
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Tycho Slate: Complex Drawing and Editing in Tcl/Tk

H. John Reekie and Edward A. Lee
University of California, Berkeley

The Tycho Slate: Complex Drawing and Editing in Tcl/Tk

H. John Reekie and Edward A. Lee

School of Electrical Engineering and Computer Sciences

University of California { Berkeley

Berkeley CA 94720

fjohnr,ealg@eecs.berkeley.edu

Abstract

This paper introduces the Slate package, which has

been developed as part of the Tycho project at UC

Berkeley. The Slate is layered over the Tcl/Tk can-

vas, and contains features that we believe to be useful

for implementing complex graphical editing and vi-

sualization widgets. The �rst key feature is the abil-

ity to de�ne new item types in Tcl. The second is an

implementation of the concept of interactor, which

abstracts low-level mouse events into self-contained

objects. The third is access to and modi�cation of

items based on their shape, rather than raw coordi-

nates. Combined with a straight-forward implemen-

tation of the model-view-controller architecture, the

Slate is capable of implementing quite sophisticated

graphical editors.

1 Introduction

The Tk canvas provides a simple but powerful

set of structured graphics primitives, and is perhaps

the easiest toolkit available for drawing simple 2D

graphics. When we started to use the Tk canvas

with a view towards implementing various graphi-

cal diagram editors, however, we realized that we

needed a more powerful layer of abstraction.

To illustrate, �gure 1 shows a mock-up visual pro-

gram of the kind that we were interested in im-

plementing. This is a sample of a language devel-

oped in [10]. The rectangle marked \let" encloses

an expression, and the value of the expression is

indicated by the arrow connecting the two trian-

gular \terminals." The let-expression itself is con-

nected to another function box. Items within the

let-expression can be moved only within that frame,

while moving the whole frame will move everything

contained within it. This combination of hierarchy

and complex user interaction necessitated a higher-

level framework than the raw canvas.

let

Figure 1: A fragment of a visual program

We decided very early on that our implementation

would be only in [incr Tcl], in order to guarantee

portability. More recently, we used the namespace

facility of Tcl 8.0 to port the code to Tcl 8.0, and it

now runs in either Tcl and [incr Tcl]. Although the

Tcl-only decision presented its own set of implemen-

tation challenges, we were able to achieve acceptable

performance and the portability we desired. The

Slate should, in fact, work with any canvas exten-

sion, since it uses only the standard canvas interface

provided by Tcl/Tk.

After some experimentation, we ended up with a

package that implements the following:

User-de�ned items The key feature that makes

the Slate useful is the ability to de�ne new item

types in Tcl. Items can be composed recur-

sively, producing a straight-forward visual hier-

archy, as is common in many graphics packages

(see, for example, [2]). All of the canvas meth-

ods are rewritten to handle hierarchical items.

Item shapes Every item has a shape, such as

point, rectangle, polygon, or a custom-designed

shape. Items can be queried for the coordinates

of a feature, such as the north-east corner or the

second vertex. Items can be requested to move

one or more features, reshaping the item.

Interactors Event-handlers can be bound to any

level of the visual hierarchy. In addition, we

implemented a more abstract and more pow-

erful user interaction framework, in which par-

Item

addtag
feature
move
reshape

Interactor

tags
coords

{children = { }}{children /= { }}

Slate Canvas

bind
create
delete
find

Shape

ComplexItem SimpleItem

Line

Point

Oval

Polygon

Rectangle

bind
unbind

parent

children

Figure 2: The key framework classes

ticular sequences of user interaction events are

abstracted into objects called interactors.

We also added other useful methods, such as high-

lighting and selection. Unlike many research toolk-

its, we did not implement a constraint system, for

reasons detailed in a later section.

2 The core graphics framework

The Slate is implemented as a set of classes, or-

ganized around one key class called Slate. We have

tried to make the Slate a plug-in replacement for

the Tk canvas. A simple example:

set slate [::tycho::slate .s \

-height 300 -width 400 \

-background white]

pack $slate -fill both -expand 1

Figure 2 shows a conceptual representation, in the

Object Modeling Notation [11], of the key classes.

