i

The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop
Seattle, Washington, August 1997

Coordinated Thread Scheduling for
Workstation Clusters Under Windows NT

Matt Buchanan and Andrew A. Chien
Concurrent Systems Architecture Group
Department of Computer Science, University of Illinois

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Coordinated Thread Scheduling for Workstation Clusters
Under Windows NT

Matt Buchanan and Andrew A. Chien
Concurrent Systems Architecture Group
Department of Computer Science, University of Illinois
({ mbbuchan, achi en} @s. ui uc. edu)

Abstract

Coordinated thread scheduling is a critical factor in
achieving good performance for tightly-coupled par-
allel jobs on workstation clusters. We are building a
coordinated scheduling system that coexists with the
Windows NT scheduler which both provides coordi-
nated scheduling and can generalize to provide awide
range of resource abstractions. We describe the basic
approach, called “demand-based coscheduling”, and
implementation in the context of Windows NT. We
repot preliminary performance data characterizing
the effectiveness of our approactdatescribebene-
fits and limitations of our approach.

1. Introduction

Coordinaté schedulig for parallel jobs across the
nodes of a multiprocessor is well-known to produce
benefis in both system and individual job efficiency
[1, 5, 6]. Without coordinated scheduling, parallel
jobs suffer high communicatiolatencies between
constituen thread due to context switching. This
effed is exacerbated if the thread scheduling for indi-
vidud nodes is done by independent timesharing
schedulers. With high performancetworls that
achievelatencies in the range of tens of microsec-
onds, the scheduling and context switching latency
can increase communication latgray sever&orders

of magnitude. For example, under Windows NT,
CPU quanta vary from 20 ms to 120 ms [B]plying
that uncoordinated scheduling can cause best-case
latencies on the order of @ pus to explode by three to
four orders of magnitude, nullifying many bengfif

fag communication While multiprocessor systems
typically address these problems witimia of batch,
gang, and timesharing scheduling (basedkernel
schedulerchanges)the problem is more difficult for
workstatian clusters in which stock operating systems
kernek must be run. Coordinated scheduling reduces

communication latencies by coscheduling threads that
are communicating, therebgliminating the context
switch ard scheduling latencies from the communi-
cation latency. Another importamproblem is that
uncoordinated scheduling can reduce systeifi
ciency as increased latency can deaedhe effi-
ciency of resource utilization. As high-performance
networks and CPUs become more affordable for
high-end computing, scheduling emergesaasm-
portant factor in overall system performance.

A low-latency, high-bandwidth messaging layer
works to bridge the mix ofnterconnect,operating
system, and user applications, delivering rids per-
formance of the interconnect to the software
[14,2,8,9]. Such layers are essential because they
make available the high performance of thelerly-
ing network hardware to applications. lllinois Fast
Messages (FM) is such a messgdayer[14], ard is

a key part of the Concurrent System Architecture
Group’s High Performance Virtual Machines
(HPVM) project[15], which seeks to leverage clus-
ters of commodity workstati@grunning Windows NT

to run high-performance parallel and distributgs
plications. Fast Messages can deliver useresfrac
user-space communication latencies a8 & 8 us
and overheads of a feus. However, such levels of
performance implies avoiding interrgpand system
calls so systens suchas FM use polling to detect
communication events, and therefore youlelivers
peak communication performane when effective co-
scheduling is achieved.

Coschedulig for clusters is a challenging problem
because it must reconcile the demaofiparalld and
local computations, balancing parallel efficiency
against local interactive response. Ideallcosched-
uling systemwould provide the efficiency of a batch-
scheduled system for parallel jobsdanprivatetime-
sharirg systemfor interactive users. In reality, the
situation is much more complexs we expe¢ some
parallé jobs to be interactive. Furthermore, in a

cluster environment, kernel replacement is difficult at
best, so we restrict ourselves to approaches that in-
volve augmentation of existing operating system in-
frastructure.

Our approach to coordinated scheduling is Demand-
based Coscheduling (DCS) [4, 7] which achieves
coordination by observing the communication be-
tween threads. The essence of this approach is the
observation that only those threads which are com-
municating need be coscheduled, and this admits a
bottom-up, emergent scheduling approach. This ap-
proach can achieve coscheduling without changes to
the core operating system scheduler and without
changes to the applications programs. DCS causes
the Windows NT scheduler to schedule communicat-
ing threads in a parallel job to run at roughly the same
time, thereby minimizing communication latency.

