
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Brazos: A Third Generation DSM System

Evan Speight and John K. Bennett
Department of Electrical and Computer Engineering

Rice University
Houston, TX

Brazos: A Third Generation DSM System0

Evan Speight and John K. Bennett

Department of Electrical and Computer Engineering
Rice University

Houston, TX 77005
{espeight,jkb}@rice.edu

0 This research was supported in part by substantial equipment donations from Compaq Computer Corporation and Schlumberger Company, and
by the Texas Advanced Technology Program under Grant No. 003604-016. John Bennett was on sabbatical leave at the University of
Washington while a portion of this work was conducted.

Abstract
Brazos is a third generation distributed shared
memory (DSM) system designed for x86 machines
running Microsoft Windows NT 4.0. Brazos is
unique among existing systems in its use of selective
multicast, a software-only implementation of scope
consistency, and several adaptive runtime
performance tuning mechanisms. The Brazos runtime
system is multithreaded, allowing the overlap of
computation with the long communication latencies
typically associated with software DSM systems.
Brazos also supports multithreaded user-code
execution, allowing programs to take advantage of
the local tightly-coupled shared memory available on
multiprocessor PC servers, while transparently
interacting with remote “virtual” shared memory.
Brazos currently runs on a cluster of Compaq
Proliant 1500 multiprocessor servers connected by a
100 Mbps FastEthernet. This paper describes the
Brazos design and implementation, and compares its
performance running five scientific applications to
the performance of Solaris and Windows NT
implementations of the TreadMarks DSM system
running on the same hardware.

1. Introduction
Recent improvements in commodity general-purpose
networks and processors have made networks of
multiprocessor PC workstations an inexpensive
alternative to large bus-based distributed
multiprocessor systems. However, applications for
such distributed systems are difficult to develop due
to the need to explicitly send and receive data
between machines. By providing an abstraction of
globally shared memory on top of the physically
distributed memories present on networked
workstations, it is possible to combine the

programming advantages of shared memory and the
cost advantages of distributed memory. These
distributed shared memory (DSM) runtime systems
transparently intercept user accesses to remote
memory and translate these accesses into messages
appropriate to the underlying communication media.
The programmer is thus given the illusion of a large
global address space encompassing all available
memory, eliminating the task of explicitly moving
data between processes located on separate machines.

Both hardware DSM systems (e.g., Alewife [19],
DASH [17], FLASH [15]) and software DSM
systems (e.g., Ivy [18], Munin [6], TreadMarks [14])
have been implemented. Because of the traditionally
higher performance achievable on engineering
workstations relative to personal computers (PCs),
the majority of existing DSM systems are Unix-
based. Recent increases in PC performance, the
exceptionally low cost of PCs relative to that of
engineering workstations, and the introduction of
advanced PC operating systems combine to make
networks of PCs an attractive alternative for large
scientific computations.

Software DSM systems use page-based memory
protection hardware and the low-level message
passing facilities of the host operating system to
implement the necessary shared memory
abstractions. The large size of the unit of sharing (a
page) and the high latency associated with accessing
remote memory combine to challenge the
performance potential of software DSM systems[18].
A variety of techniques have been developed over the
last decade to address this challenge [6, 10, 14].
DSM systems built using these techniques can be
roughly grouped into three “generations”: early
systems like Ivy [18] that employ a sequentially
consistent memory model [16] in a single-processor

workstation environment, second generation systems
like Munin [5] and TreadMarks [13] that employ a
relaxed memory consistency model on similar
hardware, and third generation systems that utilize
relaxed consistency models and multithreading on a
network of multiprocessor computers.

This paper describes the design and preliminary
performance of Brazos, a third generation DSM
system that executes on x86 multiprocessor
workstations running Windows NT 4.0. Brazos is
unique among existing DSM systems in its use of
selective multicast, software scope consistency, and
adaptive runtime performance tuning. Brazos uses
selective multicast to reduce the number of
consistency-related messages, and to efficiently
implement its version of scope consistency [11].
Brazos uses a software-only implementation of scope
consistency to reduce the number of consistency-
related messages, and to reduce the effects of false
sharing[2]. Finally, Brazos incorporates adaptive
runtime mechanisms that ameliorate the adverse
effects of multicast by dynamically reducing the size
of pages' “copysets”[6], as well as an early update
mechanism that improves overall network
throughput. Brazos provides thread, synchronization,
and data sharing facilities like those found in other
shared memory parallel programming systems.

Brazos has been designed to take advantage of
several Windows NT features, including true pre-
emptive multithreading; support for the TCP/IP
transport protocol, and in particular, multicast
support; and OS support for symmetric
multiprocessing (SMP) machines. Unlike most
previous DSM systems, the Brazos runtime system is
itself multithreaded. This allows computation to be
overlapped with the long communication latencies
typically associated with software DSM systems.
Brazos also supports multithreaded user-code
execution, allowing programs to take advantage of
the local tightly-coupled shared memory available on
SMP PC servers, while transparently interacting with
remote “virtual” shared memory physically resident
on other clusters. Brazos consists of four parts: a
user-level library of parallel programming primitives,
a service that allows the remote execution of DSM
processes similar to the Unix rexec service, a
memory management device driver that allows two
virtual addresses to be mapped to the same physical
address, and a Windows-based graphical user
interface. Brazos currently runs on a cluster of
Compaq Proliant 1500 multiprocessors connected by
FastEthernet. In addition to describing the design
and implementation of Brazos, this paper compares
the performance of Brazos to the performance of
Solaris and Windows NT implementations of the

TreadMarks DSM system[14] running on the same
hardware platform. For the applications studied,
Brazos offers superior performance to both
implementations of TreadMarks.

