i

The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop
Seattle, Washington, August 1997

Measuring Windows M — Possibilities and Limitations

Yasuhiro Endo, Margo |. Seltzer
Harvard University

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org

Measuring Windows NT—Possibilities and Limitations

Yasuhiro Endo, Margo I. Seltzer
{yaz,margo}@eecs.harvard.edu
Harvard University

Abstract surement/diagnostic tool currently under development.
We then evaluate the feasibility of implementing this

Th? majority of today’s computing ta_kes place on Inter'tool on Windows NT in Section 5. Section 6 outlines the
active systems that use a Graphical User Interfac

.) X roblems that need to be addressed if NT is to become a
(GUI). Performance of these systems is unique in th opular research platform for this type of work. We
“good performance” is a reflection of a user’s percep—present our conclusions in Section 7
tion. In this paper, we explain why this unique environ- '
ment requires a new methodological approach. Wc=2 The challenges of interactive system mea-
describe a measurement/diagnostic tool currently under’
development and evaluate the feasibility of implement—s’uremerlt
ing such a tool under Windows NT. We then present sevfypically, we use benchmark programs to rate system
eral issues that must be resolved in order for Windowperformance. The most commonly used technique is to
NT to become a popular research platform for this typgneasure how quickly a system handles a sequence of

of work. requests; from this data, we calculate the bandwidth or
_ the throughput of the system. Systems that achieve high
1. Introduction scores in benchmarks are thought to have good perfor-

In recent years, computer systems have become incre
ingly interactive, most often based on Graphical Use

Interfaces (GUI). In these systems, users interact wit) .
that a great deal of effort goes into making systems

the computer far more frequently than in traditional” " .

compute?systems such asq[hoseybased on a commafighieve high benchmark scores. We also use benchmark
line interface or systems used for scientific computatior‘?rogt’jramtS tfobgwdhe uskln the opterllzatlon prct)_ce_ss. tﬁ\

or transaction processing. Another factor that makegoot S€ ; ts_anclz rT;)ar _dprotgra_lms efps us op |rkr)1|ztf{a| €
these interactive systems different from conventionapy Stem €fiectively by iden ifying performance bottle-

systems is that “performance” is determined by th eCki' Hol\(/vtivir, tlt IS oftt(;n d|ff|::ult _to deV|?et_a good
user's opinion. This metricuser-perceived perfor- Penchmarkthat Sresses the system ina realisic manner.

mance is different from the performance metrics mostA had t_Jenchmarkm_g _methodology Is misleading,
encouraging us to optimize parts of the system that have

commonly used, in that it is affected greatly by the SUbi'ttI) t on th ’ isible t
jective judgment and physical limitations of users. In''tti€ Or noimpact on the performance visibie to users.

order to measure and improve user-perceived perfoi

élps sell systems—both in the commercial market and

Ei;gance, and scoring high in well-known benchmarks
the research community. This is one of the reasons

mance, we need a new methodology that takes these f h_e task of bgnchmarking intgractive systems, such as
tors into account. We are currently developing such indows NT, is further complicated by adding a user

methodology and a set of diagnostic tools to gather dafggo the F;erfforma:?ce equatlc_)n. gt IS (ljmown :I]at hurr:ra]m
that will allow us to improve user-perceived perfor—Ju gment ob performance 1S based roughly on the
mance. response time or the latency with which the system han-

dles each user request. Generally speaking, collecting

This paper explains how interactive systems are differ’©SPONse time information in a benchmark is more diffi-

ent from conventional systems and why we must devisgu_It than calculating the throughput. Mareover, deter-

a new measurement methodology to evaluate interactiv®'"'NY how different response times affect users

systems. As Windows NT is one of the most commonl)Pe;Ircept'og bls fdlfthCU|t behcausti perce,ptlot?t '3 greatly
used GUI platforms, we will evaluate the feasibility of Influenced by factors such as the users atttude, expec-

