
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Merging NT and UNIX Filesystem Permissions

Dave Hitz, Bridget Allison, Andrea Borr, Rob Hawley, and Mark Muhlestein
Network Appliance

Merging NT and UNIX Filesystem Permissions

Dave Hitz (hitz@netapp.com)

Bridget Allison (bridget@netapp.com)

Andrea Borr (aborr@netapp.com)

Rob Hawley (hawleyr@netapp.com)

Mark Muhlestein (mmm@netapp.com)

Network Appliance (www.netapp.com)

Abstract

Sharing network data between NT and UNIX systems is
becoming increasingly important as NT moves into ar-
eas previously serviced entirely by UNIX. One diffi-
culty in sharing data is that the two filesystem security
models are quite different. NT file servers use access
control lists (ACLs) that allow permissions to be speci-
fied for an arbitrary number of users and groups, while
UNIX NFS servers use traditional UNIX permissions
that provide control only for owner, group, and other.
This paper describes an integrated security model in
which a single filesystem can contain both files with
NT-style ACLs and files with UNIX-style permissions.
For native file service requests (NT requests to NT-style
files and NFS requests to UNIX-style files) the security
model exactly matches an NT or UNIX fileserver. For
non-native requests, heuristics allow a reasonable level
of access without compromising the security guarantees
of the native model.

1 Introduction
Network Appliance file servers support the native file
service protocols for both NT and UNIX (CIFS for NT
and NFS for UNIX), but until now, the filer’s underly-
ing security model has been based on UNIX. This paper
describes a new version of NetApp’s system software
that supports UNIX permissions as well as NT access
control lists (ACLs).

See [Hitz95], [Watson96] and [Hitz94] for details on
the NetApp filer and the WAFL filesystem that it uses.
For the purposes of this paper, a brief summary will
suffice.

NetApp filers are dedicated devices, or “appliances,”
that perform just one function. Just as a Cisco router is a
dedicated device optimized entirely for routing, a Net-
App filer is optimized entirely for file service. We be-
lieve that an appliance that performs just one function
can be faster, simpler, and more reliable than a general-
purpose computer performing that same function.

NetApp’s WAFL filesystem is designed to accommo-
date multiple filesystem protocols. When accessed via
NT, for instance, WAFL does case-insensitive name
lookups, but for NFS it does case-sensitive lookups. The
on-disk inode structure for each file includes both
UNIX metadata, such as the UNIX-permissions, as well
as NT metadata, such as the hidden and archive bits.
Similarly, the on-disk directory format includes both a
long file name and a DOS-style eight-dot-three file
name.

Filers can be administered by either NT or UNIX sys-
tem administrators. NT administrators can use familiar
tools such as Server Manager and User Manager. For
UNIX administrators, there is a command line interface
with UNIX-like commands such as ifconfig, nfsstat,
and ping. There is also a browser-based GUI, written in
Java.

2 Design Overview
The new integrated security system was designed to
meet three goals:

(1) Make NT/Win95 Users Happy.

Support an NT-centric security model based on
ACLs. To an NT or Win95 client, this security
model should behave exactly like an NTFS file-
system on an NT file server.

(2) Make UNIX Users Happy.

Support a UNIX-centric security model based on
UNIX permissions. To an NFS client, this security
model should behave exactly like a UNIX NFS
server. (This is the only security model that NetApp
filers have historically supported.)

(3) Let NT and UNIX Users Share Data.

Provide reasonable heuristics so that NT/Win95 us-
ers can access UNIX-style files, and UNIX users
can access NT-style files.

To meet these goals, NetApp allows administrators to
designate specific sections of the filesystem as an

NTFS-qtree or a UNIX-qtree. (A qtree is simply a des-
ignated subtree within the filesystem.) NT and UNIX
users can safely access both types, but the NTFS-qtree
seems more natural for NT users, and the UNIX-qtree
for UNIX users.

Native requests – NT networking to an NTFS-qtree or
NFS to a UNIX-qtree – work exactly as expected.
UNIX-qtrees are modeled after Solaris, and NTFS-
qtrees are modeled after NT. Non-native requests use
heuristics designed to operate as intuitively as possible
while still maintaining security.