The rest of this paper is organized as follows.
Section 2 describes some of the important differences
between Unix and Windows NT as they relate to the
development of software DSM systems. Section 3
discusses the design issues related to the Brazos
system, and motivates many of the implementation
decisions. Section 4 presents some preliminary
performance results of Brazos relative to the
TreadMarks DSM system, which represents the
existing state-of-the-art in software-only DSM
systems. Section 5 provides a brief discussion of
related work. Section 6 concludes the paper and
describes plans for future development.

2. Unix/Windows NT Differences
Windows NT differs substantially from Unix. The
major differences that directly affect DSM
implementation and performance include:

• Windows NT has native multithreading
support build into the OS.

• BSD-style signals are not available.

• Exception handling is implemented through
structured exception handling.

• Windows NT implements TCP/IP through
the WinSock user-level library.

2.1. Multithreading
One of the significant features of the Windows NT
operating system is the native support for
multithreaded operation. Windows NT provides
support for multiple lightweight threads executing
within the same process address space. The Win32
API provides a rich set of calls to address threading
issues, including support for thread priority
manipulation, synchronization, thread context
manipulation, and thread suspension and resumption.
Standard Unix does not provide for lightweight
threads, although there are several lightweight thread
packages, such as Pthreads, that are available to run
on top of Unix.

2.2. Signals
Unix makes use of signals to inform the operating
system of events that must be handled. Signals that
are used extensively in software DSM systems
include SIGIO, which indicates that an I/O operation

is possible on a file descriptor (a socket), and
SIGALARM, used as a timing device. The SIGIO
signal is generally used to notify a Unix DSM system
that an asynchronous message from another process
is waiting to be received. An asynchronous message
on any socket causes the function associated with the
SIGIO signal to be invoked immediately, unless the
user has explicitly blocked the delivery of the signal.
The select() function must then be used to determine
which socket has available data.

Windows NT does not support this kind of upcall
mechanism. Instead, when a socket is made
asynchronous in Windows NT, the function that will
handle the asynchronous message is also specified.
Thus, the function to be called is tied to the socket
instance instead of a signal, allowing asynchronous
messages to invoke different handler routines
depending on the socket on which they are received.
Additionally, the receipt of an asynchronous message
does not automatically halt other threads (i.e., user-
code threads). This allows independent threads to
process incoming messages concurrently, while still
allowing computation to proceed within scheduling
guidelines.

2.3. Structured Exception Handling
Coherence is maintained in a page-based DSM
system by setting page protection attributes to
indicate the access permissions for a specific shared
page. Processes “invalidate” pages in memory by
altering the page protection such that any attempt to
read or write to the page causes an access violation
fault. For example, the Munin [5] and TreadMarks
[13] DSM systems install interrupt handlers that
specify a function to be called when a page-access
violation occurs. When an access to an invalid page
occurs, the DSM system enters the interrupt handler,
and messages are sent to other processes to acquire
the data needed to bring the page up-to-date in order
to allow the user program to continue.

Windows NT accomplishes exception handling
through a mechanism known as structured exception
handling (SEH). SEH allows a greater amount of
control over how exceptions are handled. Instead of
installing a separate handler for each exception, as is
done in Unix, Windows NT implements SEH through
the try-except block. The try-except block is similar
in flavor to the throw-catch block in C++, but it is
used to trap software or hardware generated
exceptions. The routine identified by the __except()
keyword is called whenever any exception is raised
within the try-except block, and this routine decides
whether to handle the exception, pass the exception
up to the operating system for handling, or continue

execution without addressing the exception. In this
way, exceptions that occur in different parts of code
can be easily handled in different ways.

The code fragment below shows the use of the try-
except block in the Brazos DSM system. The
function UserMain() is the entry-point to the user
code, and is called by each user thread. By placing
the try-except block around this function, Brazos
catches any page-access violations caused by
threads accessing invalid pages. The function
AccessViolationHandler() is the Brazos equivalent
of the interrupt handler function installed in Unix-
based DSM systems.

BBWU\�^

�����8VHU0DLQ�*OREDO,G�/RFDO,G��

BBH[FHSW�$FFHVV9LRODWLRQ+DQGOHU����

Table 1 gives the measured performance for two
virtual memory operations (running on the same
hardware) for both Windows NT and Solaris, a Unix
System V derivative available from Sun
Microsystems. The two systems are comparable in
speed for setting the protection attributes of a page.
However, Windows NT is more than twice as fast as
Solaris handling an access violation, due to the lower
overhead of the try-except block relative to the
interrupt handling capabilities of Solaris. In practice,
only those applications that exhibit a large number of
access violation faults will substantially benefit from
this difference.

OS
Page
Protect

try-except or
Segv Handler

Win NT 4.0 7.0 µsec 20 µsec

Solaris 2.5.1 6.57 µsec 47 µsec

2.4. WinSock
Processes in Brazos use functions in the WinSock
Programming API to communicate with other
processes in the system. All WinSock API calls are
implemented in the WinSock library. With BSD
sockets, some calls are direct system calls into the
operating system, while other calls are made to
functions in a static library that is linked at compile-
time. Consequently, there is more overhead
associated with many of the WinSock calls than with

Table 1. System Call Timings

their BSD counterparts, which can result in higher
per-message overheads and lower overall throughput.