The diagram is conceptual only, because many of

these classes do not in fact exist { in the implemen-

tation, they are faked using Tcl procedures, canvas

item tags, and associative arrays.

The Slate class is wrapped around a Tk canvas.

It contains an arbitrary number of Items, which are

graphical elements that appear on the screen. An

Item is either a ComplexItem, which is in turn an

aggregation of Items, or a SimpleItem, which rep-

resents a single Tk canvas item such as a line or

rectangle. Each item has a Shape (see section 2.3),

and can be operated on by an arbitrary number of

Interactors (see section 3.2).

2.1 Complex item classes

To add a new item type to the slate, the pro-

grammer subclasses the ComplexItem class. Once

de�ned, items of the new type can be created and

manipulated just like regular Tk canvas items. For

example, one of the item types that we supply with

the Slate is called Frame, because it mimics the ap-

pearance of the Tk frame widget. To create a new

frame on a slate, we can execute code such as this:

set frame [$slate create Frame \

50 50 100 100 \

-color green -relief ridge]

which produces the item shown at the top left of

�gure 3. This item behaves like any other Tk canvas

item { for example, we can change its coordinates:

$slate coords $frame 70 70 140 120

We can move it:

$slate move $frame 40 20

We can get a list of items overlapping a given region

of the canvas, which will (in this case) include this

item:

set found [$slate find \

overlapping 100 100 200 200]

Figure 3 shows several other complex item types.

At the top right is a Solid , which is a polygon with

a pseudo-3D border like Frame; at the bottom left

is a LabeledRectangle, which is a rectangle with a

label and arbitrary graphics nested within it (in this

Figure 3: Some pre-de�ned complex items

case, two lines); at the bottom right is a SmartLine,

which is a line that, given two end-points and the

directions at those ends (n, s, e, or w), draws itself

as one or more orthogonal segments. We emphasize

that these items are a sample of those that we found

useful for building graphical editors, and that it is

quite simple to create new item types or to extend

existing types by subclassing.

2.2 Constructing hierarchy

Any subclass of ComplexItem can add items to it-

self, thus creating a recursive hierarchy of items. For

example, a Frame item consists of four simple items:

a rectangle for the central surface, two polygons for

the \lit" and \shaded" borders, and a transparent

rectangle that is used as a place-holder for the co-

ordinates of the whole Frame.

In addition to creating hierarchy by creating new

item types, an instance of the ComplexItem class

can have arbitrary sub-items added to it. To illus-

trate, we can create a blank complex item:

set citem [$slate create ComplexItem \

50 50 100 100]

The coordinates give the region to be occupied by

the item so that methods such as coords will operate

correctly. Now we can add items to it. For the sake

of example, let's add a pair of lines and an oval to

it:

$slate createchild $citem line \

50 50 100 100

$slate createchild $citem line \

50 100 100 50

$slate createchild $citem oval \

60 60 90 90 -fill green

The item that results is shown at the left of �gure 4.

Like any slate item, this item responds to methods

that move and scale it. For example,

$slate coords $citem

Figure 4: A dynamically-constructed complex item

will return f50 50 100 100g. The code

$slate scale $citem 50 50 0.5 1.5

will scale the item, producing the item at the center

of �gure 4.

In general, arbitrarily complex items can be built

up this way. Figure 5 shows one such hierarchy, sim-

ilar to those we use in one of our graphical editors.

As a general rule, a programmer should de�ne a new

subclass of ComplexItem when a particular graphi-

cal representation is used again and again, and use

dynamic composition of items, such as just given,

when items are combined as part of the editing op-

erations in a graphical editor.

2.3 Shape

Each item on a slate has a shape. Shapes provide

more sophisticated control over the coordinates of

an item than just its raw coordinates. Simple items

have a shape that cannot be changed; complex items

have a shape that is determined by the class de�ning

that item. Prede�ned shapes mimic the primitive

canvas item types: point, rectangle, oval, line, and

polygon.

