
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

OPENNT: UNIX Application Portability to Windows NT
via an Alternative Environment Subsystem

Stephen R. Walli
Softway Systems, Inc.

San Francisco, CA

OPENNT: UNIX Application Portability to Windows NT via an
Alternative Environment Subsystem

Stephen R. Walli
Softway Systems, Inc.

185 Berry Street, Suite 5514,
San Francisco, CA 94107

stephe@opennt.com

1. The Problem
Walli’s First Law of Applications Portability:
Every useful application outlives the platform on
which it was developed and deployed.

Application source code portability is one of the
cornerstones of most open systems definitions.
The intention is that if an application is written to
a particular model of source-code portability, it
can port relatively easily to any platform that
supports the portability model. This model is
often based on source code portability standards
such as the ISO/IEEE family of POSIX
standards [1,2] and ISO/ANSI C[3], and
specifications that include these standards such
as the Open Group’s Single UNIX
Specification[4].

The strength of this model is that the investment
in the application’s development is not lost in re-
deployment to new architectures. Re-writing the
application to new platforms every five years or
so is not an option. There are already too many
new applications to be written in the queue
without adding the burden of costly re-writes
every few years to address newer faster hardware
platforms.

Currently businesses are faced with the decision
of moving to Microsoft’s Windows NT operating
system. Windows NT provides a robust
environment to solve many business application
problems through a host of software development
tools, as well as a platform to run the many
Win32-based applications that businesses use
today. It does this in a price competitive manner
with respect to the hardware platforms on which
it runs. The problem becomes protecting the
huge investment in applications development
over the past decade or more in UNIX
applications. How does one leverage and protect

the existing application base while moving to
Windows NT?

2. Alternatives
There are several ways to move existing
applications to Windows NT. These range from
the expense of a complete re-write of the
application to some form of application port. We
will briefly look at the pros and cons of the
following:
• a complete re-write of the application to the

Win32 environment subsystem
• the UNIX emulation library approach to

porting the application
• the common library strategy for porting

applications
• the Microsoft POSIX subsystem
• the OPENNT subsystem

2.1 A Brief Introduction to the
Windows NT Architecture
Before discussing the alternatives, one must
understand a little of the overall Windows NT
architecture[5]. The Windows NT operating
system was structured such that there is a small
kernel (not unlike the design of Mach) that is
written such that much of the OS is architecture-
neutral with the architecture-specific
functionality being provided through the
Hardware Abstraction Layer (HAL).

Above the kernel sits subsystems that provide
functionality to applications. These subsystems
are loosely grouped into functional subsystems
(e.g. the Security subsystem, the I/O subsystem)
that provide basic functionality, and environment
subsystems (e.g. Win32 subsystem, the Microsoft
POSIX subsystem, the OS/2 subsystem) that
present a programmatic and user interface to
developers and users. The primary environment
subsystem supported by Microsoft, and regarded
as the prescribed way to develop applications on

Windows NT is the Win32 subsystem. The
Win32 subsystem is also responsible for
managing the desktop.

Applications programs essentially run as clients
of their respective environment subsystem using
a variety of techniques to communicate with the
subsystem when requesting operating system
services. A fast local procedure call (LPC) and
shared memory are two of the more common
methods of communication. When an
application is started, the executable image is
inspected to determine which subsystem will
provide the application’s services.

2.2 Caveat Lector
Prior to discussing the alternatives and the
OPENNT subsystem, it is important to note what
this paper is not about. Win32 and traditional
UNIX applications use different interfaces for
accomplishing the same functions (opening files,
creating new processes, etc.). These two
operating environments also use different
philosophies with respect to how applications are
structured when looking at such items as the
handling of standard I/O streams, the use of file
descriptors, consistent return codes, and process
creation relationships and control.

This paper does not get into religious or
philosophical debate about which OS interface or
application architecture may or may not be
“better” than the other. Neither does it descend
into “marketing” messages about the rationale for
providing two different programming and run-
time environments on Windows NT. This paper
is about solving a very real application
programming problem using a unique strategy
based on the fundamental design of the Windows
NT OS.

