
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Dreams in a Nutshell

Steven Sommer
Microsoft Research Institute and Department of Computing,
School of Mathematics, Physics, Computing and Electronics,

Macquarie University, Australia

Dreams in a Nutshell

Steven Sommer
Microsoft Research Institute and Department of Computing,
School of Mathematics, Physics, Computing and Electronics,

Macquarie University,
NSW 2109, Australia

steve@mpce.mq.edu.au

Abstract

The Dreams extensions have been developed in order
to support distributed real-time applications within
the conventional operating system paradigm. To
demonstrate the viability of the extensions, they have
been implemented within Windows NT. This paper
introduces the important components of the Dreams
extensions, provides an overview of the implemen-
tation, and highlights some of the experiences gained
from the implementation.

1. Introduction

The aim of the Dreams (Distributed Real-Time
Extensions with Application to Multimedia Systems)
project is to provide a complete set of extensions for
conventional operating systems, so that they may
support real-time and distributed real-time processes
within the conventional operating system paradigm.
To demonstrate the viability of our extensions we
have partially implemented our extensions within the
Windows NT [2] operating system. This paper
introduces and motivates the inclusion of each of the
key components of the extensions, provides a brief
overview of their implementation, and highlights
some of the experiences gained from the implemen-
tation.

A fundamental component of the conventional
operating system paradigm is the ability to run
independent applications simultaneously while
protecting these applications from interfering with
one another. This is quite different from the paradigm
of real-time systems, where all tasks work together
with a common aim. The Dreams extensions allow

real-time applications to be protected from one
another.

Unlike traditional real-time systems [1, 4, 6], conven-
tional operating systems do not have a priori
knowledge of the arrival times and behaviors of real-
time tasks; the schedulability test and scheduling
algorithm must be performed on-line. Conventional
operating system also allow: interrupts which run at a
higher priority than both non-real-time and real-time
applications; subsystems which execute system calls
but which are otherwise indistinguishable from user
applications; and dynamic distribution of applica-
tions.

To maximize the ease of adoption of these exten-
sions, they have been developed to have a minimal
impact on the code and conventional behavior of the
operating system and on the programming model
used to develop real-time applications. The Dreams
extensions have been designed to be independent of
any particular operating system.

In [8], we identified a new real-time process
abstraction, called the transient periodic process,
which is better suited to real-time applications
running on a conventional operating system.
Transient periodic processes have two distinguishing
features.

• They act as periodic processes while running but,
unlike traditional periodic processes, an entire
process may start and complete at any time.

• The starting time of the first invocation of the
transient periodic process is not constrained by
the process.

An overview of the Dreams model, the advantages of
the transient periodic process abstraction, and a
general comparison with other similar models, can
also be found in [8].

2. Protection

There are two major areas in which a conventional
operating system must be enhanced to allow it to
protect real-time applications from one another.

Firstly, the operating system must offer a new form of
protection, called temporal protection. This encom-
passes the requirement that the timing behavior of
one task should not be able to affect the ability of
another, independent task to meet its deadline. To
achieve this, the scheduling method needs to be
altered, the timing behavior of each task must be
monitored and enforced, and a method for effectively
dealing with overrun tasks must be developed.
Details of the Dreams approach to temporal
protection can be found in [9].

Secondly, the operating system’s support for resource
sharing must be extended to be consistent with the
requirements of real-time scheduling. The areas of
resource sharing that must be considered are the
concurrency support primitives (for example, a
mutex) and the subsystem call mechanism. There are
two predominant alterations required in this area. The
first is to ensure that if the real-time task that should
be running is blocked on another task, then the other
task is immediately executed. In [7] we detail our
approach for achieving this, that is, an extended form
of priority inheritance [5], and argue for its inclusion
within all conventional operating systems. We have
also developed an extension to priority inheritance,
called quantum inheritance, which also improves the
conventional functioning of the operating system.
The second resource sharing alteration consists of
ensuring that a real-time task’s blocking time is
bounded and that the blocking can be effectively
modeled within the schedulability test.