An item with a given shape has a set of attributes

called features. Features are inspired by Gleicher's

work on constraint-based graphics [3]. A feature is

typically a point location on the item. An item can

be queried to �nd the value of a feature, and the

feature can be moved to change the shape of the

item. For rectangular items, the default features

are its center, the four corners, and the four edges;

for lines, the features are the vertices of the line.

For example, to �nd the coordinates of the north-

west corner of a rectangular item, we could execute:

set northwest [$slate feature $frame nw]

To reshape the item by moving the north-west cor-

ner left and down ten pixels, we could execute:

$slate reshape $frame -10 10 nw

Frame

MapIcon

Frame

map

mapLabel

parent

parent

children

TerminalMapGlyph

Figure 5: A sample visual hierarchy

All features can be read, but not all can be set;

center, for example, can be read but not set. Any

feature that can be set can also be grappled { that

is, have a grab handle attached to it. For example,

executing the code:

$slate grapple $citem

will add grab handles to the four corners and edges

of the given item. The e�ect of executing this code

is shown on the right of �gure 4 { this item can be

resized by dragging any of the grab handles.

The Shape classes are implemented as collections

of class procedures { each class handles feature

queries and reshaping of all items with that shape.

Complex items can choose their own set of features

by overriding their shape-related methods. For ex-

ample, the Terminal item in �gure 5 has features

called \origin" and \terminal," which are its base

and connection point respectively.

2.4 Tags

Tagging in the Slate is a fairly straight-forward

extension of the way that tags are implemented on

the Tk canvas. Any item can be tagged. For exam-

ple, given some item citem, we can write

$slate addtag "fred" withtag $citem

Some time later, we could write

$slate move "fred" -10 0

which would move citem, including all of its compo-

nents, ten pixels to the left. (Any other item tagged

with \fred" will also be moved.) Any node in the

hierarchy can be tagged in this way, and performing

an operation on the tag will operate on the corre-

sponding subtree of the hierarchy.

3 Interaction mechanisms

The visual hierarchy provides an elegant means of

constructing drawings, but does not by itself provide

user interaction. To e�ectively support construction

of visual language editors, we need to provide ways

of adding user interaction.

3.1 Bindings

The �rst interaction mechanism supported by the

slate directly mimics the binding mechanism of the

Tk canvas. With this mechanism, a command can

be bound to an event and an item. For example,

executing

$slate bind $citem <Button-1> {puts !!}

will add a binding to citem. Whenever the mouse is

clicked on item citem, the string \!!" is printed to

the console.

In the presence of a visual hierarchy, bindings take

on some subtle complications. In �gure 5, for ex-

ample, I want a click on either frame to be handled

by the top-level item. Dragging these items should

move the whole tree of items. The terminal item,

however, should respond di�erently { in this case, I

want clicking and dragging on the terminal item to

create a new arrowed line and extend the end of the

line to follow the cursor. Also, dragging on the text

label will sometimes need to select a region of the

text.

Our solution is to mark nodes of the tree: only

marked nodes are able to respond to user input.

Figure 6 illustrates a marked tree, in which nodes

a and e are marked. With respect to any node, its

root node is the root of the lowest marked sub-tree

containing it. The top-level node is the root of the

whole tree, and is implicitly marked. Conceptually,

a

b

d e

c

«Click»
«Drag»
«Drag»
«Drag»
«Release»

Drag interactor

Edit interactor
«Key-H»
«Key-w»
«Delete»
«Key-e»

Move commands

Edit commands

a

b

d e

c

«Click»

«Key»

Click handler

Key handler

«Drag»

Drag handler

f g f g

Figure 6: Events and interactors in the visual hierarchy

when an event occurs on an item, the event is prop-

agated up the tree until it reaches a marked node, at

which point the event is handled. This is illustrated

at the left of �gure 6: node a will handle events

from itself, b, c, and d; node e will handle events

from itself, f , and g.