2.3 Application Rewrite to Win32
There is a family of simple application programs
that are written to ANSI C and its library
specifications and will simply re-compile on the
Windows NT operating system in the Win32
subsystem space.

Most applications present a greater challenge as
they use some form of system resources. Such
applications require some amount of rewrite to
address the lack of interfaces that directly map
the traditional UNIX application interface to
which they were written. Some of the re-write

may be very straightforward if the use of system
services was restricted to simple file operations
(open(), close(), read(), write()). If the
application depends upon complex signal
mechanisms, parent-child relationships (fork(),
exec()), or absolute file semantics (hard links, or
the ability to distinguish files by case alone), then
the rewrite strategy becomes more expensive as
parts of the application must now be re-designed,
then re-written.

When one considers a limited number of
application programs, this may be an option. If
however, one is reviewing a large number of
applications, the cost of rewriting can become
excessive.

2.4 Win32-based UNIX Emulation
Libraries
There are a number of Win32-based libraries
which emulate the behavior of UNIX system
calls and libraries. The most common include:
• UWIN from AT&T Laboratories
• NuTCracker from Datafocus
• Portage from Consensys

Please see Korn [6] for a comparison of these
three packages, and for a complete discussion of
the UWIN package.

A set of applications may compile cleanly in this
environment, but may not run correctly because
system calls don’t demonstrate the expected
semantics. For example, the semantics for fork()
and exec() cannot be exactly duplicated with
respect to the process attributes inherited by the
child process. NuTCracker and Portage leave a
process “ghost” around, creating a new process,
when an exec() call is issued. To obviate the
need for exact semantics the UWIN project
created a spawn() call that replaces the previous
two interfaces with a single interface.

File system semantics are another challenge. The
Windows NT file system (NTFS) provides
almost complete UNIX file system semantics.
Group ownership of files, hard links, and
filename case sensitivity is all available from
NTFS, but are not available through the Win32
subsystem.

All these emulation systems allow for (indeed
may require) the use of Win32 interfaces in the
application source code. This is not a feature. In

a less experienced development operation it can
destroy the application’s portability, locking it to
the hybrid environment. At best it increases the
maintenance cost of the source with an additional
level of conditional compilation, and the work
may not easily integrate into the existing style of
UNIX code.

2.5 Common Porting Libraries
Depending upon the application space there may
be a set of libraries that have already been
created that are used as the portability layer.
The only requirement here is that the library
exists on Windows NT. The library layer then
becomes the porting exercise. This is a special
case of the normal situation where the
application source code needs to be ported or re-
written. It is an application structuring issue.

2.6 The Microsoft POSIX Subsystem
Windows NT supports multiple environment
subsystems by design. One of the original
subsystems was the POSIX subsystem. The
Microsoft POSIX subsystem is an exact
implementation of the ISO/IEEE POSIX.1
standard, which includes the ANSI C library by
reference.

Microsoft down-played the POSIX subsystem,
essentially pointing out that it was delivered for
conformance to NIST FIPS Pub 151-2 [7]
requirements for government agency
procurement. The development environment was
not very supportive, and it was poorly
documented. As an exact implementation of
POSIX.1, the Microsoft POSIX subsystem was
somewhat limited in functionality.

The interesting thing to note about early
experiments with the Microsoft POSIX
subsystem is that all the “big” things (process
semantics, signals, and the file system) behave as
expected − it is the little things that are
surprising. The ttyname() description in
POSIX.1 states that the function returns a pointer
to a string containing the pathname of the
terminal, but returns a NULL pointer if the file
descriptor is invalid or if the pathname cannot be
determined. There are no error conditions that
are detected[1]. A function that always returns a
NULL pointer is a sufficient implementation to
fulfill the letter of the standard without being
particularly useful to an application.

That said, the Microsoft POSIX subsystem
passed the breadth of the NIST FIPS 151-2
certification process. In fact, the original
OPENNT Commands & Utilities [8] shipped in
March 1996 were built on top of a subsystem that
was for the most part the original Microsoft
POSIX subsystem. That achievement
demonstrated that the environment subsystem
architecture of Windows NT was flexible and
powerful.