Our implementation of DCS in Windows NT coexists
with release binaries of the operating system require a
customized device driver for the network card (in this

case the Myrinet [13] card). This driver memory
maps the network device into the user address space.

The device driver, combined with specia Myrinet
firmware, influences the operating system scheduler’s
decisions by boosting thread priorities, based on
communication traffic and system thread scheduling.
The DCS algorithms are designed to drive the node
OS schedulers into synchrony, achieving coschedul-
ing among parallel threads that are closely communi-
cating while simultaneously preserving fairness of
CPU allocation. Our experiments evaluate an imple-
mentation of DCS for Windows NT, demonstrating
that such an architecture is feasible, and validating
DCS as a —promising approach for coscheduling.
However, more extensive experiments are required
before stronger conclusions can be drawn.

The remainder of this paper is organized as follows.
Section 2 describes demand-based coscheduling
briefly and our implementation approach for DCS.
Section 3 describes performance with DCS, and sec-
tion 4 presents some concluding remarks.

2. Demand-based Coscheduling

2.1. Overview

Demand-based coscheduling makes one central ob-
servation about the problem of scheduling parallel

jobs, that onlycommunicating threads need to be co-
scheduled to overcome scheduling and context switch
latencies. DCS is driven directly by message arrivals:
Whenever a message arrives, an opportunity for co-
scheduling arises. If no thread that can receive the
message is currently running, DCS decides whether to
preempt the current thread to synchronize the sending
and receiving threads. The decision may be based on
many factors, but in general DCS attempts to strike a
balance between maximizing coscheduling perform-
ance and ensuring that the CPU is allocated fairly.

At the highest level, DCS has three key elements:

1. Monitoring communication and thread

scheduling,

2. Deciding whether to preempt the currently
running thread, and

3. Inducing the scheduler to select a particular
thread.

The most direct approach to all three elements of
DCS is to modify thread scheduler, embedded at the
heart of the operating system kernel. However, be-
cause our goal is to support clusters running retail
operating systems, such an approach has at least three
drawbacks. First, modified kernels are unlikely to be
run on a large number of systems, so such an ap-
proach will preclude large scale use of the cosched-
uling technology as middleware. Second, kernel
modifications will tie the implementation to a par-
ticular operating system and version, increasing the
software maintenance overhead, and making it diffi-
cult to leverage new operating systems features. The
third and final drawback is proprietary concerns re-
lating to source and binary distribution. An external
implementation is generally more easily distributable.

DCS has been simulated extensively and imple-
mented in the context of Solaris 2.4 [7,4]. The So-
laris 2.4 implementation served as a model for and is
similar in many ways to our Windows NT imple-
mentation

Fairness monitor FM library
User level Initialize
NT kernel Devicedriver
<—— Preempt
Kerne

DCSpolicy

LANai Control Program

Load information Interrupt host if fair

Network interface

Figure 1. DCS organizational chart

2.2. Implementation

We implemented DCS for Windows NT 4.0 for the

Intel x86 family of CPUs. Our implementation for
Windows NT consists of four distinct parts. a DCS-
aware Myrinet driver, the Fast Messages user-level
library, a Fairness monitor, and DCS-aware FM
firmware (a “LANai Control Program”, or LCP) that
runs on Myrinet card. These elements interact as
shown in Figure 1. The Fairness monitor in combi-
nation with the device driver monitors thread sched-
uling in the system, the modified firmware uses this
information to decide whether to preempt the current
thread, and the modified device driver induces the
kernel scheduler to choose the desired thread for
DCS.

2.2.1. Fairness Monitor

Our DCS implementation monitors thread and com-
munication activity to ensure fairness of CPU alloca-
tion. The Fairness monitor runs as user-level (and
thereby can access the NT kernel’s performance data
for the length of the run queue). The average run
queue length is written to the network card periodi-
cally, allowing the Myrinet firmware to moderate the
frequency of priority boosts to ensure fair CPU allo-
cations. Status information for the current thread is
provided by the device driver as indicated below.

