
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Moving the Ensemble Communication System to NT and Wolfpack

K. Birman, W. Vogels, K. Guo, M. Hayden, T. Hickey,
R. Friedman, R. van Renesse, Al. Vaysburd

Dept. of Computer Science, Cornell University
S. Maffeis, Olsen & Associates

Moving the Ensemble Communication System to NT and Wolfpack†

K. Birman W. Vogels K. Guo M. Hayden
T. Hickey R. Friedman R. van Renesse Al. Vaysburd

Dept. of Computer Science‡

Cornell University

S. Maffeis
Olsen & Associates

† Supported, in part, by DARPA ITO under ARPA/ONR contract N0014-96-1-10014, and in part by grants from Siemens, Intel
and Microsoft.
‡ Visit http://www.cs.cornell.edu/Info/Projects/Horus for information on how to contact the authors. Our software is available for
general use at no fee; details on downloading and running it can be found on the web page.

Abstract

Cornell University has developed a group communica-
tions and membership management tool, called the En-
semble system, which provides the basis for introducing
guarantees such as reliability, high availability, fault-
tolerance, consistency, security and real-time respon-
siveness into applications that run on clustered parallel
computers or high speed networks. Ensemble tools are
flexible, extremely transparent, and achieve high per-
formance. Our development started under Unix in 1995,
but by 1996 had enlarged to include NT as a primary
target. This paper reviews Ensemble and then discusses
the technical issues that arose when repositioning it to
fit naturally and perform well under NT.

1 Introduction

Our research seeks to develop a new generation of
groupware communication tools for modern networked
environments, The Ensemble system offers support to
the application developer who wishes to introduce guar-
antees such as reliability, high availability, fault-
tolerance, consistency, security and real-time respon-
siveness into network applications. Although our project
started on Unix platforms, a recent emphasis has been
on the integration of the Ensemble tools into NT plat-
forms and high-availability clusters of NT-servers such
as those managed by Wolfpack.

The key to our work is to focus on what we call process
group communication structures that arise in many real-
world settings involving cluster-style computing, scale-
able servers, groupware and conferencing, distributed
systems management, and fault-tolerance. A process

group is just a collection of processes running on some
set of computers in a network. Our work uses process
groups to support execution guarantees (for example,
that a request to a critical server will be done even if a
failure occurs, or will be completed within a real-time
deadline), replicated data or computing, distributed co-
ordination or control, and so forth. The emphasis of our
effort is on the underlying communication systems sup-
port for this model, on simplifying and standardizing the
interfaces within our support environment, and on
making the model as transparent (hence, easy to use) as
possible.

2 Isis, Horus, and Electra

Over the past 12 years, our project has developed a se-
ries of three related software systems. All solve the
group communication problem, but they differ in focus.
Our first was called the Isis Toolkit, and was developed
at Cornell during the period 1985-1990. Isis was com-
mercialized by Isis Distributed Systems (currently a
division of Stratus Computer), and found success in
settings like stock markets, air traffic control systems,
electric power plant monitoring and control, factory-
floor automation in VLSI fabrication plants, telecom-
munications systems, and banking/brokerage systems.

By 1990, we had encountered a number of potential Isis
applications that pushed the system to its limits. These
included very large-scale applications (with hundreds of
participating computers) and cluster-styled systems, like
the ones that Wolfpack is designed to support. Such
systems often require more than the basic software
fault-tolerance solutions offered by Isis. For example,
many cluster-based systems require strong real-time

guarantees as part of the fault-tolerance architecture. As
an extreme case, a cluster computer used in an SS7
telephone switching system (an “IN coprocessor”) must
handle thousands or tens of thousands of call requests
per second, guarantee 100ms response times for each
event even as nodes fail and restart, and exhibit at most
3-secs downtime per year. Such requirements go be-
yond what Isis was able to provide.