conducting such research on Windows NT. We begin b t|onh, andkphys_mtal Ilrrl|_tat|ons t[lO]. Thetse fa(|:tor§_frfr_1 aklf
identifying the differences between measuring interac- enchmarking Interactive systems extremely ditficu

tive systems and conventional systems. We summariz%nd unique. It is clear that we cannot simply apply con-

our past efforts to measure interactive systems in sedentional techniques to measure interactive systems.
tion 3. Section 4 presents the motivation for our curren

measurement project and outlines the design of the me&_onetheless, the majority of today’s benchmarks use

conventional techniques that are inappropriate for interunderstand more about commodity systems, we set out
active system measurement. First, these benchmarks measure and understand the behavior of commodity
often rely on throughput-based metrics. Interactive usersystems and how they compare to traditional research
do not evaluate system performance based on howaperating systems [2]. We measured and compared Win-
quickly a system can respond to a sequence of requestkyws NT 3.50, Windows for Workgroups 3.11, and Net-
but how quickly the system can respond to each individBSD 1.0. We used the Pentium Performance Counters
ual request. Throughput-based metrics do not captur@] to obtain performance statistics including execution
how quickly the system was able to haneéehof the time, on-chip cache miss counts, and segment register
requests nor do they report the variance observed for theads. The Pentium Performance Counters are accessi-
different events. Second, it is considered good practicble only from the supervisor mode. Accessing the per-
to use traditional statistical techniques to present oufiormance counters under NetBSD was straightforward,
data. We strive for stable, statistically significant resultsince we could freely modify the kernel to introduce the
and make every effort—such as removing the systernode to manipulate the counter. Under Windows for
from the network and rebooting the system before eacWorkgroups, we used the VxD interface, which allows
trial—to ensure that the benchmark produces stable ouény user program to introduce supervisor-mode code
put. These experiments inaccurately model the environnto the kernel and invoke it directly. Under Windows
ment in which the system is actually used and ignore thBT, we took advantage of its installable device driver
most important and interesting situations we can meanterface. This interface allows a third party to imple-
sure—anomalies. We, as users of interactive system oument and install a device driver into the NT kernel
selves, often experience situations in which an operatiodynamically. Following the documentation provided in
takes an unexpectedly long time for no apparent reasothe Windows NT Device Driver Kit [8], we imple-
We, as researchers, must work to eliminate these anomiarented and installed a kernel-mode driver that makes
lies; they frustrate users and reduce the user-perceivéde Pentium Performance Counter registers appear as
performance of the system. Experts on human-computeardinary device files.
interaction have long noted that expectation has a signif-
icant effect on user-perceived performance. Users ar€he tools we built allowed us easy access to the perfor-
surprisingly forgiving when they are waiting for opera- mance counters, but the lack of Windows and Windows
tions they expect to take a long time but are unforgivingNT source code limited our ability to interpret measure-
when an operation that they expect to complete quicklynent results and draw useful conclusions. Explaining
does not. the results of benchmarks was made difficult by the fact
that we could not confirm our suppositions by code
We have been working continuously to narrow the gamnalysis. In many cases, we had to write several new
between the techniques in use and an ideal interactideenchmarks to explain the results of one benchmark,
system measurement technique. We will explain whaand in many cases, writing and measuring the additional
we have done so far, what we have learned, and on whiaénchmarks did not help us fully explain the results. The
we are currently working. We will then evaluate the feadack of source code access also meant that we could not
sibility of implementing the proposed system on Win-isolate and measure specific parts of the kernel. This
dows NT. limited our ability to explain and further understand
interesting behavior that the systems exhibited.