2.7 The OPENNT Subsystem
If the Microsoft POSIX subsystem could be built
then why not a complete “UNIX” environment
subsystem? There is nothing in the Open Group
Single UNIX Specification and its attendant
UNIX 95 [9] brand that can not be implemented
on top of the Windows NT kernel. As you will
see, this also applies to the graphic environment
of the MIT X11 project.

The goals when developing OPENNT were:
• To provide a complete porting and runtime

environment to migrate applications source
code developed on traditional UNIX systems
directly to Windows NT. This meant going
beyond the standards and specifications (e.g.
providing X11R5) as well as providing more
than one way to access functionality (e.g.
determining the next available master
pseudo-terminal).

• To provide true semantics for the system
interfaces such that application source code
would not need to change to account for “not
quite UNIX” semantics.

• To ensure any changes made to the
application source code should make it more
portable (i.e. follow the standards) rather
than less portable (i.e. using Windows NT
specific constructs.)

• To ensure performance was not effected by
an appreciable amount.

• To ensure that the Windows NT operating
system’s integrity was not compromised in
anyway (e.g. security).

• To integrate the OPENNT subsystem cleanly
into the Windows NT world such that it was
not “isolated” with respect to such things as
data access and application or system
management.

After initial investigations into Windows95, it
was decided to not pursue a solution in this

space. There was no way to provide true
POSIX/UNIX semantics on Windows95.

The overall goal was to leverage the Windows
NT environment subsystem architecture and
design to its logical conclusion, taking it from the
general purpose application environment that
exists solely in the Win32 subsystem space, and
using it to provide an application platform for
both Win32 and UNIX-based applications.

3. A Short History of OPENNT
In September 1995, Softway Systems, Inc.
entered into a long-term agreement with
Microsoft to extend the Microsoft POSIX
subsystem into a complete traditional UNIX
subsystem, capable of branding to the Open
Group’s UNIX 95 profile brand. Work began
immediately to wrap the POSIX subsystem in a
shell and utilities environment (delivered March
1996) that conformed to the POSIX.2 Shell and
Utilities Execution Environment. An X11R6
server was added (July 1996), along with a telnet
service (August 1996). A software development
kit (SDK) was added such that developers could
begin porting their own applications (September
1996). At that time, the SDK essentially
supported the POSIX.1 interfaces, ISO C library,
and approximately 60 historical Berkeley library
routines from the 4.4BSD-Lite distribution that
were required while developing the first
POSIX.2 implementation. It provided the
additional tools required to develop applications
(the RCS version control suite, ar, cc/c89) and
wrapped the Microsoft Visual C/C++ command-
line compiler.

Extending the OPENNT subsystem to map more
of the kernel interface and adding libraries and
utilities has been ongoing. With the release of
OPENNT 2.0 (May 1997), there is now support
for:
• POSIX.1, including a nearly complete

general terminal interface
• ISO C standard library
• Berkeley sockets
• System V Interprocess Communications

facilities (shared memory, semaphores,
message queues).

• Memory mapped files
• System V and Berkeley signal interfaces

layered onto the POSIX.1 signal semantics.
• traditional curses (ncurses  also supports

colour)

• X11R5 clients libraries (Xlib, Xt, Xaw, etc.)
and almost all the X11R5 clients

• pseudo-terminals
• OSF/Motif 1.2.4
• cron service
• full job control in the shells (ksh, csh)
• tape device support
• Perl 5
• the public domain KornShell with full job

control, the Tenex csh and 200+ utilities

4. The OPENNT Architecture
The overall architecture of OPENNT consists of
the environment subsystem, its mapping to the
Windows NT file system (NTFS), its relationship
to functional subsystems (e.g. security), and its
compiler environment. Issues of integration with
the rest of Windows NT and the Win32
subsystem are discussed in the following section.

4.1 The OPENNT Subsystem
The OPENNT subsystem consists of three parts:
• The subsystem itself (PSXSS.EXE) that

functionally re-maps the Windows NT
kernel and manages such items as process
relationships and signal delivery.

• The terminal session manager (POSIX.EXE)
that manages the desktop console window
for each OPENNT-based session leader.

• The dynamic link library (PSXDLL.DLL)
that handles certain system service requests
directly, as well as the communication
between the subsystem and OPENNT
processes.