3. Modeling the Operating System

A fundamental element of the Dreams model is the
guarantee that an application that does not exceed its
reserved time will always meet its deadlines. The
Dreams model ensures that the system as a whole has
sufficient capacity to satisfy all of the active real-time
applications by using an admission mechanism and
by constraining and modeling particular parts of the
operating system.

Many aspects of the system are outside of the control
of the Dreams scheduler. The schedulability test must

include the interference of the system as well as the
system’s own resource requirements. Elements of the
system which impact real-time threads include
hardware and software interrupts, caching, deferred
procedure calls, parts of the conventional system, and
the Dreams scheduler itself. Our schedulability test
also models the impact of interrupts on effective
enforcement and preemption.

We have formally extended Liu and Layland’s
earliest deadline first (EDF) schedulability test [3] to
include clocked, interspaced sporadic, and bursty
sporadic real-time interrupts. We have further
extended the tests to include priority inheritance and
critical sections, both with and without enforcement
mechanisms. Our schedulability results can be found
in [10].

Some modifications to the conventional operating
system are necessary to bound the system’s behavior;
for example, interrupts and deferred procedure calls
must have a maximum duration and frequency, or
they must tolerate occasional suspension. Particular
system calls must have a bounded timing behavior so
that they can be used by real-time tasks. Our work in
this area is not yet complete.

4. Distribution

The Dreams model allows a transient periodic
process to be distributed to networked machines
when there are insufficient resources to run the
process on the local machine. The distribution
component is responsible for the selection of the
networked machines and the distribution of the
transient periodic process to those machines. The
distribution component of Dreams has not yet been
integrated into our implementation.

Most of the difficulties involved in supporting
distributed real-time processes are also key concerns
in the research areas of real-time communication,
process distribution, and load balancing. Although
we have briefly examined the important issues
required for supporting distributed real-time
processes, we have chosen to concentrate primarily
on those issues which should be addressed differently
in the Dreams context.

We have developed a distributed placement
algorithm for selecting the remote machines on which
the transient periodic processes should execute. The

algorithm was developed for optimal performance
within the Dreams framework. Currently, we have
only analyzed the algorithm within a simulation
environment.

The inclusion of distribution within the Dreams
model has had a significant influence over the design
of many of the other components of the model. For
example, one of the most compelling reasons for
strictly preventing system overload comes from
distribution. Distribution requires that network card
interrupts be serviced in a real-time manner; sporadic
interrupts must be enabled and modeled within the
schedulability test. The system must be able to
distribute each real-time entity separately; the real-
time entity must, therefore, be implemented as a
thread or process, not as a block of code. One of the
requirements for the transient periodic process
abstraction was that it allowed distribution to be
performed in a manner consistent with the
functionality of an operating system containing the
real-time Dreams extensions.

5. Implementation Design

We have partially implemented the Dreams
extensions within version 3.51 of the Windows NT
operating system. A real-time† application is
implemented as a Win32™ application with
additional real-time facilities. Most of the new
facilities are provided by a user-mode process called
the Dreams subsystem. To use these facilities the
application need only include an additional library
and header file.

The transient periodic process of our model has been
implemented within Windows NT as a Win32 thread.
An application creates a real-time thread in the same
manner as creating a conventional thread but with
additional parameters specifying the real-time
properties of the thread. These include its start time,
reserved time, deadline, period, and additional flags.

Figure 1 provides an overview of the implementation.
The following paragraphs highlight the important

† Our use of the term real-time is unrelated to the “real-time”
priority class of Windows NT.

Kernel Mode Dreams
Window NT Kernel

Dreams Subsystem
Memory Space

Dreams Client Application
Memory Space

Kernel Call

Application
Process

Dreams DLL

Real-Time
Thread

Dreams DLL

Real-Time
Scheduler

+
Enforcer

Real-Time
Thread

Manager

API Call

API Call

Non real-time

Real-time

Procedure call
via named pipes Shared Data Area

Requests / Process Table

Blocking Access

Non blocking access

Non blocking
communication

Shared Memory

Periodic Invocation

Reservation
Manager

Scheduling via
NT Priority Control

Create Thread

Figure 1: Dreams Implementation

components in the figure, by tracing though the
creation and initial execution of a real-time thread.