Non-native NT requests are handled by mapping the NT
user to an equivalent UNIX user, and then validating
against the standard UNIX permissions. In the simplest
case, John Smith might have the account “john” on both
NT and UNIX. When John accesses a UNIX-qtree from
NT, the filer looks up “john” in /etc/passwd (or over
NIS), and uses the specified UID and GID for all access
validation. A user-mapping file handles the case where
John's NT account is “john”, but his UNIX account is
“jsmith”. NT users with no UNIX account may be
mapped to “nobody”, to a specified UNIX account, or
they may simply be denied access.

NFS requests to NTFS-qtrees are validated using spe-
cial UNIX permissions that are set whenever an ACL is
updated. The UNIX permissions are guaranteed to be at
least as restrictive as the ACL, which means that users
can never circumvent ACL-based security by coming in
through NFS. On the other hand, since UNIX permis-
sions are less rich than NT ACLs, a multiprotocol user
may be unable to access some files over NFS even
though they are accessible via NT. In practice, NFS
access to NTFS-qtrees works well for the owner, and
for access granted to the NT “everyone” account, but
not for other cases. (These restrictions will be removed
in a future release, as described in section 7.)

The filer also supports a Mixed-qtree in which the secu-
rity style is determined on a file-by-file basis. Files cre-
ated by NT users get NT ACLs, and files created by
UNIX users get UNIX permissions. A file's security
style may be changed from one style to another by NFS
“set attribute” or NT “set ACL” requests, assuming – of
course – that the requestor has the appropriate permis-
sions. This style is ideal for users who actively use both
NT and UNIX and want access to both styles of secu-
rity.

Several features allow special control over privileged
users. The filer supports the NT “administrators” local
group, which lists the NT accounts that have adminis-
trator privileges. The NT User Manager interface can be
used to manage the “administrators” local group over

the network. The user-mapping file can be used to map
the NT “administrator” account into UNIX “root”, or to
a non-privileged UNIX account such as “nobody”.
Privileges for UNIX “root” are controlled using the
/etc/exports “root=“ flag. Requests from “root” are
mapped to “nobody” unless the “root=“ flag on an ex-
port explicitly allows root privileges.

3 Background
This section briefly describes UNIX and NT filesystem
security, since many people are familiar with one or the
other, but not both.

3.1 UNIX Filesystem Security
UNIX uses user IDs (UIDs) to identify users, and group
IDs (GIDs) to identify groups. The permission bits
themselves control read access (r), write access (w), and
execute access (x). The full set of UNIX permission
information stored with each file consists of:

� UID of the owner
� GID of the owner
� User perm bits (controls rwx for owner)
� Group perm bits (controls rwx for the group)
� Other perm bits (controls rwx for anyone else)

When performing validation, UNIX determines whether
the request is from the file's owner, someone in the file's
group, or anyone else, and then uses the appropriate
permission bits.

See [McKusick84] or [Bach86] for more details.

3.2 NT Filesystem Security
NT uses security IDs (SIDs) to identify both users and
groups. The NT permissions for each file consist of:

� SID of the owner
� SID of the owner's group
� ACL (Access Control List) for the file

The ACL contains one or more access control entries
(ACEs). Each ACE contains a SID, indicating the user
or group to which the ACE applies, and a set of permis-
sion bits. NT permission bits include the three UNIX
bits – read, write, and execute – as well as “change
permissions” (P), “take ownership” (O), “delete” (D),
and others. An ACE can either grant or deny the speci-
fied permissions. One ACE might grant read and write
permission to the engineering group, but another ACE
might specifically deny write permission to John Smith.
Even if John is in the engineering group, he will be de-
nied write access.

NFS and NT also differ in how they authenticate users.
NFS is a connectionless protocol, and each NFS request
includes the UID and GIDs of the user making the re-
quest. The UNIX client determines the UIDs and GIDs
when the user first logs in, by looking at the files
/etc/passwd and /etc/groups. NT networking is session
based, so the identity of the user can be determined just
once, when the session is first set up. At session connect
time, the client sends the user’s login name and en-
crypted password (actually the challenge and the cli-
ent’s response) to the file server, and the server deter-
mines the session’s user SID and group SIDs. Servers
commonly forward the name and password to an NT
domain controller (DC) and let the DC perform authen-
tication.