When an OPENNT application is started for the
first time, the Win32-based Program Manager
determines that the application belongs to a
subsystem other than the Win32 subsystem and a
number of events happen:
• If the OPENNT subsystem is not already

running, it is started. The subsystem can be
configured to start-up at system boot time,
but by default is started for the first OPENNT
application.

• A terminal session manager is started to
manage console window output for the
application. A terminal session manager
runs for each session. It is the tty device for
an OPENNT application.

At that point, application processes run,
communicating with the OPENNT subsystem in
the same manner as a Win32 application runs and
communicates with the Win32 subsystem. Fast
Local Procedure Call (LPC) and shared memory
are the two primary mechanisms used for
communications between the OPENNT subsystem
and its processes.

4.2 The Windows NT File System
NTFS was developed for Windows NT to
provide a fully functional file system and address
the shortcomings of the DOS FAT file system.
It provides:
• Recoverability and redundancy of critical

disk structures
• Enhanced security consistent with the

Windows NT security model
• Data redundancy capabilities to support disk

mirroring and striping
• Support for large volumes
• Unicode-based filenames
• Bad cluster remapping
• POSIX file system semantics, including case

sensitivity for filenames, hard links, the file
change time stamp, and group ownership

File access is mapped from the process to data on
the disk via a layered driver model. The NTFS
driver is simply another driver layer under the
control of the Windows NT executive I/O
manager. The NTFS driver can further layer on
various fault tolerant drivers, and ultimately
layers onto the actual disk driver.

All system service calls for file access come
through the I/O manager, regardless of the
environment subsystem of origin, i.e. both the
Win32 and OPENNT subsystems share a common
view of the NTFS. There is no container file
system in which POSIX/UNIX file system
semantics are emulated. Files are treated as
objects within the Windows NT executive, and
are managed by the Object manager with respect
to object (file) sharing and protection. The
Object manager interfaces with the Security
Reference Monitor when checking file access
permissions.

While the OPENNT subsystem shares a common
view of the files within the NTFS, additional
functionality is supported. The OPENNT
subsystem is able to create hard-links in the file
system, something not available via the Win32

subsystem. Win32 subsystem applications (such
as the Explorer or File Manager) see two
separate files. Case sensitivity in the filename is
supported through the OPENNT subsystem, so
both makefile and Makefile can exist, and
removing one will not accidentally remove the
other.

Advanced features of NTFS are also available to
applications running from the OPENNT
subsystem. The audit capabilities to track file
access success/failure of open, close, read, and
write operations are features of NTFS, and
available to OPENNT applications. The ability to
use additional permission controls with access
control lists is also available. These are all file
system capabilities that managed by applications
that are outside the typical ported application.
Windows NT provides the tools to manipulate
the audit and advanced security features of
NTFS.

4.3 Security, Privileges, and
Permissions

Windows NT has obtained its U.S. Department
of Defense Orange Book C2 security
certification, supporting all required
discretionary access controls. One of the goals
of OPENNT was to ensure it worked cleanly with
the security model on Windows NT, and did not
compromise any of its capabilities.

In general, objects (e.g. files) are protected by
access control lists (ACL) that are made up of
access control entries (ACE). When a user logs
onto Windows NT, authentication is provided
via username and password and confirmed
through the security subsystem. An access token
is associated with the successfully logged on
user’s process and this is used in all actions with
objects to determine what access is appropriate
given the objects’ ACLs.

Several issues arise with respect to OPENNT.
The user and group name space is shared. There
is no concept of separate user and group
databases. Groups can also own objects. This
means that a file created on the Win32 side of the
house may be owned by a group, and a long
listing (ls) from the OPENNT side of the house
will show a group name as both the owner and
the group of the file. This is a little disconcerting
the first time it is witnessed. Files created from

the OPENNT side of the house assign ownership
appropriately and consistently with the POSIX
standards.

There are no actual permission bits for a file or
directory, but rather ACLs are used to map the
permission world of UNIX/POSIX. There is an
ACE entry for the file owner, file group, and a
group named “Everyone” that align with the
appropriate permission fields traditionally
associated with file permissions in the UNIX
world. The ACL can be displayed via the File
Manager. Again, files created from the Win32
side of the house will receive an ACL consistent
with the Win32 subsystem rules. A long listing
from the OPENNT world must map the ACL to
permission bits as best it can. Additional levels
of security are possible by adding additional
ACEs.