We built the Horus system as a response to these needs.
Developed over a 5-year period that started in 1991,
Horus supports Isis-like functionality, but was designed
to match its guarantees to the real needs of the applica-
tion. We use this feature to tune Horus, so that it will
give the best possible performance consistent with the
reliability requirements of a specific use. The architec-
ture is a modular one based on layered protocols. The
protocol stack supporting a particular group communi-
cation application is “plugged together” at runtime. By
hiding Horus behind standard interfaces, we obtained a
good degree of transparency: this tactic allows us to slip
group-based mechanisms into applications that were not
designed with group communication as an explicit goal.
Moreover, Horus supports an object-oriented interface
to the CORBA architecture, which we call Electra.

Horus pushed well beyond the limits of Isis. For exam-
ple, we used Horus to emulate an SS7 telephone
switching coprocessor on a cluster of Unix systems. Our
solution handled 20,000 telephone requests per second
within the 100ms deadline, dropping less than 1% of
calls (randomly) even if a failure occurred under peak
load. For multicast applications over ATM networks,
Horus achieved 85us end-to-end latency, and sustained
throughputs of 85,000 1-byte multicasts per second.

As Horus matured, however, we encountered issues that
lead to a complete reimplementation of the system. We
are calling this most recent system Ensemble. In con-
trast to Horus and Isis, which were Unix-oriented, En-
semble is intended to run on NT as well as Unix and
Linux, and is increasingly NT-centric in design. The
body of the present paper focuses on issues raised by
this shift in target platform.

3 The Ensemble System

Our key reason for moving to Ensemble concerns the
method used to optimize Horus protocol stacks for good
performance. It is well known that when protocols are
built in a modular, layered manner, as in Unix streams

or object-oriented communication architectures, the
strict modularity of the layers can introduce substantial
overhead. In Horus, we encountered this problem, and
overcame it by developing a method for optimizing Ho-
rus protocol layers to drastically compress message
headers and also shorten the critical path for most mul-
ticasts. When we applied these techniques to Horus,
however, they increased the complexity of the system,
reducing the benefits of modularity and flexibility.

Recoding Ensemble in OCaml, an object-oriented dia-
lect of the ML language, made it possible to use a pow-
erful theorem prover called Nuprl to do these sorts of
transformations automatically. We are experimenting
with using Nuprl to automatically generate highly opti-
mized protocol stack that exhibits the low latencies and
high throughputs that previously required a laborious
hand-optimization. Although even compiled OCaml
executes more slowly than C, the new protocols in En-
semble are currently faster than similar protocols in
Horus, on the same hardware. Moreover, we are ex-
perimenting with using Nuprl to verify that Ensemble
correctly implements critical protocols such as the ones
that synchronize the reporting of group membership
changes with the delivery of messages. Such formal
proofs will be a valuable adjunct to exhaustive testing or
other ad-hoc methods of convincing ourselves that these
complex protocols work correctly. In the future, we may
be able to gradually prove the correctness of more and
more of Ensemble as a whole.

Users of Ensemble treat it as a collection of tools and
communication primitives. Our users typically code
applications in C, C++, Tcl/Tk, Java, SmallTalk or ML.
They access Ensemble through “toolkits” that include
libraries for replicating key portions of an application to
make it fault-tolerant, replicating data for rapid access
or parallelism, doing coordination and synchronization
when multiple systems cooperate on a task, providing
membership management for tracking the participants
in an application, and automatically setting security
keys. Ensemble is already integrated with Kerberos and
PGP and we are now looking at support for other secu-
rity architectures the RSA version of Kerberos, SSL,
Fortezza, and IPSEC.

Like Horus, Ensemble can be configured at runtime to
match the needs of the application and to exploit the
properties of the network on which it is running. If de-
sired, one application can run over several multicast
groups simultaneously, configuring each to offer differ-
ent properties. For example, a multimedia conferencing
system could configure one multicast group for video,
one for audio, and one for control. Each would employ

a protocol matched to the reliability and security needs
for the kind of data it handles.