See [Reichel93] for more details.

4 Philosophy

4.1 Surprise and Insecurity
Given that NT and UNIX have fundamentally different
models of filesystem security, it is impossible to design
an integrated model that performs exactly as expected
for all users. NT ACLs provide a richer security model
than UNIX permissions. Many NT ACLs cannot be
accurately reflected to a UNIX user. Yet, when a UNIX
user lists a directory, NFS must return something for the
UNIX permissions.

We conclude that any integrated filesystem security
model must present users with some combination of
surprise and/or insecurity. If we validate UNIX requests
directly against the NT ACL, then the UNIX user may
be surprised to see behavior that’s different than what
the faked-up UNIX permissions would seem to imply.
But if we validate UNIX requests against faked-up
UNIX permissions, then this may result in insecurity if
the UNIX permissions grant more access than the NT
ACL, or surprise if the UNIX permissions deny access
where the NT ACL would have granted it.

When a filesystem accepts a request to set security (NT
or UNIX) on a file, it has – in essence – made a promise
to the user. Violating this promise is little different than
losing data that a user thought was safely written.
Hence, NetApp’s implementation allows no insecurity,
and it minimizes surprise as much as possible given this
constraint.

Some users may dislike surprise more than they dislike
insecurity. In a mixed NT and UNIX development envi-
ronment, making the development tools work is proba-
bly the most important goal. Sacrificing security may be
acceptable. (At NetApp, the software developers all

have privileged access anyway.) Perhaps someday we
will add options to control the balance between surprise
and insecurity, but for the first release, erring towards
safety seemed best.

In examining NetApp’s integrated security model, it is
important to remember that no perfect solution is possi-
ble. We must be willing to make trade-offs between
various types of surprise, and – for sites willing to allow
it – perhaps even between surprise and insecurity.

4.2 Which to Map: Users or Permissions?
As described in the Design Overview, NetApp handles
non-native NT requests by mapping the NT user into an
equivalent UNIX user, and validating requests directly
against the UNIX permissions. We call this user map-
ping.

On the other hand, NetApp handles non-native NFS
requests by using faked-up UNIX permissions that are
set whenever an NT ACL is updated. We call this per-
mission mapping.

We believe that user mapping reflects the intended se-
curity more accurately than permission mapping. The
security models of NT and UNIX are so different that
permission mapping can never be completely accurate.
However, the two operating systems have very similar
definitions of a user, so user mapping is straightforward.

We use permission mapping for non-native NFS re-
quests simply because it is easier and cheaper. Permis-
sions need be mapped only when an ACL is set or up-
dated, which is rare. User mapping would need to be
performed for every single NFS request. Unlike NFS,
which is stateless, NT’s CIFS protocol is session based,
so user mapping need be done only once, when the ses-
sion is established, rather than for each separate request.

Although we didn’t implement it in our first ACL re-
lease, we now believe that with appropriate caching, it
should be possible to do UNIX to NT user mapping
efficiently. Section 7 describes our plans.

4.3 Issues for Non-Native Security
As described above, a native request is an NT request to
an NTFS-qtree, or an NFS request to a UNIX-qtree. A
non-native request is the reverse: NT to UNIX-qtree or
NFS to NTFS-qtree.

This section examines the issues that are important for
non-native requests, and it provides the outline for sec-
tions 5 and 6 below, which discuss how non-native NT
and non-native NFS requests are handled.

The primary function of any filesystem security model
is to validate requests – to accept them or deny them
based on the authenticated user and the permissions for
the file. Thus, validating non-native requests is one im-
portant topic, and is covered in 5.1 and 6.1.

In addition, there are several file system actions that
require special attention. In particular, we must ask:

� How are requests to display permissions handled?
� How are requests to set permissions handled?
� How are permissions set for newly created files?

These are covered in 5.2 and 6.2.