There are no /etc/passwd or /etc/groups files. All
authentication information is kept in the database
accessed by the security subsystem. This is one
of the two areas that source code changes
specific to OPENNT are required for an
application that authenticates users. (The other is
handling rooted pathnames that expect /usr and
/bin to exist in the file hierarchy.) As there is no
password database against which to authenticate
a user, OPENNT provides a simple functional
interface to handle user authentication, as well as
a set of exec() functions to execute an
application as a particular user. The OPENNT
login program executed by the OPENNT telnetd
makes use of these functions to setup the shell as
a new user.

Windows NT does support an Administrator user
with enhanced privileges, as well as an
administrators group. There is, however, no root
user with all privileges. This has not caused any
insurmountable problems in any of the
application porting experiences we have had to
date, nor have any of the customer base or
product beta-testers complained about this lack
of a root user id.

4.4 The Compiler Environment
The OPENNT development environment consists
of a set of headers, libraries, and shell script
wrappers around the command-line version of
the Microsoft Visual C/C++ compiler (CL.EXE)
and linker (LINK.EXE).

The compiler builds object modules that can be
linked regardless of the subsystem with which the
application will run. The Microsoft linker knows
how to stamp the executable appropriately for the
“POSIX” subsystem, such that it is correctly
passed off to the subsystem when the Win32
subsystem determines it is a “POSIX” binary at
application start-up time.

Programs that run as clients of one environment
subsystem cannot make calls to interfaces
supported by another environment subsystem, so
separate libraries are provided to ensure no
dependencies to the Win32 world are referenced
within the libraries.

As of publication time, Softway Systems
developers are completing a port of gcc into the
OPENNT environment. Both Intel and DEC
Alpha platforms are being supported by the gcc
tool set. The compiler suite will be made
available via the Tool Warehouse on the Softway
Systems, Inc. web site: http://www.OpenNT.com

4.5 Performance Issues
The OPENNT subsystem is a peer environment
subsystem to the Win32 subsystem. OPENNT
processes communicate with the OPENNT
subsystem using the same mechanisms as Win32
subsystem processes use to communicate with
the Win32 subsystem.

Comprehensive benchmarks have not been run,
but early informal work has been done using the
iozone [9] benchmark, netperf [10] benchmark,
and some informal programs to compare CPU
bound program throughput. The iozone tests and
CPU tests were run on a traditional UNIX system
as well as both the Win32 and OPENNT
subsystems running on identical hardware. The
netperf benchmarks were run between
comparable Windows NT machines, and
Windows NT and a similar Intel machine running
a traditional Berkeley-based system. Informal
trials indicate:
• CPU bound applications perform the same

between the Win32 and OPENNT
subsystems.

• CPU bound applications performed better on
OPENNT than a mainstream traditional
UNIX system.

• OPENNT and a traditional UNIX platform
showed comparable disk performance trends
with iozone.

• For small block read() and write()
operations, Win32 outperforms OPENNT.
For large block read() and write()
operations, OPENNT outperforms Win32.

• Socket throughput between Windows NT
and a traditional Berkeley system on a local
network is virtually the same regardless of
whether the performance testing programs
are running with the OPENNT or Win32
subsystems.

Performance tuning is an ongoing task and there
are a number of projects underway to increase
the overall performance of the OPENNT
subsystem.

5. Integration with the Win32 World
Walli’s Second Law of Applications Portability:
Useful applications seldom live in a vacuum.

There are a number of stresses on applications
that exist on multiple platforms or have a history
of being migrated to new platforms.
• Most operating systems provide

functionality beyond that defined in the
POSIX family of standards and the Open
Group specifications. This additional
functionality may be as straight forward as
providing the X11 GUI, or as complex as
MVS, VMS, and Windows NT, where
another entire operating environment is
present.

• Applications often contain platform specific
source code. This can be to leverage
platform specific functionality, or to handle
functionality provided differently on
different platforms.