4 Porting Ensemble to NT.

Porting Ensemble to NT raised a number of issues, the
first of which stems from our use of OCaml. OCaml is
an object-oriented dialect of the ML language, and is
structured to encapsulate portability issues in its runtime
environment. OCaml can be used either as a platform
independent bytecode interpreter, or a generator of na-
tive assembly code. Ocaml’s support libraries are writ-
ten in C, and the overall system exhibits only a slightly
degraded performance when compared to implementa-
tions in to other high-performance languages.

Cornell researchers extended the OCaml runtime under
Win32 with an interface to the communication subsys-
tem (winsock). This proved difficult because of the
need to retain compatibility with Unix. For example,
WIN32 file and socket descriptors represent different
objects and cannot be “mixed”. In Unix, however, all
types of file descriptors are considered to be of the same
type. Thus, where Ocaml’s runtime system previously
could use a single select system call applied to all open
file descriptors, the Win32 interface required a more
complicated structure to treat the various file types
separately but concurrently.

This said, the majority of the porting effort went into
constructing a build environment that would work for
Unix as well as Win32. The Win32 tools have different
semantics or are severely crippled (nmake), but we de-
cided not make use of ported versions of the Unix tools
under NT to avoid a non-standard build process. The
Ensemble source code is now maintained under Unix,
but during the checkout process scripts are used to pro-
duce Win32 make and dependency files.

5 Matching the NT programming Model.

 The de facto standard for programming open NT appli-
cations is the Component Object Model (COM), which
was recently extended to take the distribution of objects
into account (DCOM). Under NT, Ensemble provides
its functionality through a collection of COM interfaces.
Using these interfaces various levels of abstractions are
exposed to the programmer, giving the developer full
control at whatever level of detail is needed to imple-
ment the system under construction. Some of these are:

• A low-level, event driven interface. Internally En-
semble is a pure event driven system, and a subset

of these events is exposed through a connectable
COM interface. This allows higher level program-
ming toolkits to be implemented using collections
(groups) of COM objects.

• A high level, object oriented interface. We built a
toolkit, called Maestro, which extends Ensemble
with a collection of C++ classes that implement
ADT's for essential types (endpoint ID's, messages,
error handlers, etc), group-member/client-server
abstractions and state-transfer for server objects.
These types and their interfaces are exposed to
COM programmers through a COM interface.

• A highly available RPC interface. Ensemble pro-
vides an RPC system that allows clients to access
high-available objects in a transparent, fault-
tolerant fashion. If the connection to an instance of
an object fails, it will automatically reconnect the
client to another instance of the object. Part of the
RPC system is an inter-server protocol, which en-
sures that the servers are aware of the fail-over of
clients between objects and are able to perform the
necessary repair and garbage collection.

These three interfaces represent generic Ensemble
services in the sense that they are available on all plat-
forms that Ensemble runs on. The services are encap-
sulated in COM interfaces to ease the integration of this
complex technology into the wold of everyday Win32
programmers.

We have found these interfaces successful in assuring a
certain level of ease of integration, but they still require
that the developer have some awareness of the distrib-
uted architecture of the system being developed. As
such, these interfaces are normally used to implement
high performance cluster-style servers that can provide
load balancing, fault-tolerance, or parallel processing.

For clients accessing such servers, our intent is to offer
a very high degree of transparency, so that the devel-
oper can work without being aware that the server is
using Ensemble-based tools. We also interested in pro-
viding support for managing standard (Ensemble un-
aware) server objects in such a way that they can
achieve the high reliability of a sort similar to that
available for Ensemble aware server objects. This type
of transparency is achieved through the use of Ensem-
ble-aware proxy objects at the client nodes, through
high-available referral objects that manage the access to
server objects and through manipulation of the binding
process at the OXID services.

