Therefore, within our environment, any procedure
starting “tapi_” is a TAPIoca API procedure, and
any procedure starting “tprv.” comes from within
the TAPIoca core. Testers are forbidden, by our

begin with either of these prefixes.

5.2 A Graphical Interface

To appease our former users of Autotest and to cre-
ate a test tool that would appeal to most new users,
we created a Graphical User Interface.

One of our “unpublished” requirements was that we
wanted all of the test scripts written in our replace-
ment system for Autotest to be able to be executed
in a “batch”, or “headless”, environment.

A “batch” mode implicitly means that the test en-
vironment cannot require a GUI for normal opera-
tion. This goal was foremost our minds when we
began designing an architecture for the GUI. For
TAPIoca we decided to literally “wrap” the GUI
code around the TAPIT core.

We wanted to preserve a “batch” mode in order
to support scheduled execution of test on a remote
platform. Previous experience has taught us it is
much more difficult to schedule an automated test
on a remote platform if that test requires a display
to print information on.

We utilized Tk to create the GUI shown in Figure 1.
We have our control bar across the top where our
menu buttons and tool buttons reside. As shown,
the state of each button is controlled during exe-
cution of a test script. The lower half of the GUI
is what we call our “logview” window. This win-
dow displays, in user definable fonts and colors, the
output of the test script’s execution just as it is writ-
ten into an output log file. We let the users define
the colors and fonts therein simply as a method of
making the GUI more acceptable to a wide range
of users. Did we mention that “Appearances are
everything”?

Controlling what is written into the logview is what
we call our File Viewer. The File Viewer also allows
the user to bring up a previously created log file and
view it with the user’s defined colors and fonts. The
File Viewer also serves to limit the amount of mem-
ory that the logview consumes. We had a problem
with limited memory when executing test scripts
that generated extremely large output logs. So,
by limiting the number of “lines” kept in memory,
we minimize the problem for software, and memory
consumption becomes a system usage problem.

The remainder of the upper portion of the GUI dis-
plays pertinent information for the tester. A quick
glance will tell if the test script is operating cor-
rectly, and where execution is within the test script.

As shown, we list the active Test Script, Test Group,
and Test Case. We also display the current TAPIoca
command being executed and its relative position
within the test script.

The design was to make the GUI as comprehen-
sive as possible, but at the same time keep it sim-
ple and uncluttered. There is always somebody
who wants “one more counter” or a “new button”
to perform some very application-specific function.
We fight vigorously against anything which involves
GUI-specific functionality in the TAPT core. It is
very important to us to defend the “headless” abil-
ities of TAPIoca to run without a GUI interface.

5.3 The Test Objects

The “real guts” of what makes TAPIoca into a valu-
able test tool is what we call Test Objects.

Originally written before [incr Tcl] was available to
us, we imitated the OO paradigm in TAPIoca by
utilizing some of the “magic” features of Tcl. One
of which is Tcl’s native feature of allowing a script
to define a procedure “on the fly”.

To understand what we did, take a close look at the
following TAPIoca command:

tapi_new <type> <name> <method> <entity>

The components of the tapi new command are as
follows:

type Declares this object to be a legal TAPIoca
type.

name A user defined name used to refer to this ob-
ject throughout a test script.

method The action to perform on the <entity>. It
must match the associated kind of <entity>.

-open Indicates the following <entity> is a
device that needs “opening”.

-cmd Indicates the following <entity> is a
program that needs execution.

entity The name of the device to be opened, or the
program to be executed.

Shown below is a more realistic looking tapi new
command that shows the script defining a GPIB type
object, to be referred to as hp4532 throughout the
test script, and we want device number 8 opened for
the interface. In the context of GPIB, this device
number refers to the listen address of the instru-
ment to which communication is required.

tapi_new gpib hp4532 -open /dev8

Following a definition of this type in a test script, a
procedure has been created by the name of hp4532,
in our example. Later in the test script, communi-
cation with this device is then done by the command

hp4532, followed by one of various “methods” that
is appropriate with this <type> of object. Such as
issuing the command:

hp4532 -send "range7" 7expected-response?

If the 7expected-response? is given, the actual
response from the instrument is compared with the
7expected-response? and flags are set accord-
ingly, enabling the user’s script to determine future
action, if any, based upon the comparison’s result.

There are several other common methods that each
object type contains. And, some of our object types
have methods that are specific to that type. Exam-
ples of other methods are:

-read Just read the device, or instrument.

-config Configure the device parameters (e.g. baud
rate, parity, etc.).

-login Login to the device under test.

