
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Improving Instruction Locality with Just-In-Time Code Layout

J. Bradley Chen and Bradley D. D. Leupen
Division of Engineering and Applied Sciences

Harvard University

Improving Instruction Locality with
Just-In-Time Code Layout

J. Bradley Chen and Bradley D. D. Leupen
Division of Engineering and Applied Sciences

Harvard University

bchen@eecs.harvard.edu

Abstract
This paper describes Just-In-Time code layout (JITCL),
a new method for improving the locality of an
instruction reference stream by selecting the order of
procedures in the text segment during program
execution. By determining procedure placement
dynamically, this method provides an optimized
procedure layout without requiring profile data. For
UNIX-style workloads, JITCL provides improvements
in instruction cache performance comparable to profile-
based layout strategies, while avoiding the requirement
of profile data. The late nature of this optimization
makes it possible to implement procedure orderings
across executable and DLL boundaries, overcoming a
limitation of current profile-based techniques.
Simulations using Etch [RVL97] on Windows NT show
that inter-module JITCL commonly reduces the memory
footprint of executable text by 50%.

1. Introduction

Just-In-Time Code Layout (JITCL) is a new method for
improving the locality of an instruction reference
stream. It achieves similar benefits to profile-based
code layout while avoiding the separate profiling step.
Current popular methods for procedure layout, such as
that described by Pettis and Hansen [PE90], compute an
optimized procedure ordering using profile data.
Although these schemes can be effective in terms of
eliminating instruction cache misses, they share the
problems common to profile-based optimization,
including profile management and the difficulty in
obtaining realistic profiles. JITCL uses a new heuristic
which does not require profile information. With this
heuristic, an optimized procedure ordering can be
computed and applied while the program is running.

An important characteristic of modern Windows
applications is their extensive use of dynamically

 This work was supported by a grant from the National Science
Foundation (CCR-9501365). Additional support for this work was
provided by Microsoft Corporation and Intel Corporation.

loaded libraries (DLLs). DLLs impose limits on current
code-layout optimizations, which cannot typically
implement procedure layouts that cross the boundaries
of executable files. With JITCL, the optimized
procedure ordering is implemented dynamically, with
procedures copied into the text segment of the
application as it runs. The dynamic nature of JITCL
makes it realistic to implement procedure orderings that
cross the boundaries created by executable files,
introducing the potential for improved instruction cache
behavior and smaller working set size for applications
that make extensive use of DLLs. This paper describes
JITCL and documents its positive impact on instruction
cache performance when applied to UNIX and Win32
workloads.

In the next section we describe the JITCL heuristic and
compare it to the heuristic described by Pettis and
Hansen. We then explain how the JITCL heuristic can
be implemented. In Section 3 we present results for
JITCL optimization applied within an executable
module. Our UNIX results demonstrate that JITCL
provides improvements in instruction locality
comparable to those commonly achieved with profile-
based code layout algorithms for UNIX workloads. Our
simulations of JITCL on Windows NT show that it can
improve cache performance, avoid bad interactions
between modules that occur with the Pettis and Hansen
scheme, and substantially reduce text memory
requirements.

2. A New Algorithm for Code Layout
2.1 A New Heuristic
In this section we describe the JITCL procedure layout
algorithm and how it can be implemented on current
hardware. Our algorithm is based on a new heuristic for
procedure ordering, which we will present first. The
heuristic, which we will call Activation Order (AO), can
be stated simply as:

Heuristic (AO): Co-locate procedures that are
activated sequentially.

With AO, procedures are placed in memory in the order
they are first invoked. To get some intuition as to why
AO is effective and how it compares to current practice,

we compare it to the heuristic used by the popular Pettis
and Hansen (P&H) procedure layout algorithm:

Heuristic (P&H): Co-locate procedures that call
each other frequently.