For applications that use standard DCOM interfaces, it
is possible to do completely transparent replication and
management. Ensemble provides a Distributed Object
Container that runs as an NT service at each available
server node. Operations on the container server are
automatically presented to the contained objects, which
see identical invocation sequences (this is called “state
machine replication”). By dropping a standard DCOM
object into such a container, it can be replicated with no
changes at all. In the future, we plan to extend the per-
formance and functionality of our container by provid-
ing other replication options in addition to state machine
replication, and by providing functionality for managing
the group of objects as a whole. Eventually, we should
be able to provide a “replication wizard.”

Ensemble provides two additional services that increase
the reliability of the overall distributed system: a high-
availability directory service, accessible through COM
interfaces as well through LDAP, and a replicated ob-
ject store. The latter also provides highly-available stor-
age for persistent object state. Regular COM objects can
be initialized from this high-available storage using the
familiar IPersist* interface.

6 NT server clusters and Wolfpack

One of the areas for which Ensemble seems well
matched is high availability cluster computing. The En-
semble tools can be used for cluster management (to
achieve higher reliability both in availability and per-
formance), and can also be used when developing appli-
cations that exploit the services of a high-availability
cluster. Our research into cluster computing is looking
at ways to combine the Ensemble tools with Wolfpack.

Wolfpack is a management system under development
at Microsoft, which targets the market for highly avail-
able clusters of NT-servers. At present, Wolfpack pro-
vides generic application fail-over, whereby groups of
applications are automatically restarted on an alternative
node of the cluster in case of a failure of the first node.
Selection of the alternative node is based on the (physi-
cal) resources that need to be present for the application
to function. Clients using such a service experience a
disconnect from the failed server, and must then recon-
nect to a new instance of the application running at the
surviving node. Wolfpack assigns IP addresses that can
migrate between the nodes with groups of cluster appli-
cations, enabling clients to use the same address to con-
nect to a server independent of the node on which it is
actually running.

To support fault handling by the restarted application
Wolfpack provides disk sharing (at SCSI level) and
registry replication between the two nodes. The new
application instance is expected to read the state of the
failed application instance from the shared disk and,
through a recovery mechanism, to recover the state of
the application at the time of a failure. In effect, an ap-
plication that was running on a node when it fails will
be restarted only on another node that offers an indistin-
guishable execution environment. This approach offers
a practical means of supporting applications that are
restartable but not cluster aware, and that cannot be
actively replicated using process group software.

However, there are a number of drawbacks to this ap-
proach, relating primarily to scale and to achieving con-
tinuous availability instead of fail-over. For example, it
would not have been possible to solve the telecommuni-
cations coprocessor problem using a disk-based state
management approach, because recovery would vastly
exceed the 100ms limit on latency for individual re-
quests and the 3-second overall limit on downtime per
year for such applications. Moreover, in this approach,
adding nodes to the cluster does not increase the per-
ceived reliability of an application, its availability (only
a limited number of nodes can physically share a disk),
or its performance (only one instance of the application
can be active at the same time). In practice the scalabil-
ity model presented by the current Wolfpack organiza-
tion is that of islands of 2-node clusters.

Even on a 2-node system Ensemble can be used to pro-
vide nearly continuous availability without the need to
physically share resources. This is done using a pri-
mary/backup configuration where the second applica-
tion instance is used as a hot standby. Ensemble guar-
antees that the state of the second instance is in sync
with the primary instance. Fail-over to the second in-
stance can be achieved with the guarantee that no state
has been lost and recover/rollback (with possible loss of
transactions) is not needed. Ensemble also supports an
alternative called full active replication, where the ap-
plication is active on both nodes and provides continu-
ous operational guarantees while exploiting the re-
sources on both nodes. In the limit, Ensemble is able to
generalize cluster and application management to
achieve n-way fault-tolerance, where each node can be
backed up by n other nodes.