When an application makes an API (Application
Programming Interface) call to create a real-time
thread, the Dreams DLL (Dynamic Link Library)
sends the request to the real-time thread manager,
which runs as part of the Dreams subsystem. If the
new task set passes the schedulability test performed
by the reservation manager, the real-time thread
manager approves the request. If not, the real-time
thread manager may attempt to distribute the task by
communicating with other thread managers. If the
task can be run locally, the DLL creates a new thread
and an associated shared memory segment. The new
thread performs its initialization and then waits for its
first invocation. The DLL then passes handles and
control of the thread to the subsystem. The real-time
thread manager performs the setup required for the
thread in the subsystem and places a token for the
thread in the real-time scheduler’s shared data area.
The scheduler takes control of the new real-time
thread when it has spare time.

The scheduler executes at the highest Windows NT
priority. It allocates CPU time to a real-time thread
by making it the second highest priority thread. The
scheduler and real-time thread communicate using
the shared memory area. The periodicity of the real-
time thread is implemented within the Dreams DLL
by having a single Win32 thread call the specified
entrance point of the real-time thread at the beginning
of each invocation. Each invocation completes by
making an API call which signals the completion to
the scheduler.

6. Windows NT Implementation
Experiences

In this section, we highlight some of the experiences
gained from the implementation of the Dreams
extensions within Windows NT.

An important issue in the design of the
implementation was the choice of placing the
extensions in a subsystem, or placing them in the
Windows NT executive and kernel. We decided to
place the extensions in a subsystem and to move
components into the kernel as it became necessary.
Having the extensions in a subsystem was consistent
with our goals of minimizing the effect on the
conventional functioning of the operating system and

minimizing the alterations to the code of the existing
operating system. Adopting this approach allowed the
extensions to be developed, modified, tested,
debugged, displayed, and understood, far more easily
than if they were placed in the kernel.

The Dreams scheduler was the one component that
could suffer from being placed in a subsystem.
Placing the Dreams scheduler in the subsystem
introduces a performance overhead due to additional
context switches, and has the potential for duplicating
kernel scheduling information. The overhead of
invoking the Dreams scheduler is equivalent to a
single subsystem call. This additional overhead is of
no consequence to the other components of the
model. In our current implementation, no data is
shared between the two schedulers.

The one problem that we found in implementing the
functionality of the scheduler in the subsystem was
that the Dreams scheduler was occasionally being
invoked late. This was seen in two forms. Firstly, the
scheduler could be invoked a full millisecond late. It
could detect this at the time it was invoked. Secondly,
the scheduler could be invoked near the end of a one
millisecond interval instead of at a one millisecond
boundary. It could detect this by noting that the time
had changed during the interval within which it had
been executing. The scheduler was invoked late for a
number of reasons. The scheduler used a Win32
multimedia timer to control the time that it was next
invoked. Often the timer and the scheduler were
delayed by the execution of system functions; these
should not have taken a full millisecond.
Unfortunately, the time at which the timer should fire
is specified as a number of milliseconds from the
current time. The current time could change while the
call to set the timer was being made, causing the
timer to fire one millisecond late. Finally, the time set
by the clock interrupt, the time used by the Win32
timers, and the time obtained from interrogating the
hardware clock were all slightly out of phase; this
could also cause the Win32 timer to fire one
millisecond late. To rectify this problem, we decided
to invoke the Dreams scheduler off the clock
interrupt in a similar manner to that which occurs at a
quantum end.

Placing the Dreams scheduler in the subsystem led us
to develop a two tiered scheduling approach that,
with the implementation of priority inheritance within
the priority scheduler, turned out to be remarkably
advantageous. The priority scheduler, with priority
inheritance, ensures that the correct thread is

scheduled each time the real-time thread blocks or
makes a subsystem call. The Dreams scheduler need
only be concerned with implementing the real-time
scheduling algorithm. When it decides to schedule a
different real-time thread, it simply drops the priority
of the real-time thread being preempted and raises the
priority of the next thread to be scheduled. The
priority inheritance protocol will then transparently
and precisely implement the desired scheduling
behavior, even if a different thread was actually
executing: for example, if the executing thread was a
non-real-time thread completing a critical section, so
as to unblock a subsystem thread which was
performing a system call on behalf of the scheduled
real-time thread. If, in this example, the real-time
scheduler later decides to schedule the preempted
real-time thread, then the non-real-time thread that
had actually been preempted will automatically be
executed to release its critical section and allow the
system call to complete. The complexity of this
scheduling can be hidden from the Dreams scheduler,
the real-time task computational usage tracking, the
enforcement mechanism, and the schedulability
model.