In the current implementation of the Slate, nodes

can only be marked when they are created. Return-

ing to our earlier example, we can create a child

item of a ComplexItem that responds to user input

with code such as this:

set flag [$slate createrootchild \

$citem rectangle \

40 50 50 60 -fill red]

$slate bind $flag <Button-1> \

{puts Foo}

Events can also be used with tags. For example, we

can write

$slate bind "fred" <Button-1> \

{puts "Clicked fred!"}

and any top-level or marked child item tagged with

fred { that is, it and the nodes for which it handles

events { will respond to the event.

If used without any hierarchy, the slate thus pro-

vides the same mechanism as the canvas for event-

handling. The visual hierarchy aids more complex

item construction without discarding this powerful

mechanism. However, the binding mechanism is

low-level, and complex user interaction built on this

mechanism very quickly mushrooms into spaghetti-

like code.

3.2 Interactors

The second interaction mechanism is based on in-

teractors, proposed by Myers in 1990 [7] and im-

plemented in the Garnet toolkit and its successor,

Amulet [8, 9]. Interactors abstract user interac-

tion from the lower-level events upon which they

are built, and in the process modularize the code

and make it more re-usable.

An interactor is an object that intercepts events

and translates them into operations on a target item.

For example, a Follower interactor { so called be-

cause it \follows" the mouse { translates mouse

events into calls to the moveclick, movedrag, and

moverelease methods of the slate. To create a Fol-

lower interactor, we can execute, say:

set follower \

[$slate interactor Follower]

To make an interactor operate on an item, we bind

the interactor to that item. For example,

$follower bind $frame -button 1

Now, dragging the frame itemwith the mouse makes

it move { simple! To stop the item from responding

to the mouse, unbind the interactor:

$follower unbind $frame -button 1

The right side of �gure 6 illustrates two interactors

bound to nodes of a hierarchy. Interactors can be

cascaded to create more complex interaction. For

example, an interactor that moves an object only

within a certain region of the slate can be cascaded

with an interactor that quantizes movement to ten-

pixel steps.

Item

moveclick
movedrag
moverelease

Interactor

RepeaterFollower

bind
unbind
click
drag
release

Selector

button
modifiers
callbacks

cascade

bound

activated

BounderStepper DragDropper

delegate

mode

Figure 7: The interactor classes

A more complex combination is achieved with the

Selector interactor, which manages a graphical se-

lection in the same manner as typical drawing pro-

grams. When items become selected, the Selector

delegates interaction events to another interactor ac-

cording to various conditions that can be set up

by the programmer. For example, it might forward

mouse and keyboard events to a LineEditor inter-

actor if there is only a single text item selected,

and forward mouse events to a Follower interactor

if more than one item is selected.

Interactors allow user interaction code to be mod-

ularized, and, just as importantly, reused. In ad-

dition, they allow highly dynamic user interaction,

such as changing the e�ect of the mouse depend-

ing on the context (such as the number of items se-

lected). This kind of dynamic modi�cation of user

interaction would be very di�cult if coded directly

using event bindings. Some additional examples of

interactors are given in section 5.

4 Implementation notes

As mentioned previously, the ComplexItem

\class" and its subclasses, which de�ne new item

types, are not really implemented using classes. Be-

cause the natural implementation of complex visual

elements in Tk utilizes item tags to avoid recursive

tree-walks, we
attened the object structure as well.

(In a language that supports �ne-grained objects,

such as Java, we would use separate objects and

recursive tree-walk algorithms.)

Each \class" is thus a collection of procedures

that accept a slate, the contained canvas, and an

item ID as the �rst three arguments. Methods of

the slate call procedures in the appropriate names-

pace when necessary { for example, a command such

as

$slate create Frame 40 40 80 80

will call the construct procedure in the Frame

namespace. To simulate inheritance, each names-

pace contains an associative array mapping method

names to the appropriate procedure, which is over-

written in each \sub-class."