N-way fault-tolerance offers the potential for load-
balanced use of the available resources, and big wins
through scalable parallelism and large in-memory cache
or databases. Returning again to the telecommunications
application, much of the complexity is associated with

keeping the right information in the database buffer
pool (cache), because databases of customer profile
information are too large to fit in the memory of a uni-
processor. A cluster can potentially support an arbitrar-
ily large memory (simply by adding nodes), creating the
potential for a completely memory-mapped solution.
We believe that comparable requirements arise in many
domains.

Integrating Ensemble closely with Wolfpack to augment
its cluster management system presents challenges be-
yond the ones encountered in simply porting Ensemble
to NT. The management API of Wolfpack provides
what are called clusters, groups and resources, where a
cluster manages a set of groups, which contain a set of
resources. Failure detection is offered at the level of
resources while migration policies apply to groups. In
these respects Wolfpack goes beyond Ensemble, both
by offering API’s specialized to a problem that we have
not focused upon in our work to date, and by supporting
management functions extensible by third parties, that
would typically be outside the scope of software devel-
oped in academia. Basically, Wolfpack supports the
notion that a group of resources will automatically be
“moved” from node to node if a node fails. Resources
can be associated with preferred nodes, and hierarchies
of dependencies can be created, so that resources will be
restarted in the right order.

The best match for this organization within Ensemble
arises in a tool that we call the Maestro Group Man-
ager. The group manager is a service, built out of En-
semble components, which provides hierarchical group
management by tracking the membership of a managed
process or communication group and automatically re-
configuring a group when one of its members fails.

Wolfpack treats its membership management subsystem
in a modular manner; hence it is possible to replace the
standard membership module with a proxy component
that has a tight interaction with the Maestro tool. Doing
this would provide Wolfpack with a scalable node and
process membership. In effect, Ensemble now functions
as the subsystem responsible for tracking cluster and
resource membership. However, this step also makes
the basic Ensemble functionality available to Wolfpack
developers. For example, parallel database query en-
gines could exploit Ensemble’s high speed data replica-
tion and synchronization support. Such mechanisms are
needed in implementing basic database operations on
parallel processors, and standard solutions would pre-
sumably appeal to database vendors. Secure applica-
tions could use Ensemble’s secure replication mecha-
nism to distribute and manage keys within cluster mem-

bers. And the techniques we used to achieve real-time
responsiveness in our telecommunications switch ex-
ample would become available to Wolfpack application
developers in domains that demand real-time perform-
ance guarantees. For example, we recently developed a
high performance Web server with real-time response
guarantees, using the same approach.

The functionality offered by the Ensemble tools is quite
a bit more general than that currently used in Wolfpack
or planned for the next releases. In particular, Ensemble
can be used to manage a cluster, but can also be used as
a groupware programming environment. In this case,
Ensemble is accessed from the Java language combined
with a Web browser plug-in or an Active/X control. The
Wolfpack membership tracking and reconfiguration
mechanisms, in contrast, are a module internal to Wolf-
pack and not exposed for purposes other than the ones
just mentioned. We believe that for developers of appli-
cations in which groups of participants cooperate or
coordinate (such as multi-user interactive games, virtual
reality environments, or business applications involving
conferencing and briefings with multiple participants),
group communication tools are important, and also easy
to use. We see big advantages to factoring out group
membership tracking and communication functionality,
so that a single subsystem can support these very varied
potential uses.

7 Ensemble Roadmap

At the time of this writing, the NT version of Ensemble
is stable, including the C++ and Java programming in-
terfaces (our Unix versions have been stable for some
time and we have a growing user community). Under-
standing how to fully embed group communication and
multicast functionality into COM/DCOM, and thus Ac-
tive/X, will take some time; we already knew how to do
this on the Unix and CORBA side because we sup-
ported such an option for Horus. We expect that by the
autumn of 1997, Ensemble will be easily useable from
Java or C++ through several COM interfaces on NT
platforms including Wolfpack, and that by late in the
year, we will have a stable integration of Ensemble into
DCOM. In the same time frame we will be designing a
number of Active/X control interfaces, based on the
Ensemble/COM interface, and targeting group collabo-
ration and communication opportunities.