Figure 1 shows the average network throughput
achievable between two machines connected by 100
Mbps FastEthernet. The graph shows throughput for
Windows NT/WinSock as well as Solaris. These tests
were conducted on the same hardware to rule out any
variation due to architectural differences. The test
conducted was a simple request-reply sequence that
typifies the type of communication pattern seen in
DSM systems. The client sends a 20 byte request to
the server, which responds with a message of a length
specified in the request. This loop is repeated 20,000
times, and the average results for different response
sizes are presented here. The outlined area shows the
range of response sizes that would be expected in
most DSM applications (from a few bytes up to a
single 4 Kbyte page).

Figure 1 shows that for all response sizes in the
typical DSM operating range, Solaris achieves a
higher throughput than Windows NT, although
neither system attains even half of the possible
throughput until the response size exceeds 4 Kbytes.
For responses of 16 Kbytes and 32 Kbytes, WinSock
is able to stream data out more quickly, after paying
the cost of initiating the message. Additionally, UDP
messages can be up to 64 Kbytes in length under
WinSock, but are limited to 32 Kbytes under Solaris.

3. Design of Brazos
Brazos has been designed to take advantage of the
features available to the Windows NT and WinSock
programmer. In particular, Brazos makes use of
multithreading to overlap communication with
computation; multicast to reduce the number of
messages sent across the network; scope consistency
[11] to reduce false sharing; and adaptive runtime
support to implement an early update protocol and a
page migration facility.

3.1. Design Overview
The Brazos user-level library is statically linked with
user applications at compile-time and provides the
interface between user code and DSM code. The
most important part of the Brazos library is the
interface for capturing accesses to invalid data and
initiating messages with other processes in the
system. This is accomplished by placing a try-
except pair around the user code (see Section 2.3).
The Brazos API also includes synchronization
primitives in the form of locks and barriers, which
can be used to provide synchronization both between
threads in different processes as well as between
threads in the same process. Routines for error
reporting, statistics gathering, and data output are
also provided in the Brazos API.

Windows NT does not ship with a method of starting
a process on a remote machine similar to the Unix
rexecd daemon. Therefore, Brazos includes a service
that must be installed on each machine that will run
Brazos code. This service listens for incoming DSM

Figure 1. Average Network Throughput

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18

log2(Bytes in Reply)

M
bi

t/
se

c

Windows NT Solaris

DSM Operating Range

session requests, authenticates encrypted passwords
that users must have to run a Brazos session, starts
and manages current DSM sessions running on the
local machine, and provides a mechanism for the
owner to remotely kill a runaway DSM application.

In a multithreaded DSM system such as Brazos it is
necessary to have a mechanism to allow the DSM
system threads to update a page of shared memory
without changing a page’s protection. If a DSM
system thread changes a page's protection in order to
bring it up to date, there is a chance that a user thread
will read part of the page before the updating is
complete. There are two solutions to this problem.
The first is to suspend all user threads when the
system needs to atomically change the contents of a
shared page. This method carries a high cost,
especially when the number of user threads per
process is large. The second method is to provide a
mechanism to map two virtual addresses to the same
physical page in memory, as Unix provides with the
mmap() call. This allows there to be two different
sets of protections associated with a single physical
page. Windows NT does not provide a call similar to
mmap(), but we altered the mapmem device driver
in the Windows NT Device Developers Kit to
provide this functionality.

Brazos includes a graphical user interface that
provides mechanisms for specifying the number of
user threads to start in each process, the mapping of
threads to processors, the priority at which the DSM
application should run, extensive statistics gathering
and presentation mechanisms, and a service that can
probe the network for hosts willing to accept a DSM
session. Brazos can also be run in console-
application mode when a Windows desktop is not
available (i.e., during a telnet login session).

3.2. Multithreading
The Brazos DSM system utilizes multithreading at
both the user level and DSM system level. Multiple
user-level threads allow applications to take
advantage of SMP servers by using all available
processors for computation. Coherence is maintained
between threads on the same machine through the
available hardware coherence mechanisms. In
addition to user-level multithreading, the Brazos
runtime system itself is multithreaded. There are two
main system threads in Brazos. One thread is
responsible for quickly responding to asynchronous
requests for data from other processes and runs at the
highest possible priority. The second thread handles
replies to requests previously sent by the process. As
a practical matter, it is necessary for any DSM
system written for Windows NT to be multithreaded

to some degree, because it is difficult to interrupt a
thread that is executing computationally intensive
user code to cause it to respond to an asynchronous
request for data. This is due to the lack of the signal-
style upcall mechanism described in Section 2.2. This
multithreaded aspect of Brazos allows a greater
amount of computation to communication overlap,
especially if there are more processors located on a
given server than the number of user threads assigned
to it. Finally, the use of a separate thread to handle
incoming replies allows Brazos to maintain multiple
simultaneous outstanding network requests, which
can significantly improve performance [22].

3.3. Software Scope Consistency
DSM systems must maintain data consistency to
ensure that threads do not access stale or out-of-date
data that was written by a thread on another machine.
Although a detailed discussion of the many
consistency models used in shared memory systems
is beyond the scope of this paper, we will briefly
outline the major consistency protocols in use in
modern DSM systems.