P&H is applied by generating a weighted call graph,
which provides information on the frequency with
which procedures invoke each-other, then greedily
selecting the heaviest edge from the graph and
collapsing the two nodes it connects until the graph is
reduced to a single node. The order of procedures in
memory is determined by the order in which the nodes
are collapsed. Because P&H requires a weighted call
graph, it must be computed off-line. In contrast, it is
simple to apply AO dynamically, by loading procedures
from the executable file into instruction memory in the
order in which they are invoked.

A simple example (Figure 1) illustrates the similarities
and the differences in the procedure orderings that
result from the two heuristics. For this example, assume
that the bulk of the computation for this program occurs
in the for loop. The greedy algorithm used by P&H will
start by clustering foo() and bar() around main(), as
these are the heaviest edges in the weighted call graph.
AO orders the procedures according to the order in
which they are invoked. Both heuristics provide the
desirable property that the four procedures are clumped
together in instruction memory, providing better spatial
locality. If the instruction cache is too small to hold all
four procedures simultaneously, but is large enough to
hold three of them, then the P&H order will generate
fewer cache misses than AO because it avoids conflicts
between main() and foo(). If the instruction cache is too
small to hold three procedures simultaneously, but is
large enough to hold foo() and bar(), then AO can give
better results. This will occur if the overlap in the
instruction cache between foo() and bar() for P&H is
larger than the overlap for AO between the code in the
for loop of main() and the other two procedures. The
effectiveness of each heuristic depends on the frequency
with which such phenomena occur in real programs. We
explore this issue experimentally in Section 3.1.

2.2 Implementing JITCL

In an on-line implementation of the AO heuristic,
procedures are copied from the executable file into
instruction memory the first time they are invoked. Our
implementation was designed to meet the following
goals:

• It should require no special hardware support.
• It should require minimal changes to the operating

system.
• It should generate minimal system overhead.

To implement procedure copying, we replace each
procedure call in the original (i.e. conventionally
compiled) program with a call to a thunk routine. One
thunk is required for each procedure in the program.
The task of a thunk is to check if the corresponding
procedure has been copied into executable memory
(typically from the file-system cache), copying it if it
hasn’t, and then to patch the call site so that the next
time the procedure will be called directly, rather than
going through the thunk. A thunk routine finishes by
transferring control to the real implementation of the
procedure. Figure 2 gives a schematic version of an
executable file that has been loaded for JITCL. In the
example, the entry point of a program is __start, which
after some initialization calls main().

JITCL introduces several new sources of overhead
during program execution. One is overhead from
maintaining cache-consistency. Note that programs
loaded with JITCL are self-modifying. As a result, care
must be taken to insure that the instruction cache
contents remain consistent with other caches and main
memory. Most current machines (including all PCs)
implement hardware cache-consistency between the
instruction cache and data cache, so no extra operations
are required to maintain consistency. When hardware
cache consistency is not provided, the routines that
patch the call site and copy procedures into the
executable segment must provide for instruction cache
consistency1. In this case, a user-level routine to flush a
cache line or set can be implemented with minimal
operating system support [CL97]. Just-in-time
compilers, as have been proposed for languages such as
Java [GJS96], are likely to encounter similar problems.

Each procedure that is referenced dynamically is copied
exactly once into instruction memory before being
invoked. JITCL relies on file-system caching to
minimize the number of operations to disk when
copying procedures from the executable file into
instruction memory. Assuming reasonable pre-fetching

1 In the case of PatchCallSite() the cache flush is optional. It may
improve performance but does not affect correctness.

Code P&H AO

void main()
{
 Initialize();
 for (100 iterations){
 foo();
 bar();
 }
}

foo()
main()
bar()
Initialize()

main()
Initialize()
foo()
bar()

Figure 1. A simple example program.

and file-system cache performance, the overhead for
procedure copying in JITCL should be comparable to
overhead that occurs in systems with demand-loaded
text.