3. Previous measurement projects
Perhaps the most important lesson we took away from

In an effo_rt to make systems res_earch more relevant Ris project was the realization that throughput metrics
the majority of computer users in the world, we have

) dp not always correlate with the user-perceived perfor-
undertaken a number of projects to help us understarwfance. One of the benchmarks in this study measured
the performance of personal computer operating SY$

i . ow quickly the systems executed a script using Wish, a
‘e”_‘s’ such as V\/_|r_1dows and Windows NT, and the apr?I'éommand interpreter for the Tcl language that provides
cations that traditionally run on these platforms. In thi

i di h acts f th tﬁNindowing support using the Tk toolkit [5]. The results
Section, we diSCuss these projects trom the perspeciVg s panchmark were greatly affected by the aggres-

of the benefits derived from L_Js_ing such a widely pOIOUIaEive optimization that NetBSD and the X-Windows sys-
platform and the challenges it imposed. tem applied to the input stream. When many requests
arrive at the server in a short period of time, the system
3'1t' Tge Me?surgd I?erformance of Personal Com- tries to minimize the server-client communication over-
pu. er Opera |.ng .ys ems _ head by sending multiple requests per communication
With the realization that the research community mustound trip. We observed similar behavior from Windows

NT running Microsoft Powerpoint when processing tenapplications running concurrently. In terms of under-
page-down requests. The processor performed five to sstanding user-perceived performance, we identified the
times more work when the requests were fed into thecrucial difference between throughput and user-per-
system at a realistic rate of about 10 characters per semeived performance. Common cases dictate throughput
ond than when all the requests were fed as quickly gserformance—the parts of the system in which the most
possible. These optimizations help systems perform betime is spent are ultimately reflected in throughput met-
ter on throughput metrics, but often have adverse effectics. User-perceived performance is dictated by how fre-
on user-perceived performance. This observation led tquently the user is annoyed and the extent to which the

our next study. user is annoyed by each occurrence. No matter how fre-

quently they occur, events with latencies below the
3.2. Using Latency to Evaluate Interactive System threshold of user perception do not annoy the user and
Performance are therefore irrelevant in the user-perceived perfor-

We set out to establish an appropriate set of techniqué8ance equation. Conversely, if an event takes suffi-
for measuring interactive system performance [3]. Pre¢iently long to be annoying, its contribution to user-
vious measurement techniques relied almost entirely oRérceived performance is far greater than is suggested
throughput-based measures [1][7], ignoring the fact thalfom its frequency or percent of total execution time.

throughput and user-perceived performance are different
in today’s popular GUI environments. User-perceived4. A New Measurement Methodology

performance might coincide well with throughput in ajthough constructing a performance metric that cap-
compute-intensive computations such as scientific CoMyyes the subtleties of user subjectivity is beyond the
putation and compilation, but not necessarily with morecqne of our expertise, we can use the lessons learned in

interactive applications, such as word processorghe prior studies to measure and improve the perfor-
spreadsheets, and games. mance of interactive systems. Since the user’s judgment

, . of performance is subjective and events that annoy the
In this study, we measured the performance of interagser are important, we must capture the situations that

tive systems using the response time that users eXPelnnoy users. By understanding how these problems

ence when running commonly-used applications. Weyjse and correcting the system to avoid such situations,
recognized that the response time or the latency of thg -4n improve user-perceived performance.
system handling each user-initiated event, such as a key-

stroke, correlates better with user—perceiyed perforthe measurement system we are building monitors the
mance than does throughput. We designed and giem under normal operation with a real user on the
implemented techniques to measure event-handlingnsole. This allows us to exercise the target system in a
latency in commodity operating systems and applicazejistic manner. Controlled experiments based on artifi-

tions, and used these techniques to measure Windowgy| penchmarks yield stable, statistically significant,

NT versions 3.51 and 4.0 and Windows 95. Since Wegnroqycible results but often fail to be realistic. In these

could not instrument real applications, we devised Meggs; cases, it is common to disconnect the machine from
surement techniques based on two assumptions. Thge petwork and/or reboot the machine before each
first assumption was that the CPU s idle most of the,eriment so that the various caches in the system are
time and becomes busy only when it is handling an, 3 known state. Unfortunately, this is not how most

event. The second assumption was that applications Rople use their systems, so the benchmarks do not
single-threaded and only call the Win32 AB#Mes- 5ccyrately reflect actual use. Real systems often run
sage() to block waiting for new events, after they jiple programs and daemons simultaneously and are
have completed handling all previous events. constantly affected by external events such as packets

o , arriving on the network. Many performance problems
The combination of these two techniques allowed Us tQ ¢ reated by these unpredictable interactions.