Sequential consistency (SC) [16] is the most
intuitive, but also most restrictive, consistency model.
Sequential consistency requires that all data accesses
be consistent with a global ordering that does not
violate program order. The simplest method of
implementing sequential consistency requires threads
to globally invalidate a page after every write to a
shared variable on that page. This guarantees that no
two threads will access out-of-date data, but can
result in unacceptably high communication overhead
in software DSM systems [5].

To reduce the amount of communication, consistency
constraints can be relaxed by guaranteeing that
shared data is only up-to-date after specific
synchronization operations have been performed.
For example, release consistency (RC) [8] guarantees
that data is current only after a thread has performed
a release operation. Simply put, a release operation
can be thought of as the releasing of a lock variable
or the departure from a barrier. Between release
operations, it is the user’s responsibility to ensure that
no two threads perform competing accesses to the
same storage space in memory (competing accesses
are multiple accesses, one of which is a write). By
relaxing the consistency model in this way, software
DSM systems can buffer writes until they are
required to be globally performed by the semantics of
the consistency protocol. This results in substantial
performance benefits because of the large reduction
in communication overhead [5]. Lazy release
consistency (LRC) [13] further delays the

 P0 P1
Barrier Barrier
C = 0
Acquire(0)
A = 1
Release(0) Acquire(0)

A++
Release(0)
D++

Invalid in RC, but valid in
scope consistency.
 Figure 2. RC vs SScS

propagation of invalidations until a synchronization
variable is next acquired.

 Scope consistency (ScC) [11], introduced as an
enhancement to the SHRIMP AURC system [3], is a
relaxed consistency model that seeks to reduce the
false sharing present in page-based DSM systems.
False sharing occurs when two or more threads
modify different parts of the same page of data, but
do not actually share the same data element. This
leads to unnecessary network traffic, and can be a
significant performance problem for DSM systems
due to the large granularity of sharing. Scope
consistency divides the execution of a program into
global and local scopes, and only data modified
within a single scope is guaranteed to be coherent at
the end of that scope. Global scope delimiters include
global synchronization events such as barriers. After
a global scope is closed (completed), all shared data
in the program is guaranteed to be coherent. A lock
acquire-release operation is an example of a local
scope. When a thread acquires a lock, it enters a new
local scope. All changes made until the closing of
the local scope (i.e., the lock release) are guaranteed
to be visible to the next acquirer of the lock, but not
changes made before the lock acquisition. This is in
direct contrast to RC, which guarantees that all
shared data is coherent after a release, regardless of
when the shared write occurred or what type of
release was performed.

The Brazos implementation of scope consistency
(SScS) differs from that described in [11] in two
ways: SScS is a software-only implementation of
scope consistency that requires no additional
hardware support, and Brazos uses SScS in
conjunction with a distributed page management
protocol similar to TreadMarks[14] as opposed to a
home-based system such as Munin [5] and AURC
[3]. In distributed page-based protocols, each process
maintains dirty portions of each shared page of data,
requiring processes to communicate with all other
processes that have a modified portion in order to
bring an invalid page up to date. In a home-based
system, however, processes flush changes to a
designated “home process”, which always has the
most up to date copy of a page. Other processes
simply send a single message to the home process to
re-acquire an invalid page. Brazos uses a distributed
page management algorithm because for systems
without DSM hardware support, distributed page
management protocols outperform home-based page
management protocols [13].

In order to be more precise about the specific
conditions required to implement scope consistency
for local scopes, the following conditions delineate

the differences between release consistency and
scope consistency using release-consistency
nomenclature0. Conditions associated with scope
consistency only are shown in [boldface].
Conditions associated with both release consistency
and scope consistency are shown in normal type.
The use of the term “performed with respect to” in
these conditions is consistent with that of [11].

1. Before an ordinary load or store is allowed to
perform with respect to any other processor, all
previous acquires must be performed.

2. Before a release is allowed to perform with
respect to any other processor, all previous
ordinary loads and stores [after the last acquire
to the same location as the release] must be
performed [with respect to that processor].

3. Synchronization accesses (acquires and releases)
must be sequentially consistent with one another.

Figure 2 demonstrates these concepts. In Figure 2,

assume that variable A is on one page of shared
memory, and variables C and D are on another. In a
coherence protocol such as release consistency,
variable D will be invalid in process P1 after the
Release(0) performed by process P0. This is because
variable C was written to by process P0 before the
release, and variables C and D are on the same shared
page. Under scope consistency, variable D will not
be invalidated because the write to C by process P0
occurred outside of the local scope delimited by the
Acquire(0)-Release(0) pair. The effect of the write
to the page containing variables C and D will not be
propagated to process P1 until the end of the current

0 In order to use terminology consistent with previous work in the
area of relaxed consistency, “opening” and “closing” a local scope,
as defined in [11], will be considered to be equivalent to an
“acquire” and “release” to the same location. “Opening” and
“closing” a global scope, as defined in [11], will be considered to
be equivalent to consecutive barrier events.

global scope. Had the programmer wanted to ensure
that the correct value of C would be available to
process P1 after the critical section performed by
process P0, either the write of C should be moved
into the critical section, or a global scope must be
used after the write to variable C.

In Brazos, SScS provides two main benefits. First, in
the code fragment just discussed, the new value of A
written by process P0 is sent along with the lock
grant to process P1, thereby eliminating a message
that would result from the fault of P1 when trying to
increment A under RC. Secondly, the page
containing C and D is falsely shared in Figure 2.