Copy overhead is related to the number of distinct bytes
of code used by a program. In contrast, the overhead
from thunk routines is proportional to the number of
distinct locations in code and data that reference
procedures and are used during a program run. To gain
intuition on these overheads, it is useful to group
program runs into several classes:

• Trivial programs: For programs that are I/O bound,
have small text segments, or that have very short
execution times, the impact of any code layout
optimization will be small. JITCL will have a small
negative impact, and should not be used in this
case.

• Large repeating programs: For these programs, the
benefit of code-layout will often be substantial, and
the overhead of copying and thunk-invocation in
JITCL will be amortized over a large number of
procedure calls. In this case JITCL is beneficial.

• Large non-repeating programs. Programs with no
locality relative to the instruction cache or memory
size will have large instruction reference penalties
with or without procedure layout optimizations.

In the next section we demonstrate that the overhead of
copying procedures and invoking thunk routines is
negligible as compared to the benefit of good procedure
layout.

2.3 Refinements
Given the basic framework for JITCL, there are a
number of refinements that can be made to improve the
basic algorithm. When the text segment is loaded, the
invocation order for the first few procedures can be
determined statically. For example, given the entry
point of __start, it may be possible to determine
statically that main() will be the next procedure to be
called. In this case main() can be copied statically into
the program text segment, instead of relying on a thunk
for main() to do the copy at runtime. We expect that the
impact of this optimization will be negligible in most
cases.

Other refinements involve the use of dynamic
information collected during one program run to benefit
subsequent runs. For example, the order of invocation
of procedures during one run could be used to update
the order of procedures in the executable file. In this
way, the system could reduce the amount of I/O activity
required to copy procedures into memory during later
runs.

Once an improved procedure layout has been identified,
the executable file could be updated to use the
improved ordering statically. In our experience we have
found the overhead of procedure copying to be
negligible; it is not clear that this refinement will be
useful.

A final refinement relates to shared libraries. If library
boundaries are ignored when applying JITCL, the result
is a system that optimizes procedure layout across
executable file boundaries. We explore the impact of
cross-module JITCL in our Win32 experiments.

3. Methodology
We used two sets of experiments to evaluate the
effectiveness of JITCL. In our UNIX experiments we
compared JITCL to Pettis and Hansen code layout. We
made this comparison using a memory system model
that corresponds to a typical RISC-style system, and
UNIX-style benchmarks. We chose this platform to be
consistent with the context in which earlier code layout
optimizations have been evaluated. The UNIX
experiments include a detailed evaluation of the

// This is the entry point of the executable image.
__start:
 perform initializations
 call thunk_main
 . . . // the rest of start

// The first thunk. Thunks reference an array ProcPointers[]
// which has one element for each procedure in the module.
// Thunks use constants (such as INDEX_main and
// LENGTH_main) which are specific to each thunk.
thunk_main:
 if (ProcPointers[INDEX_main] == NULL) {
 copy main into text segment
 ProcPointers[INDEX_main] =
 new address of main;
 }
 PatchCallSite(RA,
ProcPointers[INDEX_main]);
 jmp ProcPointer[INDEX_main];

// thunk code for foo and other procedures.
thunk_foo:
…

// Procedures are copied into the text segment starting here.
InstructionMemory:
…

Figure 2: Schematic text segment for a program
loaded for JITCL. The executable file includes a text
segment as appears above with write+execute
attributes. The instructions which implement the
actual procedures are found in a separate read-only
code segment.

interaction between instruction and data caches, and the
overhead of procedure copying and thunk-routine
invocation. Our Win32 experiments build on the UNIX
results by exploring the behavior of JITCL for large
Windows applications that use many DLLs.

3.1 UNIX Methodology
We evaluated our UNIX workloads on Digital UNIX
and the Digital Alpha microprocessor, using the Atom
[SE94] instrumentation system to implement our
simulator. We instrumented basic blocks, loads and
stores in the executable program, inserting calls at these
points to our JITCL simulator. Within the simulator, we
maintained the state of the caches. We also maintained
the additional data structures required by JITCL, and
tracked the overhead required to maintain them.
Sources of overhead include copy overhead for writing
procedures through the data cache, thunk invocation,
and data cache traffic from call-site updates.

