i

The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop
Seattle, Washington, August 1997

IntelliJuke - a Caching Jukebox-Based Storage Server

Yitzhak Birk, Uri Kareev and Mark Mokryn
Technion - Israel Institute of Technology
Haifa 32000, Israel

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

IntelliJuke - a Caching Jukebox-Based Storage Server

Yitzhak Birk, Uri Kareev and Mark Mokryn
Technion - Israel Ingtitute of Technology
Haifa 32000, Israel
birk@ee, kareev,mark@psl.technion.ac.il; www.psl.technion.ac.il

Background

The cost-effectiveness of CDs applies only to the
storage medium itself; once a drive is included, CD-
ROM often becomes inferior to magnetic hard drives.
Moreover, a CD is often far from full, thus further
reducing its cost-effectiveness. (For this reason,
DVD will not help in many cases.)

Jukeboxes (AKA changers) feature high
volumetric storage density with moderate
communication bandwidth and multi-second access
times. Jukebox manufacturers have focused on
building very robust systems with high-performance
robotics in order to mitigate the intrinsic performance
shortcomings, resulting in a price-per-slot of $30-
$120 in late 1996!

We believe that jukeboxes should provide access
to a very large number of CDs at minimal cost, and
that caching on magnetic disk drives should provide
the performance. A byproduct of caching is reduced
jukebox activity, so the jukebox’s robustness may be
reduced without increasing the mean time between
failures. Our focus is on efficient caching.

Caching approach

We have adopted a hybrid caching approach:
speculative fetching based on *“intelligence”,
typically involving entire files and even related files,
with removal based on “de facto” information and
applied at a much finer, intra-file granularity. Our
rationale is as follows: the miss pendty is very high;
the cache (disk) is relatively inexpensive and can be
large, possibly permitting an unaccessed item to
reside in the cache for several days before it must be
removed. If, however, in the course of several days
in the cache, certain blocks in a given file were
accessed while others were not, there is reason to
believe that the unaccessed blocks will not be
accessed in the near future and can be discarded. It
should be noted that this observation hinges not
merely on the relative access times of the two
storage layers; rather, it takes into account the time
constants of a human user!

Since it is easy to construct “good” and “bad”
scenarios for such an approach, we decided to build
a prototype so as to permit experimentation and
measurements in a real environment.

IntelliJuke overview

IntelliJuke is a network-accessible hierarchical
storage server comprising a PC running Windows
NT, connected to a Kubik CDR-240 juke box with

240 dlots and two 12X Plextor CD-ROM drives. Data
is presented to users as a collection of NTFS
directory trees on a hard drive, one tree per CD
(single drive letter for all). The initial goal is to
enable users to seamlessly access any data that
would be accessible if the entire CD were copied
onto a hard drive using file manager. Our focus has
been on providing support for novel caching policies
while using the native NT services whenever
possible. The project is presently in advanced
implementation stages at the Parallel Systems Lab
of the EE dept., with most of the difficult problems
out of the way. The caching algorithms will be tuned
once the system is fully operational.

NT- related implementation challenges

. The hybrid caching approach and
requirement for network access mandated the
insertion of a “highest level” driver above an NTFS
partition.

. Construction of a communication
mechanism between our kernel driver and user-mode
code. One complication is that communication is
initiated by the driver.

. Overcoming the locking of files by the
operating system. This occurs, for example, when the
OS decides to issue a read-ahead request while we
are handling an earlier miss to the same file, and
prevents us from writing the requested data into the
cache.

. The desire to manage the cache at block
granularity and to free up disk space while using
NTFS forced us to support “sparse” NTFS files.

Acknowledgments and credits. Parts of IntelliJuke
were implemented by Amnon |. Govrin, Ran
Herzberg, Eran Rosenberg and Eyal Zangi. Tomer
Kol and Evgeny Rivkin have provided ongoing
assistance. The project has been supported in part by
Microsoft through product donations and by a grant
from EMC (Israel) Storage Systems Ltd.