Therefore, process P1 will find the page invalid
under RC, even though P0 did not actually modify D.
SScS removes the effects of this false sharing by not
invalidating the page containing C and D when the
lock ownership is transferred.

In some situations, programmers may be faced with
situations where it is not easy to switch from RC
semantics to SScS semantics. For such instances,
Brazos provides both a release consistent lock release
primitive, which will flush all invalidation messages
before allowing the release to complete; and a lazy
release consistent acquire primitive that flushes
updates to modified pages to all processes at a lock
acquire. The flexibility provided by the inclusion of
these two extra lock primitives makes porting
existing parallel programs to Brazos easier.

3.4. Multicast Communication
In order to reduce the number of consistency-related
messages, and to efficiently implement scope
consistency in software, Brazos makes use of the
multicast primitives provided by the WinSock 2.0
library [23]. In a time-multiplexed network
environment such as Ethernet, sending a multicast
message is no more expensive than sending a point-

to-point message, and large reductions in both the
number of messages sent and the number of bytes
transferred to maintain coherence can be achieved by
specifying multiple recipients for each message.
Brazos uses multicast to reduce consistency-related
communication traffic during global synchronization
as follows.

When a process arrives at a global synchronization
point (i.e., a barrier), the process sends a message to a
statically assigned barrier manager indicating that the
process has arrived at the barrier. Included in this
message is a list of pages that the process has written
to since the last synchronization point (dirty pages).

When the barrier manager receives notification from
all processes, the manager collates information
regarding dirty pages, and sends a message to each
process indicating the pages that should be
invalidated, who has dirty pieces of the page, and that
the process is free to proceed from the barrier.

After being released from the barrier, threads will
begin faulting on pages that were invalidated by the
barrier manager. Since the manager also
communicated which processes have copies of all
dirty pages, a single multicast message may be sent
to the subset of all processes that have dirty pieces of
the page. These processes, in turn, multicast their
response to not only the requesting process, but to all
processes in the current copyset for that page. The
responses come in the form of diffs, which are
runlength encodings of the changes made to the page
since the last invalidation. Thus, processes that need
the diffs, but have not yet faulted on the pages, will
receive indirect diffs for these pages, with the intent
of bringing them up-to-date before a page fault
resulting from the accessing of the invalid page
occurs.

This mechanism is illustrated in Figure 3, which
shows the differences in communication patterns
between a distributed page-based DSM system that

Barrier B1

R(0)

R(2)

R(1)
P0

P1

P2

Barrier B1

R(0)

R(1)
P0

P1

P2

R(2)

Multicast CommunicationPoint to Point Communication

W(1)

W(2)

W(0)

W(1)

W(2)

W(0)

Figure 3. Point to Point vs. Multicast Communication

P3P3

Barrier B2 Barrier B2

Time Time

relies on point-to-point communication and Brazos.
In Figure 3, processes P0, P1, and P2 each write to a
different variable on the same page of shared data
sometime before the first barrier, B1, as indicated by
W(0), W(1), and W(2). After B1, the processes each
read a value written by another process, as indicated
by R(0), R(1), and R(2). The messages required to
satisfy each of these read requests are shown with
arrows, with request messages using dashed lines and
response messages using solid lines. As can be seen,
it takes 12 point-to-point messages to completely
bring processes P0, P1, and P2 up-to-date for the
data written before B1, but only 3 messages are
required for the method employing multicast.
However, in the multicast implementation, process
P3 also receives indirect diffs for the page, even
though these are not used. This potential
performance problem is addressed in the next section.

3.5. Adaptive Runtime Support
Adaptive performance tuning mechanisms can have a
beneficial effect on performance when used to tailor
runtime data management to observed behavior[1, 2].
Brazos employs four adaptive techniques: dynamic
copyset reduction, early updates, an adaptive page
management protocol, and a performance history
mechanism.

3.5.1 Dynamic Copyset Reduction
One disadvantage with multicast is the potential
harmful effect of unused indirect diffs, as in the case
of P3 in Figure 3. Receiving multicast diffs for
inactive pages does not increase network traffic.
However, it does cause processors to be interrupted
frequently to process incoming multicast messages
that will not be accessed before the next time that the
page is invalidated, detracting from user-code
computation time. The dynamic copyset reduction
mechanism ameliorates this effect by allowing
processes to drop out of the copyset for a particular
page, causing them to be excluded from multicast
messages providing diffs for the page. The decision
to drop out of the copyset is made by counting the
number of unused multicast diffs received for a
specific page. When this number reaches a certain
threshold, the process will place this page on the “to
be dropped” list, and this list of pages is piggybacked
on the next barrier arrival message. The process then
removes itself from the current copyset. When a
thread in the process next faults on the page, the
entire page is retrieved from the manager and any
outstanding diffs from other processes are retrieved
and applied immediately. This adaptation is
particularly beneficial to performance in situations

where two processes actively share a page of data,
and neither of these processes is the page manager.
Although Brazos follows a distributed page
management algorithm (i.e., processes must retrieve
modified pieces of a dirty page from several
processes, not just one), each shared page is assigned
a page manager at the beginning of execution from
which the page is retrieved by other processes only
on the first access to the page. Because the page
manager is always in the current copyset for a shared
page, the manager will always receive indirect
multicast diffs for the page. The adaptive copyset
reduction mechanism allows the manager to drop out
of the copyset and migrate the manager status to a
process actually involved in the sharing. This
reduces the number of useless indirect diffs that the
original page manager receives.