We implemented a memory system simulation to
estimate both instruction and data cache-miss penalties.
Our simulated Alpha/UNIX memory system has a split
L1 cache with single-cycle latency and no L2 cache. We
modeled a 64-bit memory bus operating at 1/3
processor speed, with eleven memory busy cycles to
read a 32 byte line. The simulation also used 8K byte
coherent direct mapped instruction and data caches,
with 32-byte lines. Based on these figures we used a
cache read miss penalty of 33 CPU cycles, which
corresponds to 11 memory bus cycles. We do not model
bus contention or write buffer traffic. JITCL will tend to
decrease cache read misses and hence memory traffic.
In this respect the results we report are conservative.

Table 1 shows the experimental workloads we used for
our UNIX simulations. Many workloads we originally
considered did not have interesting instruction cache
behavior and were excluded for that reason. We did
include one workload, compress, with a small
instruction cache miss rate. This gives an indication of
the impact of the overhead of JITCL in a case where
instruction cache behavior cannot be improved.

Table 2 gives summary statistics for the UNIX
workloads. We use several metrics to evaluate the
benefit of JITCL: instruction counts, delay cycles, and
cache miss rates. Table 2 gives instruction counts for
execution of the workloads without optimization. JITCL
increases the dynamic instruction count for a given
workload, and we use our UNIX workloads to evaluate
this overhead in the next section. The benefit of JITCL
will be in reducing the instruction cache miss rate, but it
also tends to increase the data cache miss rate. For
comparison, we provide baseline figures for instruction
and data cache misses.

To evaluate JITCL with respect to the best known
procedure-layout schemes, we compare results with
JITCL layout to results for procedure layout using the
Pettis and Hansen algorithm. As JITCL does not use
profile information, there is no training input. For the
Pettis and Hansen experiments, we trained and tested on
the same input. This tends to give a high estimate for
the potential benefit of the profile-based optimization;
conventional methodology prescribes that different
inputs should be used for training and testing [FF92].
The results in Section 4 show that JITCL compares
favorably with profile-based layout schemes, in spite of
this optimistic estimate of the benefit of profile-based
layout.

3.2 Win32 Methodology
We evaluated our Win32 workloads using Windows NT
4.0 on an Intel Pentium-Pro based PC. We used the
Etch [RVL97] instrumentation and optimization system
to implement an instruction cache simulator. For these
experiments, we modeled an on-chip 8K byte 2-way set
associative instruction cache, backed by a 512K byte
direct-mapped off-chip cache. Both caches used 32-byte
lines. We choose to simulate an associative first-level
cache as most systems that run Win32 applications use
an associative first-level cache. Due to resource issues
and our prior investigation of JITCL overheads in the
UNIX simulations, we did not include data reference
activity in these simulations.

Table 3 shows the experimental workloads used for the
Win32 experiments. The Win32 applications are large
relative to common UNIX applications. Although the

Benchmark Description
 Text
(KBytes)

Time
(sec)

Compress file compression 112 2
Gcc The GNU C compiler 1552 60
m88ksim Simulation of Motorola

88K
160 10

Perl The perl scripting
language

376 104

Raytrace Image rendering 192 18
Xanim MPEG player 2024 67

Table 1: Unix workloads. All workloads were
statically linked.

Benchmark
Instructions

(x1000)
L1 I-Cache
Miss Rate

L1 D-Cache
Miss Rate

Compress 54786 0.0001 0.0204
Gcc 1384160 0.0580 0.3457
M88ksim 542413 0.0441 0.0118
Perl 2157993 0.0442 0.0275
Raytrace 728778 0.0436 0.0119
Xanim 7085956 0.0204 0.0052

Table 2: Summary statistics for UNIX workloads.
Instruction counts are in thousands.

size of these applications suggests that code layout
optimizations might help them more than the UNIX
applications, our analysis will show that other factors,
such as cache associativity and interactions between
modules, make standard profile-based optimization
ineffective for our Windows benchmarks.