The longer-term vision of our effort revolves around the
seamless, highly transparent, introduction of “strong
properties” into network applications developed using
standard tools and programming practices. A funda-

mental premise underlying our work is that most critical
applications are being developed using conventional
off-the-shelf building blocks and combined into appli-
cations using standard techniques. We have come to
believe that even the most critical applications are es-
sentially forced to do this because it represents the only
practical way to take advantage of modern computing
technology. The challenge, as we see it, is to “harden”
such systems without requiring source-code changes.

We are also expanding our emphasis on security. We
believe that the community seeking “high reliability”
has a broad notion of what this should mean, in which
security goals are at least as important as fault-
tolerance. A major goal is to integrate Ensemble with
all the prevailing security options for distributed com-
puting, so that any Ensemble application can transpar-
ently obtain authentication credentials for the processes
with which it interacts, can encrypt or sign sensitive
data by simply specifying the need, and can obtain
trustworthy services such as group membership man-
agement and routing.

Finally, we are developing a more flexible notion of
reliability itself. In Isis, Horus and Ensemble, up to the
present, reliability has tended to be of an all-or-nothing
flavor. The ability to build flexible protocol stacks has
opened the door to supporting other notions of quality of
service within Ensemble, but we haven’t taken very
much advantage of this so far. A big goal of ours in
1997 is to begin to develop probabilistic protocol stacks,
which might offer a way to trade off between reliability
and other goals, such as steady latencies or scalability.
As noted earlier, Isis began to run into performance
issues as it scaled into the low hundreds of participants.
We believe that Ensemble could scale to thousands or
tens of thousands using protocols that substitute a rigor-
ous notion of “very probable behavior” for the “guar-
anteed reliability” of the basic virtual synchrony model.

Success in this effort could have a broad impact on the
reliability and security of mission-critical distributed
computing systems. Today, a tremendous rollout of
these systems is occurring in settings that include medi-
cal critical care, air traffic control, on-board avionics
systems, financial systems, factory automation, and
critical business applications. Such applications de-
mand extremely high levels of reliability. By providing
easily used reliability and security solutions, well inte-
grated with standard platforms and programming tools,
and flexible enough to match the properties provided to
the needs of the user, these critical applications can be
made safe and secure. Indeed, we look forward to the
day when reliability and security tools will be a com-

mon feature of standard distributed operating systems,
much like file systems, TCP/IP communication, and
Web technologies.

Online information

 http://www.cs.cornell.edu/Info/Projects/Horus

References

Building Reliable and Secure Network Applications. K.
Birman, Manning Publishing Company (Greenwich,
CT) and Prentice Hall, January 1997. 550pp.

Software for Reliable Networks. K. Birman and R. van
Renesse. Scientific American 274:5 (May 1996), 64-69.

Horus: A Flexible Group Communications System. R.
van Renesse, K. Birman and S. Maffeis. Commun. of
the ACM 39:4 (Apr. 1996), 76-83.

Using Group Communication Technology to Implement
a Reliable and Distributed IN Coprocessor. R. Friedman
and K. Birman. Proceedings of TINA ‘96: The Conver-
gence of Telecommunications and Distributed Comput-
ing Technologies. Heidelberg, Germany, Sept. 3-5 1996,
25-42. VDE-Verlag.

Software releases

The Horus project has produced two generations of
software. The first generation, Horus, is stable, and
available for general use. There are no licensing fees for
research use of Horus. Horus commercial rights, how-
ever, have been exclusively licensed by Cornell Univer-
sity to Isis Distributed Systems, which is developing a
commercial product in this area. Contact rcbc@isis.com
(Dr. Robert Cooper) for details concerning the commer-
cial product offering, support, or other services.

Cornell University is making Ensemble available at no
fee in source form for both research and commercial
researchers. The system is available today and addi-
tional releases are expected periodically during 1997
and 1998 as new functionality is completed.