• Once deployed the need to share data

between applications becomes a necessity,
and new applications are created in the space
between existing applications.

• The use of non-standard or platform specific
tools and functions is sometimes necessary
to solve the business problem, indeed this
may drive the actual platform purchase.

Determining the balance between protecting the
application investment and solving the business
problem with a platform’s unique attributes
becomes a challenge.

Windows NT provides a rich environment of
tools and functionality, developed on top of the
Win32 subsystem. The model for integration
between the Win32 and OPENNT worlds happens
at a higher level than the application
programming interface. Applications source code
is ported directly to Windows NT to run with the
OPENNT subsystem. This protects the
application investment. Integration with the
Win32 world can then take place in a number of
ways: NTFS, the Desktop, Win32exec, and
sockets.

From an end-user's point of view, on a single
machine environment they simply have a
“desktop” full of applications. They don’t care
which subsystem the application is
communicating with for kernel services anymore
than they care in which language the programmer
wrote the source code.

5.1 NTFS
The Win32 and OPENNT worlds share a common
file system. Files created in one world are seen
in the other. All the security and auditing
features provided by NTFS and managed through
the Win32-based administration tools are
available to OPENNT ported applications.

5.2 The Desktop
Windows NT presents either the Windows 3.1 or
the Windows 95 desktop. This environment
easily supports interaction between the OPENNT
and Win32 worlds.

An OPENNT subsystem terminal or tty is a
Win32 console. This means large windows and
screen buffers, scroll bars and cut-and-paste are
all available at the user interface. An OPENNT
console window behaves very much like a local
xterm. Cut-and-paste between Win32-based
applications and OPENNT applications is
flawless. For example, text from a Microsoft
Word document can be easily cut then pasted
into a vi session or OPENNT shell.

Icons can be set up to launch OPENNT
applications, included X11-based applications
and shell scripts.

Win32 GUI applications launched from an
OPENNT shell present their own window as
would be expected, and the application can either

be run in the foreground (where the shell will
wait for it to complete) or the background.

5.3 Win32exec
An early ability demanded by users was to
execute Win32-based applications from the
OPENNT world. A Win32exec ability was added
that allows Win32 GUI and command-line
applications to be executed from within an
OPENNT process.

There are a number of challenges to overcome in
this space. A Win32 GUI application is
relatively straight forward, in that there is no I/O
to be managed between the subsystems. Once
control of the process has been passed to the
Win32 subsystem, the OPENNT shell can wait or
continue as desired. If a Win32 command-line
user interface (CUI) application is run, and its
output is to be seen in the shell window, as if
from the standard output of a “normal” child
process rather than one running as a client of
another subsystem, a certain amount of
handshaking and re-direction needs to be
performed. Standard streams need to be mapped
to Win32 handles appropriately, such that I/O
can be redirected to other processes (Win32 or
OPENNT) in a pipeline, or to files.

The ability to execute Win32 applications allows
a number of facilities to be instantly
accomplished in a manner most consistent with
Windows NT, but with a “UNIX” interface.

For example, the lp utility becomes a simple shell
script wrapper around the Win32 PRINT.EXE
command. All the functions available on the
network printing system are instantly available in
a manner most appropriate to the architecture,
while providing an interface most appropriate to
a traditional UNIX environment. Likewise,
useradd and userdel, traditional UNIX
commands to manage users, become simple
scripts wrapped around NET.EXE.

5.4 OPENNT Sockets and Winsock
Applications can communicate in client/server
fashion using sockets and the TCP/IP protocol.
Client/server applications can be built to use
either the Win32 GUI for client code, written on
Winsock in the Win32 subsystem (run on
Windows NT and Windows 95), or maintain the
traditional UNIX client code with its X11 or
simple character interface written using sockets.

Server code is maintained as traditional UNIX
code running on the OPENNT subsystem. The
long term flexibility of the solution is completely
in the developer's hands.

There are a number of examples of the strength
and flexibility of this solution in our own product
space.
• Early on we ported the Apache web server

directly into the OPENNT environment. The
Apache server source code plus all the
existing Perl, CGI, HTML scripting from
the UNIX environment comes directly into
the Windows NT world on the OPENNT
subsystem. The Microsoft Internet Explorer
or Netscape browser are Win32 “clients”
that can then be used to connect to the web
server.