Table 4 gives summary statistics for the Win32
workloads. As with the UNIX workloads, the
instruction counts in Table 4 do not include overhead
instructions introduced by JITCL. The use of the
associative rather than direct mapped cache for the
Win32 experiments precludes a comparison between
the UNIX and Win32 workloads in terms of cache miss
rates. Such a comparison is beyond the scope of this
paper.

4. Results

4.1 Evaluation of the AO Heuristic
To evaluate the effectiveness of our procedure-layout
heuristic, Table 5 compares cache miss behavior for the
UNIX workloads and three procedure orderings: the
original ordering, an optimized procedure ordering
using the Pettis and Hansen algorithm, and procedure
ordering using the AO heuristic. Table 5 gives the miss
rates for the optimized layouts, as well as the
improvement in the miss rate over the original layout.

Table 5 shows that the AO heuristic is effective in
improving instruction cache miss rates. AO provides a
significant reduction in cache miss rate, on the same
order as that for P&H, for all workloads except

compress. In the case of compress, the miss rate is
already very low and does not benefit from either AO or
P&H. In three of the other five cases, P&H achieves a
larger reduction in cache miss rate than AO. These
indicate situations where P&H can make effective use
of the additional information provided by the profile.

Overall, the results in Table 5 indicate that the AO
heuristic can be effective in improving cache miss rates
in situations where instruction cache behavior is a
significant problem. However, the reduction in cache
misses will be beneficial only if they are greater than the
overhead of procedure copying and thunk invocation. In
the next section we evaluate this overhead.

4.2 Run-time Overhead
Table 6 gives UNIX simulation results for overhead
introduced by JITCL. For all the workloads, the number
of procedure calls is much higher than the number of
call sites (stub calls) or bytes of code copied to support
JITCL. Even for compress, the overhead of JITCL is
amortized over a sufficiently large period of activity
that it less than 0.05%.

JITCL also generates additional data cache traffic, as
procedures are copied to instruction memory through
the data cache, and instruction cache traffic, due to
activity from thunk and copy routines. Table 7
quantifies these effects, giving the change in the
instruction and data cache miss counts for our
experiments. Table 7 also gives the increase (or
decrease) in cache miss rate that occurs due to JITCL.
In all cases the increase in data cache miss rate is very
small (less than 0.001). Table 7 also shows the positive
impact that JITCL can have on instruction cache
performance.

Benchmark Description
 Text
(Kbytes)

Mazelord Maze game 1445
Window NT perfmon Display system performance

info.
2805

Lotus Wordpro 96 Document preparation 5148
Microsoft Word 7 Document preparation 7694
Microsoft Internet
Explorer 3.02

Web browser 4990

Table 3: Win32 workloads. Text size is the total of
code size for the executable and all DLLs used
directly by the application. As these workloads are
interactive we do not give execution times.

I-Cache Miss RateBenchmark Instructions
(x1000) L1 L2

Mazelord 5600 0.0239 0.0015
Window NT
perfmon

9000 0.0119 0.0006

Lotus Wordpro 96 170000 0.0361 0.0017
Microsoft Word 7 400000 0.0266 0.0007
Microsoft Internet
Explorer 3.02

5000 0.0153 0.0014

Table 4: Summary Statistics for Win32 workloads.

Miss Rate Improvement
Benchmark P&H AO P&H AO

Compress 0.00013 0.00019 (0.00003) (0.00009)
Gcc 0.05611 0.05474 0.00193 0.00330
m88ksim 0.02172 0.03132 0.02234 0.01274
Perl 0.03701 0.02829 0.00716 0.01588
Raytrace 0.01084 0.01212 0.03272 0.03144
Xanim 0.00292 0.00577 0.01744 0.01459

Table 5: Instruction Cache miss rates
(misses/instruction) for the P&H and AO
heuristics. Improvement is computed by subtracting
the miss rates in the 2nd and 3rd columns from miss
rates given in Table 2.