5 Handling Non-Native NT Requests
This section describes how NetApp filers handle NT
requests to UNIX-style files. Remember, files with
UNIX permissions occur both in UNIX-qtrees, where
all files are UNIX-style, and in Mixed-qtrees, which
have both UNIX-style and NT-style files.

Section 5.1 discusses how non-native NFS requests are
validated, and section 5.2 discusses non-native handling
for displaying permissions, setting permissions, and
creating new files.

5.1 Validation
NetApp filers validate NT requests to UNIX-style files
by generating a mapped UID (and GIDs) for each NT
networking session, and then using the UID (and GIDs)
to check against the UNIX permissions.

Suppose that the NT user “john” connects to a filer.
Here are the steps that the filer takes to determine the
mapped UID and GIDs for “john”.

(1) The filer sends a request to the NT domain con-
troller (DC), to authenticate “john”, and to find the
NT SID for “john”.

(2) The filer looks in the user-mapping file to deter-
mine whether the NT account “john” maps into a
different account name under UNIX. In this case,
let's assume that “john” maps into the UNIX ac-
count “jsmith”.

(3) The filer looks up “jsmith” in /etc/passwd (possibly
via NIS) to determine the UNIX UID and primary
GID for John.

(4) The filer uses /etc/groups (possibly via NIS) to de-
termine the UNIX GIDs for John.

These steps provide each NT networking session with a
full set of UNIX authentication information, which al-
lows the filer to easily validate most requests against the
UNIX permissions.

Some NT operations don't map well to UNIX opera-
tions, so they must be handled specially:

� Set ACL

The NT “set ACL” operation (similar to UNIX
chmod) is always denied in UNIX-qtrees. In
Mixed-qtrees, a “set ACL” operation is only al-
lowed by the owner – that is the mapped UID for
the NT session must match the file's UID. This op-
eration converts the file from UNIX-style permis-
sions to NT-style permissions.

Only the owner can set an ACL because in UNIX
only the owner is allowed to set attributes. (Re-
member, we are discussing requests to UNIX-style
files.)

� Take Ownership

The NT “take ownership” operation (similar to
UNIX chown) is always denied in UNIX-qtrees. In
Mixed-qtrees, only the file's owner can “take own-
ership” of a UNIX-style file. Like the “set ACL”
request, this converts the file to NT-style permis-
sions.

5.2 Request Processing
This section considers non-native NT requests in light
of the three questions listed above, in Section 4.3, Issues
for Non-Native Security:

� How are requests to display permissions handled?
� How are requests to set permissions handled?
� How are permissions set for newly created files?

5.2.1 Displaying Permissions

For non-native NT requests to display permissions,
WAFL dynamically builds an ACL designed to repre-
sent the UNIX permission as well as possible.

On might hope to build an NT ACL that perfectly repre-
sents the UNIX permission like this:

� Owner – map the file's UID into an NT SID
� Group – map the file's GID into an NT SID
� ACE for owner SID – based on UNIX user perms
� ACE for group SID – based on UNIX group perms
� ACE for special NT everyone SID– based on UNIX

other perms

Unfortunately, we currently have no way to map UIDs
or GIDs into SIDs, so this approach isn’t possible. In-
stead, we construct an ACL using only well known NT
SIDs and the SID for the NT networking session itself.
These are sufficient to let us construct an ACL that,
while not perfect, does provide useful information.

Each faked-up ACL contains two ACEs (access control
entries):

� ACE for NT “everyone” SID – based on the UNIX
other permissions.

� ACE for the SID of the NT networking session –
based on whichever UNIX permission is appropri-
ate. If the mapped UID for the session is the file's
owner, the ACE is based on the UNIX owner
perms. If the group matches, then it's based on the
group perms. Otherwise it's based on the other
perms.

Note that this faked-up ACL always contains an entry
for the user making the request, so users can always
determine their own access rights.

If the NT session owns the file, then in the faked-up
ACL the session's SID is shown as the owner. If not,
then the well known NT SID “CREATOR_OWNER” is
shown as the owner.

5.2.2 Setting Permissions

In UNIX-qtrees, NT requests to set permissions are
always denied.