measure the latency of user-initiated evemtsen our
assumptions were metvhile we were able to measure 4. our measurement system, we rely on the user to

how long a simple application, such as Notepad, spemfecide when performance is unacceptable. The user of

handling each keystroke event, we were unsuccessful {fe system notifies the measurement tool immediately—

measuring complex applications such as Microsofy,y gjicking a button on the screen—after or while expe-
Word, or more complex system states, such as multiplgencing unacceptable performance. The tool then

records the latency of the operation that frustrated the
user and dumps data describing the last several seconds

1. Inferred from CPU occupancy time.

of system state leading up to the unacceptable behavigoarticularly desirable, and all require source code avail-
data that allows us to diagnose the cause of the lorgpility, which makes it troublesome to collect this type
latency event. The technical challenges are to identifpf data under Windows NT.

the data we need to collect and determine how best to

collect such data without imposing high overheadEven if we could capture latencies using one of these
(either in time or storage). In the next section, we distechniques, there is a component of response time that
cuss the type of information we have determined necesannot be captured by the application alone. The time
sary to collect and evaluate the possibilities of collectinghat an application spends processing a user-initiated

such information under Windows NT. event does not include the time that the system spends
delivering a hardware event, such as a mouse click, to
5. Collecting data the application. Although we have yet to measure such a

Using th t svst tined ab h case in our constrained environment, it is likely that, in a
sing the measurement system outlined above, we NOR&, apyironment with multiple runnable threads, the
to be able to find instances in which interactions

delivery time could contribute significantly to latency.
bet_ween processes an_d daer_non_s, proc_ess_s_che_dul measure event-delivery time, we must timestamp
policy, or disk scheduling policy is causing irritating every keyboard and mouse interrupt and determine
delays in the processing of user-initiated events. Basqﬁh

i K h determined t the dat en the system actually delivers the corresponding
on earlier work, we nave determined some ot the aﬁigher-level event to a particular application. In Win-
that we must collect. In the sections that follow, we

. . . ows NT, timestamping keyboard and mouse events is
describe the data and the techniques for collecting suc ping ey

. . i sily accomplished by modifying the keyboard and the
data in the Windows NT environment. mouse drivers. However, associating a keyboard or

— mouse input to a higher-level event delivered to the
5.1. Latency of user-initiated events application is challenging. Doing so requires instrumen-
Since user irritation is caused by slow response timgation of multiple points in the path executed as an input
combined with the expectation of fast response time, igvent is processed. This cannot be done without OS
is vital that we measure how long the system spendsource code access. While the installable driver interface
processing each event. We had moderate success cglovides the ability to collect statistics localized to the

lecting this data in our earlier studies, but we relied upoririver, it fails to provide us a way to examine or modify
two simplifying assumptions: that there are no backthe other parts of the system.

ground tasks and that users run a single application at a

time. We can no longer afford to make such assumps 2. Status of threads running in the system
tions. Real users often run more than one gpphcatlo o identify the cause of a performance problem, it is
concurrently and many applications are multi-threade

. . essential to know when the required thread was able to
and perform background processing. In such an environ;, - \when it was not. and why. Windows NT has an

ment, the user and the application are the only partleéxtensive performance monitoring interface. Objects in

who know when event-handiing begins and ends. S'ncﬁ"ne system such as threads, processes, processors, disks,