4.3 Overall Impact of JITCL for UNIX workloads

Figure 3 gives results for the overall impact of JITCL
for the UNIX workloads. We estimate the benefit of
JITCL in terms of cycles saved per instruction, using
the cache miss penalties given in Section 3. Figure 3
shows that JITCL has a comparable benefit to profile-
based procedure layout schemes such as P&H. JITCL is
not beneficial for workloads such as compress where
code layout is not a problem, but even in these cases,
the overhead of JITCL is small enough to be
insignificant.

0

0.2

0.4

0.6

0.8

1

1.2

co
m

pr
es

s

gc
c

m
88

ks
im pe
rl

ra
yt

ra
ce

xa
ni

m

C
P

I I
m

p
ro

ve
m

en
t

P&H

JITCL

4.4 Cache Effects of JITCL for Win32 Workloads

Figures 4 and 5 show instruction cache miss rates for
the Win32 Workloads. Due to cache associativity and
the large memory requirements of these programs,
JITCL does not provide a consistent significant
improvement over the default procedure ordering in the
first-level cache. The behavior for P&H layout is
consistently worse than for the other procedure
orderings. The problem with P&H is that it neglects
interaction between modules. P&H improves locality
within a module by spreading the active procedures in a
module evenly over the cache. However, the improved
layout within modules also increases competition
between modules. The overall result is that P&H
procedure layout is not beneficial for the Win32
benchmarks.

For the larger second-level cache, JITCL provides
somewhat better cache miss rates than the default cache
layout, whereas performance for P&H is consistently
worse. Although the effectiveness of JITCL for
improving the cache miss behavior of these workloads
is limited, the next section shows that it can provide a
substantial benefit in reducing program working set
size.

0

0.01

0.02

0.03

0.04

0.05

0.06
m

az
el

or
d

pe
rf

m
on

w
or

dp
ro

 9
6

w
or

d
7

ie
30

2

L
1

I-
C

ac
h

e
M

is
s

R
at

e

default

P&H

JITCL

 Calls
(x1000

)

Stub
Calls

Bytes
Copied

Instruction
Overhead

Overhead
(%)

Compress 923 85 44672 17000 0. 031
Gcc 19647 6644 1091856 1328800 0. 096
m88ksim 7588 240 57744 48000 0. 009
Perl 29472 528 248064 105600 0. 005
Raytrace 89490 354 91920 70800 0. 010
Xanim 15570 1562 353536 313400 0. 060

Table 6: Overhead of dynamic code movement -
Code Movement. Overhead is computed as (100 *
overhead instructions / original instruction count).

Benchmark
Additional
 I-Cache
misses

Additional
D-Cache
Misses

Increased
 I-Cache
Miss rate

Increased
D-Cache
Miss rate

Compress 4717 2877 0.0001 0.0001
Gcc (4484481) 83765 (0.0032) 0.0001
m88ksim (6907881) 4650 (0.0127) 0.0000
Perl (34256776) 16899 (0.0159) 0.0000
Raytrace (22911716) 6319 (0.0314) 0.0000
Xanim (103351269) 24583 (0.0146) 0.0006

Table 7: Overhead of dynamic code movement -
Cache penalties. This table shows the increase
(decrease) in cache misses and cache miss rates
that occurs with JITCL.

Figure 3: CPI Improvement for UNIX Workloads.

Figure 4: First Level Cache Miss Rates for Win32
Workloads.

0

0.001

0.002

0.003

m
az

el
or

d

pe
rf

m
on

w
or

dp
ro

 9
6

w
or

d
7

ie
30

2

L
2

I-
C

ac
h

e
M

is
s

R
at

e
default

P&H

JITCL

4.5 Working Set Size of Win32 Benchmarks

Figure 6 shows memory space occupied by executable
program text for the Win32 programs, with and without
JITCL procedure layout. JITCL only requires memory
for the procedures that are actually used during a run of
the application. As a result, JITCL commonly reduces
executable memory requirement by about 50%. This
can be a substantial benefit for decreasing the memory
footprint of an application without sacrificing
functionality.