We chose to implement priority inheritance within
the QLPC (Quick Local Procedure Call) mechanism
as this mechanism appeared to be the most frequent
cause of priority inversion [5]. The implementation
consisted of: removing the existing scheme for
partially overcoming some of the effects of priority
inversion; adding a smaller amount of code to
implement priority (and quantum) inheritance; and
lowering the priority of the Win32 subsystem
servicing threads to the idle priority. Significantly
more effort would have been required to implement
priority inheritance in a single tiered scheduler in
which one of the priority queues was being used to
schedule threads in an EDF manner.

The benefits from the implementation of priority
inheritance were not limited to the Dreams scheduler.
After implementing priority inheritance, we found
that a number of very poor scheduling behaviors were
removed from the system. As a result of the
implementation, an optimization used within
Windows NT for particular combinations of priorities
was usable for threads of all priorities. This yielded a
performance increase for GDI calls belonging to
threads at particular priorities. We ran two video
display applications at the same priority. On the
system containing our modifications, the videos
played more smoothly; they appeared to execute at
the same time, rather than one after the other. Finally,

we found that a lower priority video player no longer
interfered with the execution of a higher priority
editor.

7. Conclusion

This paper has introduced the key components of the
Dreams extensions. The extensions are required to
allow a conventional operating system to support
competing real-time applications within the conven-
tional operating system paradigm. Most of the
extensions described in this paper have been
successfully applied in our Windows NT implemen-
tation. This paper has also provided an overview of
the implementation and has highlighted some of the
experiences gained from the implementation.

Acknowledgments

I would like to thank John Potter, Mark Dras, and
Yan Han for their assistance with this paper. This
work was supported by a Microsoft Research
Institute Fellowship and an Australian Postgraduate
Research Award.

References

[1] Burns, A. and Wellings, A. Real-Time Systems
and their Programming Languages, Second
Edition, Addison-Wesley, 1996.

[2] Custer, H. Inside Windows NT. Microsoft Press,
Redmond, Washington, 1993.

[3] Liu, C.L. and Layland, J.W. Scheduling
Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM
20(1):44-61, January 1993.

[4] Ramamritham, K. and Stankovic, J. Scheduling
Algorithms and Operating Systems Support for
Real-Time Systems, Proceedings of the IEEE
82(1):55-67, January 1994.

[5] Sha, L., Rajkumar, R. and Lehoczky, J. Priority
Inheritance Protocols: An Approach to Real-
Time Synchronization, IEEE Transactions on
Computers 36 (9):1175-1185, 1990.

[6] Shin, K. and Ramanatham P. Real-Time
Computing: A New Discipline of Computer
Science and Engineering, Proceedings of the
IEEE 82(1):6-24, 1994.

[7] Sommer, S. Removing Priority Inversion from
an Operating System. In Proceedings of the
Nineteenth Australasian Computer Science
Conference, 131-139, January 1996.

[8] Sommer, S. and Potter, J. Operating System
Extensions for Dynamic Real-Time Applica-
tions. In Proceedings of the IEEE Real-Time
Systems Symposium, Washington, DC, Decem-
ber 1996.

[9] Sommer, S. Temporal Protection in Dreams. In
Proceedings of the Twentieth Australasian
Computer Science Conference, 56-64, February
1997.

[10] Sommer, S. and Potter, J. Admissibility Tests for
Interrupted Earliest Deadline First Scheduling
with Priority Inheritance, Technical Report
C/TR97-10, MRI, MPCE, Macquarie Univer-
sity, 1997.

Windows NT and Win32 are trademarks of Microsoft
Corporation.