We used some other tricks as well. For example,

to access option variables and instance variables, we

index a shared array by a combination of a name and

the ID of the item. This allows the Slate uniform

access to the internals of complex items, regardless

of class. For example, a procedure in Frame that

accesses its color option would use:

set foo $option(color$id)

We use tags to simulate hierarchical complex

items. Although this seems conceptually simple, ac-

tually doing it in the presence of event bindings is a

little tricky. Each complex item is assigned a unique

ID when it is created { we use an integer preceded by

an underscore (the Tk canvas uses plain integers).

Every simple item within a complex item is tagged

with that ID:

Tagging rule 1: Every simple item

within a complex item is tagged with that

item's ID.

The corollary is that every simple item is tagged

with the IDs of all items above it in the hierarchy

{ this makes moving a subtree easy. Now, user in-

teraction often requires �nding the root item con-

taining a simple item. To make this e�cient, each

simple item within a hierarchy is given a special tag:

Tagging rule 2: Every simple item con-

tained in a complex item is tagged with the

ID of its root pre�xed by \!".

The corollary of this rule is that any simple item

that does not have a tag starting with \!" is not in a

hierarchy. With these rules, it is easy (conceptually

{ the implementation is a little tricky) to �nd, move,

and manipulate complex and simple items.

Now, some additional rules are needed to e�ec-

tively deal with event bindings (and, by extension,

interactors). Since a simple item can have only one

root, it can have at most one tag beginning with

\!". Therefore, when binding an event to a complex

item, we follow this rule:

Binding rule 1: To bind an event to a

complex item, bind to the tag constructed

by pre�xing its ID with \!".

The net e�ect is exactly as it would be if events

were propagated up the hierarchy until a marked

node were found. Finally, events can also be bound

to tags, which is the same as binding to a tag on the

canvas:

Binding rule 2: To bind an event to

a tag, bind the event to that tag on the

canvas.

The implementation of most slate methods based

on these rules is reasonably straight-forward. Each

method tests for three types of argument { a simple

item ID, a complex item ID, or a tag { and acts

accordingly. For example, a typical method has the

pattern:

if { [string match {[0-9]*} $tag] } {

Process a canvas item

...

} elseif { [string match {_*} $tag] } {

Process a complex item

...

} else {

It's a tag: find matching items

set items [find withtag $tag]

...

}

5 Building useful tools

The Slate itself is only part of the infrastructure

needed to build useful tools. In this section we

brie
y describe our implementation of some tools

that use the Slate.

Figure 8: A custom slider widget

5.1 Custom widgets

One of our �rst uses of the Slate was to build a

custom slider widget, shown in �gure 8. (It looks

much better in real life when you have several lined

up together.) This slider widget mimics the slid-

ers used in audio control equipment in appearance,

but mimics the Tk scale widget in behavior. Four

interactors are used to produce the desired user in-

teraction.

Figure 9 shows code for a simpli�ed version of this

widget. The four sections of this code:

1. Create the four items show in the diagram: two

text labels and two pseudo-3D rectangles.

2. Create and bind a Bounder interactor, which

moves the slider bar up and down and keeps it

within the desired limits.

3. Create and cascade a Stepper interactor, which

quantizes movement to multiples of 0.5 (in this

example).

4. De�ne a procedure that is called whenever the

bar is moved. The procedure calculates the

value represented by the bar, and updates the

numeric text item.

In the real Slider widget, there are two other in-

teractors that i) step the slider towards the mouse if

the left button is clicked on the background, and ii)

cause the bar to jump to the position of a button-2

click and then follow the cursor.

All told, constructing this widget was relatively

easy, and we didn't have to write a single event bind-

ing.