3.5.2 Early Updates
Another form of runtime support provided by Brazos
is an early update mechanism. Because the majority
of the DSM-related network activity in release-
consistent DSM systems occurs immediately after
synchronization events, network traffic in these
systems tends to be bursty. Referring again to Figure
3, assume that R(0), R(1), and R(2) all happened
immediately after the barrier. This would result in
processes being sent indirect multicast diffs for pages
for which the process currently has outstanding
requests, resulting in extraneous messages. In order
to reduce this burstiness, processes in Brazos note
pages for which they receive indirect diffs while they
are waiting for a response to a request for diffs to the
same page. At the next global scope, processes send
the page numbers of these early update pages to the
barrier manager along with the barrier arrival
message. The manager distributes the list of the new
early update pages with the barrier release message to
all processes, and thereafter processes multicast their
changes for all early update pages in a single bulk
transfer message before each arrival at a barrier. This
eliminates the flurry of network traffic resulting from
threads simultaneously faulting on the same page in
memory immediately after a synchronization point,
since the early update pages will not be invalidated
after the barrier. Pages may switch back from the
early update protocol to the default multicast
invalidation protocol by the dynamic copyset
reduction mechanism described above. Specifically,
processes count how many updates go unused for
each page. When this number reaches a certain
threshold, the process drops from the copyset. When
the number of processes in the copyset reaches one,
the page’s protocol is changed back from early
update to the multicast invalidate protocol.

3.5.3 Other Techniques
Brazos incorporates two other adaptive techniques.
The first of these allows pages to be managed with
either a home-based protocol similar to Munin [5], or
a distributed page protocol similar to TreadMarks
[13]. The Brazos runtime system adaptively alters
pages’ management protocol based upon observed
behavior in order to provide the best management
technique for each shared page.

Brazos also incorporates a history mechanism that
allows the runtime system to more quickly adapt to
programs’ behavior. Brazos saves information
regarding the performance of the adaptive protocols
in a file for each application. These files store
information about how well the various adaptive
techniques worked for each program variable. This
low level of granularity is desirable because the
mapping between pages and data may change across
program execution, but program variables generally
do not. The history mechanism and dynamic page
management protocol were not used in obtaining the
results presented in Section 4. Details on these
techniques can be found in [22].

3.6. Brazos Program Development
Users write Brazos programs using familiar shared-
memory programming semantics. Any shared data in
the system may be transparently accessed by any
thread without regard to where in the system the most
current value for that data resides. The Brazos
runtime system is responsible for intercepting
accesses to stale data and bringing shared pages up-
to-date before program execution is allowed to
continue.

Programs written for Brazos specify the function
UserMain() instead of the normal main() function as
the entry point into user code. User code is linked
with the static library brazos.lib at compile-time.
This library contains the DSM system code for
maintaining shared-memory across the network,
providing synchronization between threads (both
within the same process and between processes) and
collecting statistics on the performance of the local
DSM process. The resulting console-based
executable is started on each machine participating in
the DSM run through the use of the Windows NT
service described in Section 3.1.

The Brazos DSM programming library provides
parallel programming macros based on a superset of
the PARMACS macro suite [4]. Locks and barriers
are the two forms of synchronization available to the
parallel programmer, and the synchronization macros
for these may be used without regard to where the

synchronizing threads are located (e.g., in the same
process, or between processes). Windows NT
synchronization primitives are embedded inside the
PARMACS synchronization macros to allow for this
transparency, which also allows the same executable
to be run as a DSM program across servers, or as a
strictly hardware-based shared memory program on a
single SMP server. All shared data must be
dynamically allocated through the PARMACS macro
G_MALLOC in order to make the DSM subsystem
aware of which portions of the address space must be
maintained as shared data. All other data is
considered to be private to the threads running in
each individual process.

4. Performance of Brazos
This section presents preliminary performance results
for various configurations of eight processors. Figure
4 presents speedup numbers comparing Brazos to two
versions of the TreadMarks DSM system: TMK-SOL
is the standard release of TreadMarks 1.0 on Solaris,
and TMK-NT uses a version of TreadMarks 1.0 that
we have ported to Windows NT. All data were
obtained on a network of four Compaq Proliant 1500
servers connected by a 100 Mbps FastEthernet. Each
Proliant 1500 has two 200 MHz Pentium Pro
processors with 192 Mbytes of main memory.

Application Input Set

SOR 2048 X 2048 matrix

ILINK Amish input set

Barnes Hut 32,768 bodies

Water 729 molecules, 10 steps

Raytrace balls4 input set

Five applications were studied. SOR is a nearest-
neighbor algorithm used to solve differential
equations and was taken from the TreadMarks
sample application suite. ILINK [9] is a parallel
implementation of a genetic linkage program that
traces genes through family genealogies. Barnes Hut
solves hierarchical n-body problems and was taken
from the SPLASH benchmark suite[21]. Water
calculates forces and potentials in a system of water
molecules, and was also taken from the SPLASH
suite. Finally, Raytrace is a graphics rendering
application from the SPLASH-2 benchmark suite
[24]. Input data for each of these programs is shown
in Table 2.

Table 2. Application Input Sets

The speedups shown in Figure 4 are relative to the
uniprocessor execution time for the same operating
system, e.g., the speedups for TMK-SOL are shown
relative to the uniprocessor execution time under
Solaris, and the Windows NT configurations are
shown relative to the uniprocessor execution times
under Window NT. The uniprocessor times are not
the same for the TMK-NT and TMK-SOL
implementations due to compiler differences. For
further details, see [22].