Itis ext:_em;ely dT‘lcuIt tq(;nstt;]gme?t usetr_s, V\;e mUSt rEIyand network protocols maintain a set of performance
on applications 1o provide this information 10 the Mea-gitics that can be retrieved from user-level, as is done

surement syst_em. This can b? accomplished in ON€ B\ the statlist program [9]. Using this interface, it is pos-
three ways. First, the application can keep track of It%ible to determine the state of a thread, whether the

own event latencies. This is likely to provide the mOSt[hread is blocked, and the reason why it is blocked.
accurate data, but it is also the least practical in that it '

requires access to the application source code (not ;\9_3_ Queue States

mention actually modifying all the applications a user is o »
likely to use). Second, we could use interposition toIfthe performance of a system is I|_m|_ted because a_cr|t|—
intercept every application call in a measurement libranf@! thread is blocked, we must eliminate such waits or
and then deduce the event latencies based on this trac80rten their duration. One prime example of such a
This process is feasible by substituting our own librarie§lu€ue is the disk queue. Using the performance mea-

for the standard DLLs, but interpretation of the traceSUreément interface described in Section 5.2, we can
obtain various statistics including the number of read

output is error-prone. The third technique is for the _

operating system to try to extrapolate event beginnin nd write requests and the length _of 'Fhe queues. Unfor-

and ending times. This introduces the potential for thdUnately, the NT performance monitoring interface does
djot reveal the contents of the disk queue, because such

greatest margin of error and requires access to the ope at) h .
ating system source code. None of these approaches'ﬁgormat'on is localized to the disk driver. However, by

replacing the driver, we can identify the contents of thedata and relate it to appropriate user actions. For exam-
disk queue. Unfortunately, we cannot directly relate gle, although the installable device driver interface pro-
specific device request to the thread that generated itides the ability to measure and experiment with some
Determining this information requires that the driverareas of the system, it fails to provide information about
examine thread states in the core of the kernel to whictihe kernel’s inner workings. NT’s performance monitor-

the device driver interface does not allow access. ing interface also provides a convenient way to monitor
parts of the system, but the disconnect between the per-
5.4. Kernel profile formance monitoring tools and the device level inter-

Kernel profiling can provide detailed information aboutfaces limits its utility.

the inner workings of the operating system, revealing o))
where a thread is spending its time inside the kernel. 1. Difficulties in conducting research with-
cases where a major component of the response time @it source code

due to the thread executing inside the kernel, profile ouﬁ-

) . . n this section, we discuss several of the difficulties we
put can help identify system bottlenecks. For this study.
. ! experienced conducting research using Windows NT.
we need to extend conventional profilers, because w : . ;
ach of the following problems is serious enough to

are interested in the data from a specific subinterva .
) . : . _ake NT an unsuitable platform for some systems
namely the interval during which the user was waiting,
research. In order for NT to become a good research

not the interval during which the profiler was running. ; .
Ordinary profilers do not maintain enough informationplatform’ both Microsoft and the research community
must work together to address these problems. We have

to cglculate' subinterval profiles. Typically, profiling found that detailed performance analysis and under-
requires having source code access to the system bein . . .
: T : . standing requires access to kernel (and application!)
profiled. While it might be possible to construct a profil-) : o !)
source code. First, without source, it is often impossible

Ing system using a b.|nary instrumentation tool ;ugh 3 confirm hypotheses about system behavior. In both of
Etch [6], the information produced would be of limited . ;
our previous measurement projects, the lack of source

ggltlgy without source code with which to analyze the code access made it impossible to draw definite conclu-
) sions. In some cases, we were able to make definitive

. . statements by taking several additional measurements to
The requirement of the measurement tool described in_~ = - .)
. L . confirm our suspicions, but in many cases, we simply
Section 4 goes beyond the provisions of Windows NT, . e
: : ._could not substantiate our suppositions—all we could

Table 1 summarizes our needs for constructing an inter; . . A
do was increase the probability that our intuition was

active performance monitoring tool and identifies the . L . s
,) . “correct by taking additional measurements. While this is
classes of data for which source code access is required. . : - .
e norm in some natural sciences, it is particularly frus-

In most of the cases, some data is available withou[. . . -
. . rating when we know that the answer is easily verifi-
source code, but source code is required to analyze the

Source
Data Collected Methodology Required | Required
for data for
collection | analysis
Per-event latencies Detailed accounting of threads’ CPU activities NP YES
Instrumenting the application. YES YES
Thread status NT performance monitoring interface. NQO YE$
Queue status NT performance monitoring interface. NG YEB
Modify device drivers. NO YES
Kernel profile Source code profiler. YES YES
Binary instrumentation tool. NO YES