2.2.2. Myrinet Firmware

The DCS aware firmware is a modified version of the
FM LANai Control Program and in addition to its

basic communication function, the firmware makes
preemption decisions based on the monitoring infor-

mation provided by the Fairness monitor and the de-
vice driver.

Based on the run-queue length, current thread infor-
mation, and the communication activity, the Firm-
ware decides whether the current thread needs to be
preempted (via an interrupt) and the device driver
invoked to take DCS-related action. The decision
procedure used by the Firmware is described below.

To determine whether a given thread is running, the
Firmware periodically scans (approximately once per
millisecond) the context switch information provided
by the device driver. The LCP sets a flag if a com-
municating thread is running, and when a packet ar-
rives, evaluates the following condition:

It hreadl sRunni ng && fairToPreenpt ()

If the condition is true, then the LCP interrupts the
host. The fairness criteria is critical and we adopt the
approach taken in [4] to decide whether to interrupt
the host. For a given thread, we interrupt if the fol-
lowing inequality is true:

2(T.-T)+C 2TR
where
+ T.isthe current time,

* T, is the time the host was last interrupted to
schedule this thread,

* T,is the length of a CPU quantum (120 ms under
Windows NT Server [3]),

* Ris the number of threads waiting for the CPU,

« E andC are constants chosen to balance fairness
and performance.

This approach limits the number of preemptions per-
formed on behalf of a communicating thread by re-
quiring thatT_ - T,, the time since the last preemption,
is no less than the time it would take the CPU to
service all of the ready threads if each thread ran for
its entire quantum. The decay functionahd con-
stantC afford some flexibility in tuning the inequality

to allow for perturbations, such as those caused by
threads that do not expire their quanta and priority-
decay scheduling. The Firmware uses the Myrinet
card’s on-board clock (0.As granularity) to tracK

and T,. Under NT Server, the quantum size is con-
stant.

Since the LCP scans the context switch information at
one-millisecond intervals rather than for each packet,
the information that f ai r ToPr eenpt () uses may
be stale. The scanning period involves a tradeoff
between per packet overhead and staleness of the
data. Since NT typically switches threads on tens of
milliseconds time scale, we choose to reduce the per
packet overhead.

2.2.3. DeviceDriver

We explored two basic approaches to the device
driver, and describe both here as an illustration of
what turned out to be difficult about manipulating the
kernel scheduler to achieve the desired schedule. We
term these two approaches thread select which
makes use of a thread select callback, and priority
boost which uses the thread priority boosting mecha-
nism.

Thread Select Our initial implementation of DCS

used NT’sthread select notify callback, implemented

in multiprocessor versions of the kernel. The sched-
uler passes the handle of a thread it proposes to select,
and the callback returns a boolean value that it uses as
a hint in deciding whether the given thread is appro-
priate to schedule. To cause the scheduler to favor a
given thread when the thread has messages pending,
the callback would simply reject the scheduler’s
choices until it proposed the preferred thread.

Unfortunately, the thread select notify callback is not
suitable for DCS because its influence on thread
scheduling decisions is limited. The scheduler uses
several other criteria in addition to the callback’s re-
turn value in choosing a thread to run, including the
time the thread has been waiting for a CPU and its
processor affinity [10]. Of course, if a competitor
thread has a higher priority than a communicating
thread, the scheduler may never propose a communi-
cating thread to the callback. Thus, there is no guar-
antee that a communicating thread will be offered,
much less scheduled at an appropriate time. Thus,
using the callback to modify the scheduler's behavior
was not a viable implementation for DCS.

Priority Boost This approach boosts the priority of a
thread DCS would like to schedule which in general
causes the NT scheduler to schedule the desired
thread. However, since the Windows NT kernel does
not export a well-defined interface to device drivers

for modifying the priorities of arbitrary threads, (only
for boosting the priority of driver created system
threads [10]), we were forced to use an undocu-
mented internal interface for thread priority modifi-
cation. By using a tool called “NTExport” [11] that
uses the symbol information distributed with every
build of Windows NT (intended for kernel debugging
support) to build an export library for the kernel, we
exported the appropriate calls to our driver, enabling
thread priority modification. (We hope to find a more
portable yet equally effective approach to solve this
problem.) When a thread needs to be scheduled, the
driver’s interrupt handler affects a priority boost for
the thread.