5.2 Graphical editors

Figure 10 shows a snapshot of one of the graph-

ical editors constructed using the Slate. This edi-

tor is the front-end for Ptolemy II, a new version

Create the display elements

set value [$slate create text 50 20 -text 0 -anchor s -fill blue]

set trough [$slate create Frame 48 23 52 143 -color darkgrey \

-borderwidth 2 -relief sunken]

set bar [$slate create Frame 40 132 60 142 \

-color darkseagreen -borderwidth 3]

set label [$slate create text 50 150 -text "Fred" \

-anchor n -justify center]

The bounder moves the bar along the trough

set bounder [$slate interactor Bounder \

-dragcommand "updateWidget $slate $bar $value" \

-constrain y -bounds {0 24 0 142}]

$bounder bind $bar -button 1

The stepper quantizes movement to increments of 0.5

set stepper [$slate interactor Stepper -stepsize [expr 108.0/22]]

$bounder cascade $stepper

proc updateWidget {slate bar value args} {

set position [expr [lindex [$slate coords $bar] 1] + 5]

set x [expr (137.0-$position)/108.0 * 10.0]

$slate itemconfigure $value -text [format %.1f $x]

}

Figure 9: A simple example of a custom widget

of Ptolemy [6] being written in Java. The par-

ticular system shown is a second-order continuous-

time simulation, written by Jie Liu of UC Berkeley.

In this editor, icons can be selected from a library

stored as ASCII text, which describes each icon in

terms of the ComplexItem type used to draw it, the

number and location of terminals, the label, and the

graphics to draw upon the surface of the icon.

Once placed, icons can be selected and moved

around. (This is done using the Selector and Fol-

lower interactors.) When the mouse moves over an

unconnected terminal of an icon, a DragDropper in-

teractor is activated, which highlights the terminal

to indicate that it is \ready." If the mouse is clicked

on the terminal, the DragDropper creates a new

SmartLine item, and reshapes the line so that the

end follows the cursor. When the end of the line

moves over a terminal, the DragDropper activates a

call-back to test if the terminal is a suitable \drop

target." If it is, it snaps [4] the end of the line to the

connection point of the terminal, altering the shape

of the line to make it join at the expected angle.

Internally, this graphical editor uses a variant of

the model-view-controller architecture (see, for ex-

ample, [1]). As the user places icons and connects

terminals, the interactors forward events to either

an edge controller or a vertex controller. The ar-

chitecture is shown in �gure 11. The controller �rst

decides what the user interaction means in terms

of the underlying semantics of the visual program,

and modi�es the semantic model accordingly (in this

example, the semantic model is a directed graph).

The controller also decides what visual aspects of

the program have changed, such as moving the end

of a line, or adding a new icon. It modi�es the

layout model accordingly, which in turn noti�es the

view containing the slate, which in turn updates to

re
ect the new appearance.

This seems, at �rst, somewhat complicated, but

our experience indicates that it does leads to highly

modular and customizable editors. We are, how-

ever, still gaining experience with this architecture.

Interactive response is very good, partly because

the interactor model is able to optimize incremen-

tal mouse movements while items are being dragged

about on the screen.

Finally, we note here our observations on the use

of constraints, as included in many experimental

toolkits ([8, 9], for example). In constraint systems,

the programmer sets up constraints between graph-

Figure 10: A snapshot of a graphical editor

ical items, which the constraint system attempts to

maintain as conditions change. For example, our

editor could have constraints set up such that the

ends of attached lines move when an icon is moved.

We wrote a simple constraint system early on,

and found that writing constraints to catch the right

conditions and to avoid cycles was tricky. We ended

up trashing the constraint system { simple though

it was { when we realized that the model-view-

controller architecture o�ers a better and simpler

alternative. If you look at �gure 11, you can see

that, as an icon is moved, the layout model must be

modi�ed for attached edges as well as the icon. How

do we know what edges to move? Why, by looking

at the semantic model!

Thus, we concluded that, in interfaces that have

an underlying semantic model, using that model

with an appropriate controller object is a more

straight-forward solution than general-purpose con-

straint solvers. In addition, since we have a compre-

hensive set of interactors, it is also straight-forward

to implement purely-syntactic constraints by appro-

priately con�guring interactors. For example, keep-

ing the slider in �gure 8 on the right track does not

require constraints, just the right interactor.