6 TAPIoca at work

There are many interesting things that, internally,
TAPIoca does that we could emphasize, but, to be
brief, we’ll only look at a couple of them.

6.1 TAPIoca scripts

Figure 2 illustrates a typical test configuration. A
workstation on the lab network is running TAPTIoca,
and is connected to the SUT via a RS-232 interface.
This workstation is also connected to test equipment
via a GPIB bus. The GPIB bus could be either an
Sbus interface card internal to the workstation, as
shown here, or a bus controller tied directly to the
network with its own IP address.

In a TAPIoca test script, the tester could initialize
the SUT object and the two GPIB test box objects
as follows:

tapi_new tll msa -open /dev/ttya
tapi_new gpib hp4532a -open /dev6
tapi_new gpib hp4532b -open /dev8

Then, in this scenario, SUT setup commands could
be issued via the “msa” object command. Likewise,
commands to the GPIB test boxes could be accom-
plished via the “hp4532a” and “hp4532b” object
commands. So, a typical test case scenario for a
setup like this might follow these steps:

1. Issue SUT setup commands via “msa”

2. Issue GPIB setup commands via “hp4532a”
3. Issue GPIB setup commands via “hp4532b”
4. Read SUT status via “msa”

5. Change SUT setup via “msa”

6. Read SUT status via “msa”

7. Change GPIB setup via “hp4532a”

8. Read SUT status via “msa”

9. Change GPIB setup via “hp4532b”

10. Read SUT status via “msa”

A snippet of actual test code implementing a simple
test case is given in Figure 3.

6.2 Test Result Logs

The bulk of output logs generated by TAPIoca are
created by the Test Objects themselves. Therefore,
when implementing a new Test Object in TAPIoca
a great deal of thought is given to the output to be
generated.

Each Test Object is responsible for logging all of
its relevant activity to the TAPIoca log file. This
way testers are not burdened with reporting the de-
tails as part of their scripting efforts. We wanted
to make the test coding effort as “test logic” ori-
ented as possible, off loading as much overhead and
reporting tasks onto the TAPIoca system.

This approach in requiring Test Objects and the
TAPIoca API to generate the log output rather than
the test scripts has its greatest benefit in ensuring
conformity. No matter how poorly coded the test

Lab Metwork

T

——]

=

GFIB

TAPloca Waorkstation

=

Woarkstation

R5-232

Bl D51 —

HP4532

— B — D31 —

HP4532

SUT

(31 Cross-Connect)

Figure 2: Typical Lab Network Configuration

script is, the output log generated will always con-
tain a complete record of the steps applied to the
SUT. This abstraction also allows the output for-
mat to change globally without having to change
the logic in test scripts.

Figure 4 shows the output generated from the snip-
pet of test code given in Figure 3.

6.3 Integration with Other Tools

The OO abstraction provided by the TAPIoca arch-
itecture has permitted TAPIoca to be enhanced to
take advantage of newer technologies available. One
of the most important of these is TAPIoca’s integra-
tion with the TestExpert test management system.

One of the features of the TAPIoca environment
that was inherited from the desire to work like the
Autotest tool is generating a great deal of struc-
tured output automatically. The reason for this in
Autotest was to support the parsing that output
and extracting test metrics automatically. This was
never realized in the Autotest world because main-

tenance of the tool was so high that test tool devel-
opment had no time for new projects.

Much of the time spent maintaining Autotest in-
ternals was freed up after the adoption of TAPIoca.
This allowed test tool development to focus on other
problems like the management of tests and the col-
lection of metrics.

We decided that the best test management
tool would be one which would automatically
parse/distill the results of TAPIoca test and insert
them into a SQL database. Reports could then be
generated from that database.

We were all ready to start development of this sys-
tem when we discovered the commercial tool Test-
Expert. TestExpert is a test management system
from Silicon Valley Networks that did just what we
wanted. It would execute your tests and import
the results into a SQL database. It even included a
set of canned reports to get us started with report
generation. The only problem with TestExpert was
that it would only import files in the Test Environ-
ment Toolkit journal format into its database.

tapi_test_case Number213 {

tapi_comment "Connect testport 288 to monitor mode"

msa -send "ttst mon to 0108024 tp 288" \
"M ..:ooio. o.,.. . TTST MON
TRSP TRB SG T CGA.0. TLA R COMPL<cr><1f>"

....... ,0108024 TP 288 2 LN MSG:<cr><1f>

tapi_fail_case -miscompare msa "Testport 288 unable to go to monitor mode"

Figure 3: TAPIoca Code

After some investigation, we realized that the TET
format was not much different from the structured
output that TAPIoca generated. Taking advantage
of our OO architecture, as well as the TET API
code provided with the TestExpert product, we were
able to get TAPIoca to generate TET journal out-
put natively without any changes to the test scripts
themselves.