0

512

1024

1536

2048

2560

3072

m
az

el
or

d

pe
rf

m
on

w
or

dp
ro

96

w
or

d
7

ie
30

2E
xe

cu
ta

bl
e

M
em

or
y

(K
by

te
s)

default

JITCL

Pettis and Hansen layout also has benefits in terms of
reducing program memory requirements. However, a
comparison of JITCL and P&H for reducing memory
requirements is difficult. Given a fixed training/testing
input, JITCL and P&H layouts will require a
comparable number of memory pages, as both heuristics
cluster the procedures used by the program in memory.
For multiple inputs, however, the Pettis and Hansen
layout will typically give worse performance, as the
procedures used during training runs will not exactly
match the procedures invoked during an actual use of
the program. As a result, JITCL will tend to be more
effective a reducing program working set size and
improving overall performance.

5. Conclusions

We have described JITCL, a code layout optimization
improving instruction cache behavior through dynamic
code layout. The optimization is based on a simple
heuristic that places procedures in the order in which
they are called. This heuristic permits an on-line
implementation, avoiding the need for training and
profile information. For UNIX workloads, JITCL
achieves a comparable benefit to popular profile-based
procedure layout schemes without requiring profile
information. Although the instruction cache benefits for
our Win32 experiments are not significant, the
reductions in memory requirements are typically about
50%, making JITCL interesting as a technique for
reducing program working-set size. Although JITCL
introduces some overhead, our experience indicates that
the overhead is negligible compared to the benefit of
improved procedure ordering.

Acknowledgements
This work was supported by a grant from the National
Science Foundation (CCR-9501365). Additional
support for this work was provided by Microsoft
Corporation and Intel Corporation.

Microsoft and Windows NT are trademarks of
Microsoft Corporation. Lotus and WordPro are
trademarks of Lotus Development Corporation. UNIX
is a registered trademark of X/Open Company Ltd.
Other product and company names mentioned herein
may be the trademarks of their respective owners.

Figure 6: Executable Memory Requirements
for Win32 Workloads, in 4k byte pages.

Figure 5. Second Level Cache Miss Rates for
Win32 Workloads.

References

[CL97] J. Bradley Chen and Bradley D.D. Leupen.
“Improving Instruction Locality with Just-In-
Time Code Layout,” Technical Report,
Division of Engineering and Applied
Sciences, Harvard University, March 1997.

[RVL97] Ted Romer, Geoff Voelker, Dennis Lee,
Alec Wolman, Wayne Wong, Brian Bershad,
Hank Levy, and Brad Chen. “Etch, an
Instrumentation and Optimization tool for
Win32 Programs.” Proceedings of the 1997
USENIX Windows NT Workshop, USENIX
Association, Berkeley CA. (In this volume).
See also http://www.cs.washington.edu/
homes/bershad/Etch/.

[FF92] J. A. Fisher and S. M. Freudenberger.
“Predicting Conditional Branch Directions
from Previous Runs of a Program,”
Proceedings of the Fifth International
Conference on Architectural Support for
Programming Languages and Operating
Systems, ACM, pp. 85-97, October 1992.

[GJS96] J. Gosling, B. Joy, and G. Steele, The Java
Language Specification, Addison Wesley,
Reading, MA, 1997.

[PH90] K. Pettis and R. Hansen. “Profile Guided
Code Positioning,” Proceedings of SIGPLAN
‘90 Conference on Programming Language
Design and Implementation, ACM, pp. 16-
27, June 1990.

[SE94] A. Srivastava and A. Eustace. “ATOM: A
System for Building Customized Program
Analysis Tools,” Proceedings of the
SIGPLAN 1994 Conference on
Programming Language Design and
Implementation, pp. 196-205, June 1994.
See also DEC WRL Research Report 94/2.