In addition, monitoring thread scheduling activity is
another key function of the device driver. To provide
thread scheduling (current thread) information to the
Myrinet Firmware, our device driver exploits a kernel
callback on each thread context switch to write the
context switch information to the Firmware. Thus,
the firmware has precise current thread information.

3. Performance Results

We have implemented DCS for Windows NT 4.0 on a
cluster of dual-processor Micron brand Pentium Pro
machines running at 200 MHz, each with 64 MB of
physical memory. Each machine contains a Myrinet
PCI interface connected to a Myrinet switch.

Our experimental methodology was as follows: We
ran trials of FM’s latency benchmark along with zero,
one, two, four, and eight CPU-bound competitor
threads, passing one million packets on a round trip
between a sender and receiver node. We ran ten runs
of this test. Each trial reported a histogram of round-
trip times in microseconds. We computed the mean
value of each bin for each number of competing
threads over the ten trials to get the results we report
here.

Preliminary results show that DCS improves per-
formance, but that balancing fairness with perform-
ance is a tradeoff. We ran a ping-pong latency mi-
crobenchmark and a barrier benchmark on a cluster of
six dual-processor 200 MHz Pentium Pro machines.
Malfunctions in our LANai development tools pre-
vent us from reporting the results of the barrier series
here.

Figure 2 shows the wall-clock time-to-completion for
FM's latency test with DCS enabled usigg0 and
=-5 and with DCS disabled. Our testing has indi-

cated that for a large number n of compute-bound cases swamp the average latency reported in the ag-

competitor threads, say four, the NT Server scheduler gressive DCS case.
is fair; that is, we observe each competing thread to
receive 1/n of the system. For four or more competi- Pingrpong latency test time-to-corpletion

tors, Figure 2 shows DCS with E=-5 to exhibit be-
havior similar to that of the NT scheduler aone.

Since the latency test measures the wall-clock round- - I

trip time required for a series of messages (in this

case, one million), the time required for the entire test x B

to run isan indicator of the average round-trip latency _ |
observed. ” aocsEaco

BOCS (E=5,C0)
ONoDCS

Figure 3 shows the distribution of round-trip times for ;
the eight-competitor case. The graph illustrates the i
large contributions that round-trip times as large as 1]

second make to the latency benchmark’s time to . m

completion as the number of competitor threads - ull- = ||
grows. Most of the contribution that the aggressive 0 ! 2 !
DCS configuration E=0) makes to time to comple-

tion is clustered on the left side of the graph; non- Figure 2. Latency test time-to-completion
DCS and the more passive DCS configuratien-5)

show substantial numbers of round trips that last

longer than 2 ms to total time to completion. The
average latencies for the non-DCS and passive DCS

Nurmber of compelitor threads

Latency (1,000,000 round trips), 8 competitors

1000

900

ENo DCS
BDCS (E=-5)
ODCS (E=0)

800

700

600

500

400

300

Number of round trips of duration X

200

100

0 t g T ——

20
40
60
80

100

300

900 |

o o
=} =]
o} ~

2000
10000
30000
50000
70000
90000

200000
400000
600000
800000
1000000

Wall-clock round-trip time (microseconds)

Figure 3. Distribution of latency test round-trip times. For x=20, y=996000 for each con-
figuration.

achieve coscheduling for Windows NT systems. This
coscheduling is demonstrated in the improved per-
formance of our benchmark for communicating

o) threads. Unfortunately, we can only report limited
Our initial performance results are encouraging and oq\its at this point, but hope to report performance
suggest that DCS can be implemented and can

4. Summary

data from a broader array of experiments in the near
future.

5. Discussion and Future Work

More complete performance measurements using
larger applications with our DCS implementation are
clearly an important step. Exploration of the pa
rameter space for our DCS fairness equation and
techniques for auto-calibration are of interest. In
addition, we have added a blocking primitive to the
FM interface that we will use to explore the behavior
of spin-block synchronization under NT in addition to
the current spin-only synchronization, aone and in
the presence of DCS. Beyond that, experiments with
multiprocessor nodes, proportional share scheduling,
and scheduling a broader array of cluster resources
aredl challenging directions.