Table 1: Data Collection Summary.This table shows how we might collect the different types of data we need and
whether we can collect such data in the absence of source code. Notice that in most cases, the utility of the data is
diminished by the absence of the source code.

able. [2] J. Bradley Chen, Yasuhiro Endo, Kee Chan, David

Mazieres, Antonio Dias, Margo Seltzer, and Mike
In some cases, the lack of source code prevented us Smith, “The Measured Performance of Personal
from pinpointing the exact cause of a performance prob- Computer Operating System#&}CM Transactions
lem. In systems with source code, we could often find on Computer Systems,14, February 1996, pages
the cause of the performance that we observed and, if 3-40.
desired, modify it and remeasure. In the case of NT, thi8] Yasuhiro Endo, Zheng Wang, J. Bradley Chen and
best we could do was offer vague suggestions for allevi- Margo Seltzer, “Using Latency to Evaluate Interac-
ating system bottlenecks. The goal of many research tive System Performance?roceedings of the Sec-
projects is to find an exact answer to a question or solve ond Symposium on Operating System Design and
a problem so that the system will perform better. Win- ImplementationOctober 1996, pages 185-199.
dows NT does not allow researchers to achieve this gofd] Intel Corporation, Pentium Processor Family
in many circumstances. This makes conducting research Developer's Manual. Volume 3: Architecture and
a frustrating experience. Programming Manuallntel Corporation, 1995.

[5] John K. OusterhoufTcl and the Tk ToolkitAddi-

While Microsoft does offer source code licenses for NT, son-Wesley, Reading, Massachusetts, 1994.
we find that the restrictions are so limiting that they ard6] Dennis Lee, Ted Romer, Geoff Voelker, Alec Wol-
in direct opposition to University policy. In particular, man, Wayne Wong, Brad Chen, Brian Bershad, and
requiring students to sign non-disclosure or confidenti- Hank Levy, Etch Overview, http://www.cs.washing-
ality agreements is problematic, particularly in the case ton.edu/homes/bershad/etch/index.html.
of undergraduates. Equally problematic is prohibiting 7] M. L. VanNamee and B. Catchings, “Reaching New
class of students (those who come from certain foreign Heights in Benchmark TestingPC Magazine 13
countries) from participating in projects that use source December 1994, pages 327-332. Further informa-
code. Finally, there is concern over publication. If we tion on the Ziff-Davis benchmarks is available at:
have access to source code, and use that access to http://www.zdnet.com/zdbop.
explain results that we observe, does our confidentialitj8] Microsoft Corporation,DDK Platform Microsoft
agreement prohibit us from explaining our results? That Developer Network, Redmond, Washington, Janu-

is certainly an untenable situation. ary 1996.
[9] Microsoft Corporation, Win32 SDK Microsoft
7. Conclusion Developer Network, Redmond, Washington, Janu-
ary 1996.

The unique manner in which user-perceived perforL&o] Ben ShneidermarDesigning the User Interface:

:narr:c_e IS dtetermmed derr:ja_nds that_vl/e d?_velop Te Strategies for Effective Human-Computer Interac-
ecfmques ovr\?egsure ,\?_? |mprot\€e Irt]' eracl I\t/fe sysf €M tion (Second Edition Addison-Wesley, Reading,
performance. Windows is an attractive platform for Massachusetts, 1992,

such research. Conducting practical research that can
solve the type of problems that millions of people expe-
rience every day excites many researchers. We have
demonstrated that it is possible to perform interesting
research on NT, but we are approaching the limit that a
proprietary system places on the type of measurement
research that can be conducted. Researchers expect and
require more freedom from the platform they use; we
need better hooks into the operating system to provide
the detailed information we seek or fewer restrictions on
source code licensing.

8. References

[1] Business Applications Performance Corporation,
SYSmark for Windows NT, Press Release by
IDEAS International, Santa Clara, CA, March
1995.