6 Concluding remarks

The Slate is, we feel, a powerful and useful tool

that provides a signi�cant increase in abstraction

over the Tk canvas. Because it is written entirely in

Tcl/[incr Tcl], it is highly portable and should work

with any other canvas extension.

The Slate is part of the Tycho user interface sys-

tem [5], which can be obtained from the Tycho home

page:

http://ptolemy.eecs.berkeley.edu/tycho/

Current development versions of the Slate can be

obtained from:

http://ptolemy.eecs.berkeley.edu/

~johnr/code/slate

Acknowledgments

Key infrastructure without which this project

would not have been possible has been developed

by: Michael McLennan of Bell Labs ([incr Tcl]/[incr

Tk]), John Ousterhout of Scriptics Corporation

(Tcl/Tk), and Mark L. Ulferts of DSC Communi-

cations Corp ([incr Widgets]). We also thank the

reviewers for their careful reading and comments on

this paper.

Tycho is part of the Ptolemy project, which

is supported by the Defense Advanced Research

Projects Agency (DARPA), the State of California

MICRO program, and the following companies: The

Alta Group of Cadence Design Systems, Hewlett

Packard, Hitachi, Hughes Space and Communica-

tions, NEC, Philips, and Rockwell.

I I
I Edge controller

Vertex controller

Layout model
Semantic model

View

Interactors

Figure 11: The architecture of a graphical editor

References

[1] Dave Collins. Designing Object-Oriented User

Interfaces. Benjamin/Cummings, 1995.

[2] James D. Foley, Andries van Dam, Steven K.

Feiner, and John F. Hughes. Computer Graph-

ics: Principles and Practice. Addison-Wedley,

1996. Second Edition.

[3] Michael Gleicher. A Di�erential Approach to

Graphical Manipulation. PhD thesis, Carnegie

Mellon University, 1994. Also appears as CMU

School of Computer Science Technical Report

CMU-CS-94-217.

[4] Scott E. Hudson. Semantic snapping: A tech-

nique for semantic feedback at the lexical level.

In Proc 1990 SIGCHI Conference, pages 65{70,

April 1990.

[5] Christopher Hylands, Edward A. Lee, and

H. John Reekie. The Tycho user interface sys-

tem. In The 5th Annual Tcl/Tk Workshop '97,

pages 149{157, 1997.

[6] Edward A. Lee and David G. Messerschmitt

et al. An overview of the Ptolemy project.

http://ptolemy.eecs.berkeley.edu/papers/

overview/, March 1994.

[7] Brad. A Myers. A new model for handling in-

put. ACM Transactions on Information Sys-

tems, 8(3):289{320, July 1990.

[8] Brad A. Myers, Dario Giuse, Roger B. Dan-

nenberg, Brad Vander Zanden, David Kos-

bie, Ed Pervin, Andrew Mickish, and Philippe

Marchal. Garnet: Comprehensive support

for graphical, highly-interactive user interfaces.

IEEE Computer, 23(1), November 1990.

[9] Brad A. Myers, Richard G. McDaniel,

Robert C. Miller, Alan S. Ferrency, Andrew

Faulring, Bruce D. Kyle, Andrew Mickish, Alex

Klimovitski, and Patrick Doan. The Amulet

environment: New models for e�ective user in-

terface software development. IEEE Transac-

tions on Software Engineering, 23(6):347{365,

June 1997.

[10] H. John Reekie. Realtime Signal Process-

ing: Data
ow, Visual, and Functional Pro-

gramming. PhD thesis, School of Electrical

Engineering, University of Technology, Sydney,

Australia, September 1995.

[11] James Rumbaugh, Michael Blaha, William

Premerlani, Frederick Eddy, and William

Lorenson. Object-Oriented Modeling and De-

sign. Prentice-Hall, 1991.