• The OPENNT X11R6 server is a Win32

application. All the OPENNT X11R5 clients
are OPENNT subsystem applications.

• The telnet daemon shipped with OPENNT

2.0 is a direct port of a traditional UNIX
telnetd running on the OPENNT subsystem.
Any telnet client, local or remote, Win32-
based or UNIX-based, can connect to it. (As
a further example of mixing and matching in
the environment to best express functionality
while protecting the application source, the
OPENNT subsystem telnetd further runs as a
Windows NT service, controlled by either
the OPENNT command-line service utility or
the Win32 GUI service control applet in the
Windows NT Control Panel.)

6. Early Porting Experiences
The following sub-sections discuss porting
experiences with various packages of software
that the Softway Systems developers have ported
over time.

6.1 4.4BSD-Lite
Much of the original utility base for the early
OPENNT commands and utilities came straight
off the 4.4BSD-Lite distribution. The general
flow was to copy the source distribution over to a
working directory, use a simple template
makefile, and begin simple compile-edit cycles
until the utility built. The first thing that always
needed to be changed was to change
<sys/param.h> to <sys/types.h> and <limits.h>

as that is the “standard” way to get the types and
limits on a POSIX.1 based system. (A skeletal
<sys/param.h> has since been added to the
SDK.) Before sockets and memory mapped files
were implemented, any reference to them needed
to be stepped around. These functions and
macros have since been “turned on” again.
Symbolic link code was also avoided. Once
linked, testing and conformance work could
begin.

6.2 GNU Source
GNU source was used for a number of utilities in
the original packages (RCS, diffutils, binutils).
The challenge here has always been configure
scripts. First, the MSVC command-line compiler
always outputs the name of the module being
compiled which confuses configure scripts
terribly (and there is no way to turn this output
off). Configure scripts also make liberal use of
argument order to the compiler that while
common practice is not “standard”. The early
c89/cc script complained about this.

Since Win32exec and pipes has been turned on
in the subsystem, the c89/cc script has been
modified to handle output from the compiler, and
changes have also been made to handle the
argument order. Configure scripts work much
better now. Gmake has also been ported so
configure scripts that rely on it have fewer
problems.

Configure aside, the source code itself often just
builds. Before the configure support was added,
the fastest way to port a GNU tool to OPENNT
was to toss away the configure script, copy the
makefile template and configuration header
template, and quickly hand-tune them turning on
anything that said POSIX or ANSI C. A fast
inspection was often enough to get it right. The
source code typically built at that point. For
example, the only changes required in the
17000+ lines of gawk was to change
<varargs.h> to <stdarg.h> in two places.

6.3 Perl5
The Perl5 distribution was one of the early tools
built and made available off the Tool Warehouse
section of the OPENNT web page. The
distribution is 78,796 lines of code. Running the
configure scripts was the only way to determine
how to best build Perl5 because of the number of
options and permutations available.

The configure script was modified as follows:
• Correct compilation argument order

problems (mentioned above).
• Point to the location of the OPENNT header

files in $OPENNT_ROOT/usr/include.

The configure script produces a set of scripts that
further generate the makefiles and configuration-
based header files. While the overall configure
script could not be run from start to finish due to
problems in the environment, it ran well enough
to produce the individual sub-scripts which ran
correctly, producing a set of headers and
makefiles.

The only source changes made stepped around
some non-portable use of the user database fields
pw_gecos and pw_passwd. Perl5 passes all the
test cases in the test suite shipped with the
distribution, with the single exception of the
setuid test.

6.4 Apache
Apache, the public domain web server, is 45,726
lines of code. It was ported as an experiment
early in the alpha test cycle of OPENNT 2.0.

Initially,
• symbolic links, setsid() and setpgrp() were

stepped around.
• Calls to mktemp() were changed to use

getenv() of $TMPDIR instead of hard-
coding path names.

• Uses of chown() were avoided as they
violated the chown() functionality mandated
by POSIX.1 in association with the standard
option POSIX_CHOWN_RESTRICTED.