SOR achieves a higher speedup under both Windows
NT configurations than under Solaris. Because SOR
has little communication, the higher achievable
network throughput for Solaris shown in Figure 1
does not give the Solaris implementation a significant
advantage. The overlap of communication with

available computation allows TMK-NT to slightly
outperform TMK-SOL. The Brazos implementation
further improves performance by making use of the
available native hardware shared memory support for
threads located on the same machine, reducing the
overall network communication by half. SOR’s
sharing is all pair-wise between at most two threads,
therefore the use of multicast does not help the
performance of the Brazos implementation.

Examining the performance of ILINK, we see that
the TreadMarks implementation under Solaris
performs 9% better than the Windows NT

implementation. ILINK has a moderate amount of
communication, and the increased network
throughput of Solaris give TMK-SOL an advantage
over TMK-NT for this application. However, the use
of the available native hardware shared memory
support again gives the Brazos configuration a
significant advantage in ILINK. Additionally, the
sharing patterns in ILINK favor the use of multicast,
and these two factors decrease the overall
communication needed by 238% over the course of
ILINK’s execution. Finally, the early update
adaptive mechanism further reduces communication
by another 37%, leading to the 54% performance
improvement of ILINK under Brazos.

Barnes Hut displays behavior similar to that of
ILINK, with Brazos significantly outperforming

either TreadMarks implementations. Barnes Hut
benefits slightly from multithreading, but the use of
multicast reduces communication rates by more than
seven-fold through a reduction in the effects of false
sharing. Barnes Hut displays a large amount of false
sharing, with threads faulting on pages that are write
shared, even though individual data elements on the
pages are not shared. In Brazos, processes receive
indirect diffs for falsely shared data before the access
violation occurs, eliminating the detrimental effects
of the false sharing, reducing communication, and
leading to a near doubling in performance for Barnes
Hut.

Figure 4. Performance of Brazos vs TreadMarks on 8 Processors

0

1

2

3

4

5

6

SOR ILINK Barnes Hut Raytrace Water

TMK - SOL TMK - NT Brazos

Raytrace has been shown in previous studies to
benefit from the use of scope consistency [11]. With
the hardware currently used by Brazos (very fast
processors and a relatively slow communication
media), programs like Raytrace that have large
amounts of communication do not achieve good
performance. Raytrace was included in this study to
show the effects of scope consistency in Brazos, and
to demonstrate that an all software implementation of
scope consistency based on a distributed page
management algorithm can be beneficial to
applications that exhibit the correct sharing patterns.
Because all shared data in Raytrace that must be
propagated between threads is contained within small
critical sections, Brazos is able to reduce the number
of messages sent by 202% through a reduction in
false sharing. This reduction leads to a 614%
decrease in the number of bytes sent for Raytrace by
not invalidating pages that are written outside of
these critical sections. As a result, Brazos obtains a
speedup of 1.64 on 8 processors, whereas both
TreadMarks implementations are so communication
bound that a slowdown in moving from 1 to 8
processors was observed.

Although Water performs better under both Windows
NT implementations, it benefits minimally from the
use of multicast and user multithreading.
Consequently, Water does not perform appreciably
better under Brazos than TMK-NT. This is mainly
because over 70% of the messages in Water are
synchronization messages, which currently do not
benefit from the use of multicast. More detailed
results on these and other application programs can
be found in [22].

5. Related Work
We are aware of only one other software DSM
system built using Windows NT [12]. The Millipede
project provides a simple programming interface and
portability, while implementing adaptive measures
such as thread migration and load balancing. Brazos
builds upon ideas from several earlier DSM systems,
including Ivy [18], Munin [6], and TreadMarks [13].
To the best of our knowledge, Amoeba [20] is the
only other DSM system to make use of group
communication (multicast), although recent industry
interest (most notably the IP Multicast Initiative from
Stardust Technologies) in the use of multicast may
make the use of multicast more widespread.

The implementation of DSM on SMP machines has
been addressed in several systems. In [10], a multiple
writer protocol with automatic updates is described.
This design relies on specific hardware extensions to
implement automatic update, whereas Brazos uses

commodity PC’s and networks. Erlichson et al. [7]
describe a single-writer, epoch-based release
consistency DSM design for SMP machines. They
conclude that network bandwidth limited the
performance potential of this approach. We have
shown that network traffic can be reduced
significantly through the use of multicast and
adaptive protocols.

Scope consistency was first introduced in [11] and
relied on specific hardware support provided in the
SHRIMP multicomputer [3] to achieve performance
gains over a software-only implementation of LRC.
Software-only scope consistency models have been
proposed [25], but these systems are home-based
systems rather than a distributed page-based system
like Brazos.

6. Conclusions and Future Work
This paper has described Brazos, a software DSM
system that runs under Windows NT 4.0 on a
network of PC servers. We have demonstrated that
such a system can be competitive with networks of
Unix computers for scientific applications, despite
the lower per-message overhead of Unix. This was
accomplished by taking advantage of available local
hardware coherence mechanisms, support for
multithreading, a relaxed consistency model, and
selective multicast. We have briefly presented these
concepts, and have shown their aggregate effect on
the performance of five scientific applications. We
are working to improve the performance of the
adaptive techniques presented here, as well as to
develop new techniques. We are also investigating
mechanisms for thread migration across distributed
processes, thread checkpoint and restart, and support
for multiprogramming. Finally, we are working on a
faster transport protocol to reduce the high startup
overhead we currently observe with WinSock.