Our experience with external customization of the
Windows NT scheduler has mixed results. While we
initially believed that the wealth of callbacks and ex-
ternal hooks for NT would make external customiza-

tion easier, our experience was much less encourag-

ing. The callbacks for thread scheduling were inade-
quate, and only avalable in the multiprocessor
released kernel. For research such as we have dis-
cussed to proceed without NT kernel modificaitons,
general, better external access to NT's policies (and
mechanisms) must be achieved. Priority boosts are a
crude mechanism for achieving coscheduling, but an
effective callback would influence the scheduler's
policy, possibly achieving the longer-term scheduler
synchrony across the cluster that is our goal. A less
ambitious approach would involve simply better ac-
cess to mechanisms for thread priority modification,
obviating the need for recourse to tools like NTEXx-
port.

Moreinformation

More information is available on our WWW site at
http://www-csag.cs.uiuc.edu.

Acknowledgments

The research described in this paper was supported in
part by DARPA Order #E313 through the US Air
Force Rome Laboratory Contract F30602-96-1-0286,
NSF grants MIP-92-23732, NASA grant NAG 1-613.
Support from Intel Corporation, Tandem Computers,
Hewlett-Packard, and Microsoft is also gratefully

acknowledged. Andrew Chien is supported in part by
NSF Young Investigator Award CCR-94-57809.

6. References

[1] Ousterhout, J. K. Scheduling techniques for con-
current systems. IRroceedings of the 3rd Interna-
tional Conference on Distributed Computing Systems,
pages 22-30, October 1982.

[2] Von Eicken, T, D. Culler, S. Goldstein, and K.
Schauser. Active Messages: a mechanism for inte-
grated communication and computation. Pno-
ceedings of the International Symposium on Com-
puter Architecture, 1992.

[3] Russinovich, M. Differences between Windows
NT Workstation and Server. Available from
http://ww. ntinternal s.conftune.txt.

[4] Sobalvarro, P. G. Demand-based coscheduling of
parallel jobs on multiprogrammed multiprocessors.

Ph.D. thesis, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, January 1997.

[5] Feitelson, D. G. and L. Rudolph. Coscheduling
based on run-time identification of activity working
sets. Ininternational Journal of parallel Program-
ming, Vol. 23, No. 2, pages 135-160, April 1995.

[6] Dusseau, A. C., R. H. Arpaci, and D. E. Culler.
Effective distributed scheduling of parallel work-

loads. INACM SIGMETRICS '96 Conference on the
Measurement and Modeling of Computer Systems
1996.

[7] Sobalvarro, P. G. and W. E. Weihl. Demand-
based coscheduling of paralel jobs on multipro-
grammed multiprocessors. In Proceedings of the
Parallel Job Scheduling Workshop at IPPS,’2895.
Available in Springer-Verlag Lecture Notes in Com-
puter Science, Vol. 949.

[8] Von Eicken, T., A. Basu, V. Buch, and W.
Vogels. U-Net: a user-level network interface for
parallel and distributed computing. In Proceedings of
the 15th ACM Symposium on Operating Systems
Principles December 1995..

[9] Tezuka, H. A. Hori, and Y. Ishikawa. Design
and implementation of PM: a communication library
for workstation clusters. In JSPP, 1996.

[10] Microsoft. Windows NT device driver kit
documentation.

[11] Russinovich, M. and B. Cogswell. NTExport
documentation. Available from
http://ww. ntinternal s.com.

[12] Custer, H. Inside Windows NT. Microsoft
Press (Redmond, WA), 1993.

[13] Boden, N., et. al. Myrinet—a gigabit-per-
second local-area network. IIBEE Micro, pages 29-
36, February 1995.

[14] Pakin, S., Karamcheti, V. and Chien, A. A. Fast
Messages: Efficient, Portable Communication for
Workstation Clusters and MPPH5EE Concurrency
5(2), April 1997, pages 60-73.

[15] Chien, A.,et. al. High Performance Virtual Ma-
chines (HPVM): Clusters with Supercomputing Per-
formance and API's, Proceedings of the Eighth SIAM
Conference on Parallel Processing, March 1997,
Minneapolis, Minnesota.