• A crypt() routine (taken from 4.4BSD-Lite)
was required.

The following stanza (reformatted for
publication) was added to the configuration
header for OPENNT.

#elif defined(OPENNT)
#define S_ISLNK(m) (0)
#define bzero(a,b) memset(a,0,b)
#define
 USE_FCNTL_SERIALIZED_ACCEPT
#undef HAS_GMTOFF
#define NO_KILLPG
#define NO_SETSID
#define JMP_BUF sigjmp_buf
#include <sys/time.h>

#define getwd(d)
 getcwd(d,MAX_STRING_LEN)
#define SIGURG SIGUSR1

This stanza was about the same size as any other
system specific stanza, and has since been
updated to handle the new functionality provided
since the alpha test version of OPENNT 2.0.

6.5 xv
The xv utility is the popular X11-based tool for
browsing and manipulating graphic images (e.g.
GIF and JPEG). It contains a full file browser as
part of the utility. The distribution is
approximately 83,600 lines of code. A few
trivial source changes were required to:
• step around non-portable use of mknod()
• avoid a use of endpwent()
• add a #define to properly use strerror()

xmkmf was used to generate the appropriate
Makefile and xv was made.

7. Summary
It has become too expensive to continually
rewrite applications to move them from system to
system, and source code portability is an
important tool to protect existing applications
investments. Our experience clearly
demonstrates that the Windows NT architecture
of alternative environment subsystems provides a
way to accomplish this. OPENNT provides the
facilities of a traditional UNIX system on
Windows NT, such that existing applications
developed on traditional UNIX systems can be
directly brought to Windows NT, rebuilt, and
deployed. Using the environment subsystem
architecture of Windows NT, a peer
environment to the Win32 world exists, and is
integrated to that world in a manner most logical
to both.

Up-to-date information about OPENNT can be
found at: http://www.OpenNT.com

8. References
1. ISO/IEC 9945-1:1990, Information

Technology  Portable Operating System
Interface (POSIX)  Part 1: System
Application Program Interface (API) [C
Language], IEEE Standards, NJ, ISBN 1-
55937-061-0

2. ISO/IEC 9945-2:1993, Information
Technology  Portable Operating System
Interface (POSIX)  Part 2: Shell and
Utilities, IEEE Standards, NJ, ISBN 1-
55937-255-9

3. ISO/IEC 9899:1990, Programming
LanguagesC,

4. X/Open CAE Specification:
• System Interfaces and Headers, Issue 4,

Release 2
• Release 2 Commands and Utilities, Issue 4,
• System Interface Definitions, Issue 4,

Release 2
 X/Open Company Ltd., 1994
5. Custer, Helen, Inside Windows NT, 1993,

Microsoft Press, Redmond WA (ISBN 1-
55615-481-X)

6. Korn, David, Porting UNIX to Windows NT,
Proceedings of the USENIX 1997 Annual
Technical Conference, pp. 43-57, 1997

7. National Institute of Standards and
Technology, Federal Information Processing
Standards Publication 151-2, Portable
Operating System Interface (POSIX) -
System Application Program Interface [C
Language], 12 May, 1993.

8. OPENNT Commands & Utilities, Release
1.0, Softway Systems Inc., March 1996.

9. Walli, Stephen R., Go Solo: How to
Implement and Go Solo with the Single
UNIX Specification, Prentice Hall,
Englewood Cliffs, NJ, 1995

10. The iozone benchmark available from this
site includes source code and documentation
for several I/O benchmarks, 9 May, 1997
http://www.cs.umbc.edu/~elm/Ftp/
iobenchmarks

11. netperf-1.7.1 Netperf is a benchmark for
measuring networking performance. It
focuses on bulk data transfer and
request/response performance using TCP or
UDP and the Berkeley Sockets interface. It
is maintained and supported by the IND
Networking: 19 March 1997
http://hpux.dsi.unimi.it/hppd/hpux/
Networking/Admin/netperf-1.7.1/

9. Trademarks
OPENNT is a trademark of Softway Systems, Inc.
Windows NT is a trademark of Microsoft
Corporation. UNIX is a registered trademark of
The Open Group. All other trademarks belong to
their respective holders.