Source code for Brazos, including future
enhancements, will be made available for non-
commercial use via the World Wide Web in the near
future.

References
[1] C. Amza, A.L. Cox, S. Dwarkadas, and W.
Zwaenepoel. Software DSM Protocols that Adapt between
Single Write and Multiple Writer. In The Third
International Symposium on High-Performance Computer
Architecture. p. 261-271, 1997.

[2] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Munin:
Distributed Shared Memory Based on Type - Specific
Memory Coherence. In Proceedings of the 1990
Conference on the Principles and Practice of Parallel
Programming. p. 168-176, 1990.

[3] M.A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E.W.
Felten, and J. Sandberg. Virtual Memory Mapped Network
Interface for the SHRIMP Multicomputer. In Proceedings
of the 21st Annual International Symposium on Computer
Architecture. p. 142-153, 1994.

[4] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R.
Overbeek, J. Patterson, and R. Stevens. Portable Programs
for Parallel Processors. 1987: Holt, Rinehart and Winston,
Inc.

[5] J.B. Carter. Efficient Distributed Shared Memory Based
on Multi-Protocol Release Consistency. Ph.D.Thesis, Rice
University, Houston, 1993.

[6] J.B. Carter, J.K. Bennett, and W. Zwaenepoel.
Techniques for Reducing Consistency-Related
Communication in Distributed Shared Memory Systems.
Transactions on Computer Systems, 13(3):205-243,1995.

[7] A. Erlichson, N. Nuckolls, G. Chesson, and J.
Hennessy. Soft FLASH : Analyzing the Performance of
Clustered Distributed Virtual Shared Memory. In
Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Systems. p. 210-220, 1996.

[8] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A.
Gupta, and J.L. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. In
Proceedings of the 17th International Symposium on
Computer Architecture. p. 15-26, 1990.

[9] S.K. Gupta, A.A. Schaffer, A.L. Cox, S. Dwarkadas,
and W. Zwaenepoel. Integrating Parallelization Strategies
for Linkage Analysis. Computers and Biomedical
Research, 28:116-139,1995.

[10] L. Iftode, C. Dubnicki, E.W. Felton, and K. Li.
Improving Release-Consistent Shared Virtual Memory
using Automatic Update. In The 2nd IEEE Symposium on
High-Performance Computer Architecture. p. 14-25, 1996.

[11] L. Iftode, J.P. Singh, and K. Li. Scope Consistency: A
Bridge between Release Consistency and Entry
Consistency. In The 8th Annual ACM Symposium on
Parallel Algorithms and Architectures. 1996.

[12] A. Itzkovitz, A. Schuster, and L. Wolfovich,
Millipede: Towards Standard Interface for Virtual Parallel
Machines on Top of Distributed Environments, Technical
Report 9607, Technion IIT, 1996.

[13] P. Keleher. Lazy Release Consistency for Distributed
Shared Memory. Ph.D.Thesis, Rice University, 1995.

[14] P. Keleher, S. Dwarkadas, A. Cox, and W.
Zwaenepoel. TreadMarks: Distributed Shared Memory on
Standard Workstations and Operating Systems. In
Proceedings of the 1994 Winter Usenix Conference. p. 115-
131, 1994.

[15] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R.
Simoni, K. Gharachorloo, J. Chapin, D. Nakahira, J.
Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J.
Hennessy. The Stanford FLASH Multiprocessor. In
Proceedings of the 21st Annual International Symposium
on Computer Architecture. p. 302-313, 1994.

[16] L. Lamport. How to Make a Multiprocessor Computer
that Correctly Executes Distributed Multiprocess Programs.
IEEE Transactions on Computers, C-28(9):690-691,1979.

[17] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber,
A. Gupta, J. Hennessy, M. Horowitz, and M.S. Lam. The
Stanford DASH Multiprocessor. IEEE Computer, 25(3):63-
79,1992.

[18] K. Li. Ivy: A Shared Virtual Memory System for
Parallel Computing. In Proceedings of the 1988
International Conference on Parallel Processing. p. 94-
101, 1988.

[19] K. Li. Shared Virtual Memory on Loosely Coupled
Multiprocessors. Ph.D.Thesis, Yale University, 1986.

[20] S.J. Mullender, G.V. Rossum, A.S. Tanenbaum, R.V.
Renesse, and H.V. Staveren. Amoeba - A Distributed
Operating System for the 1990s. IEEE Computer, 23(4):44-
53,1990.

[21] J.P. Singh, W.-D. Weber, and A. Gupta, SPLASH:
Stanford Parallel Applications for Shared-Memory,
Technical Report CSL-TR-91-469, Stanford University,
1991.

[22] E. Speight. Efficient Runtime Support for Cluster-
Based Distributed Shared Memory Multiprocessors. Ph.D.
Thesis, Rice University, Houston, 1997.

[23] Stardust Technologies. Windows Sockets 2 Application
Programming Interface. 1996.

[24] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A.
Gupta. Methodological Considerations and
Characterization of the SPLASH-2 Parallel Application
Suite. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture. p. 24-36, 1995.

[25] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation
of Two Home-Based Lazy Release Consistency Protocols
for Shared Virtual Memory Systems. In Proceedings of the
Second USENIX Symposium on Operating System Design
and Implementation. p. 75-88, 1996.