We can now run TAPIoca test scripts under the con-
trol of TestExpert and take advantage of TestExpert
features like remote and scheduled execution.

7 The Future

The TAPIoca architecture is based upon our own in-
ternally developed OO support code written in Tcl.
Going forward, we want to transition this code to
the OO model of [incr Tel].

Some work in this area has already been done, but
more needs to be accomplished, and we must be
careful in doing so, to keep existing test scripts ex-
ecutable.

This fact, as well as the lack of a released [incr Tcl]
for the latest version of Tcl/Tk (8.0), is keeping us
from upgrading to 8.0, but we plan to do so as soon
as possible.

We also would like to port TAPIoca to the Win-
dows NT environment. One of the requirements of
our industry often involves the testing and certifi-
cation of devices at the customer site. By porting
to the NT environment we could more readily take
advantage of the lower cost and higher availability
of Windows-based laptops.

Last, but not least, is evangelism. We continue to
promote TAPIoca internally. Several groups outside
our product organization have adopted TAPIoca as
their principle test environment. The extensible ca-
pabilities of both TAPIoca and Tcl/Tk has spawned
several other test groups to write their own TAPI-
oca test objects.

8 Acknowledgments

When both of us were at DSC Communications,
we worked in the same organization. Because of
that, our acknowledgment list is a common one. We
deeply convey a hearty Thank You to all those in
this list, both for their role in development and sup-
port of TAPIoca within DSC Communications.

Walt Mamed : Our team leader who kept us on
track when we wanted to pursue tangential
paths of development.

Cheri Snapp : The original manager of our tools
group who allowed us the latitude of develop-
ment we needed, when we needed it. She has
championed this test tool for some time and
continues to do so in her current position in
another division of DSC Communications.

Mark Scafidi : Test manager in another product
line within DSC who showed great patience
and trust in allowing us to demonstrate that
TAPIoca could do Tk GUI testing where
other products had not met his needs.

And, a special Thank You goes to Jim Edmunds,
our Vice President of product development who pro-
vided the funding and significant moral support for

Cco

STAT BEGIN TEST CASE : Number213

STAT Description : Setup odd split mode of fifth set of 12
STAT : two-way mapped testports.

STAT Start Time : 13:14:59 Fri Jun 5 1998

CO0

co Connect testport 288 to monitor mode

SND (msa) ttst mon to 0108024 tp 288<cr>

RCV(msa) ,R M 01:15:08 01,00 4 TTST MON 108024 TP 288 F FAIL DNY<cr><1lf>
RCV(msa),R <si>

ERROR ok ok okokskok ok s ok ok sk o e ok sk ok e ok sk s o e ke sk sk sk e ke ks sk e e ko sk ok ok ok

ERROR Miscompare Error

ERROR Expected:

ERROR M ..:..:.. ..,.. . TTST MON ,0108024 TP 288 2 LN MSG:<cr><1lf>
ERROR TRSP TRB SG T CGA.0. TLA R COMPL<cr><1f>

ERROR skokokookokok ok okokskok ok s koo ok sk o e ok sk e ok sk s o e ke sk sk sk o ke ok ok sk e e ko sk s ok ok ok

RESULT TEST CASE SUMMARY : Number213

STAT RESULT : FAIL

STAT REASON : Testport 288 unable to go to monitor mode
STAT End Time : 13:15:16 Fri Jun 5 1998

STAT Miscompares : 1

STAT END TEST CASE LOG : Number213

co

Figure 4: TAPIoca Output

the project, helping us keep focused on the goal of
creating a practical test automation tool.

9 Availability

Currently TAPIoca is an internal tool only available
inside DSC Communications.

Based on the history of the Mega Widgets extension
being associated with DSC Communications, we are
negotiating with management to release the core of
TAPIoca that would not be considered proprietary
to DSC Communications. We hope to make that
available by year’s end.

References

[Expect] Don Libes, Exploring Expect, O'Reilly &
Associates, Inc. (1995).

[Ousterhout] John K. Ousterhout, Tel and the Tk
Toolkit, Addison-Wesley Publishers (1994).

[NI488] NI-488.2M Software Reference Manual,
Sept 1994 FEdition, National Instruments Cor-
poration (1994), Part Number 320351B-01.
http://www.natinst.com

[TEAdmin] TestEzpert, The Test Management Sys-
tem: Administrator’s Guide, Silicon Valley
Networks (1997), http://www.svnetworks.com