Outside of UNIX-qtrees, non-native requests to set
permissions are allowed only by the file's owner. If al-
lowed, the specified ACL takes effect just as it would
have if the file had already been an NT-style file. After
the “set ACL” request is processed, the file becomes an
NT-style file.

5.2.3 Setting Permissions on Create

Unlike UNIX, which passes the permissions for a new
file as part of the create request, NT expects permis-
sions to be inherited from the parent directory.

The filer handles NT create requests in UNIX-qtrees as
follows:

� The file's owner is set to the mapped UID for the
NT networking session.

� The file's group is set to the mapped GID for the
NT session, or inherited from the parent directory if
the directory’s SGID bit is set.

� The UNIX permission bits are inherited from the
parent directory, except that SUID and SGID bits
are cleared for non-directory creates.

In Mixed-qtrees, the newly created file inherits NT
ACLs if the parent is an NT-style directory, but it in-
herits UNIX permissions, as described above, if the
parent is a UNIX-style directory.

6 Handling Non-Native NFS Requests
This section describes how NetApp filers handle NFS
requests to NT-style files.

Section 6.1 discusses how non-native NFS requests are
validated, and section 6.2 discusses non-native handling
for displaying permissions, setting permissions, and
creating new files.

6.1 Validation
Whenever an NT ACL is set or changed, WAFL calcu-
lates a corresponding set of UNIX permissions. As a
result, very little special processing is required to vali-
date NFS requests to NT-style files. Simply doing the
normal checks against the UNIX permissions usually
does the right thing. The rest of this section describes
how the UNIX permissions are constructed from the
ACL, and explains a few special exceptions.

Converting an NT ACL into UNIX permissions is sur-
prisingly tricky. This section gives a brief overview, but
an observant user may encounter slight differences in
the actual implementation.

� The file's UID is set to the mapped UID for the NT
session.

(Remember that the faked-up UNIX permissions
are generated right when the ACL is set, so it
makes sense to set the owner of a newly created file
to the mapped UID for the NT session.)

� The file's GID is set to the mapped GID for the NT
session.

� The UNIX user perm is set based on the access
rights that the ACL grants to the NT session creat-
ing the file.

� The UNIX other perm is set based on the access
rights granted to the NT “everyone” account. (If the
ACL contains any denies, then the denied permis-
sions are subtracted from the other perms.)

� The UNIX group perm is set equal to the other
perm.

This design avoids security holes by ensuring that the
UNIX permission is always at least as restrictive as the
NT ACL. Unfortunately, UNIX permissions cannot
represent the full richness of the NT security model. As
a result, a file that a user can reach via NT may not be
accessible via NFS.

Because NT supports some specific permissions that
UNIX lacks, it is not possible to rely entirely on the
UNIX permissions to validate some NFS requests:

� REMOVE/RMDIR

Only the owner of a file is allowed to delete it.
This is necessary to avoid violating the NT
“delete child” permission.

� CREATE

Only the owner of a directory can create any-
thing in it. This is required in order for NT
ACL inheritance to work properly. (This is ex-
plained more fully below, in section 6.2.3.)

Both of these restrictions will be removed by the future
enhancements described in section 7.

6.2 Request Processing
This section considers non-native NFS requests in light
of the three questions listed above, in Section 4.3, Issues
for Non-Native Security:

� How are requests to display permissions handled?
� How are requests to set permissions handled?
� How are permissions set for newly created files?

6.2.1 Displaying Permissions

As described above, in section 6.1, every file with an
NT ACL also has a set of UNIX permissions stored
with it. To handle an NFS “get attributes” request, the
filer simply returns those stored permissions.

6.2.2 Setting Permissions

In NTFS-qtrees, NFS requests to set permissions are
always denied.

In Mixed-qtrees, only a file's owner is allowed to set
permissions. When UNIX permissions are set on a file,
the NT ACL is deleted – the file changes from NT-style
to UNIX-style.

Note that “set attribute” requests that update non-
security information such as access time or modify time
are allowed even in NTFS-qtrees, and they do not delete
the NT ACL.

6.2.3 Setting Permissions on Create

NFS creates in NTFS-qtrees are only allowed by the
directory's owner. This is because an NT SID is re-
quired to handle NT ACL inheritance. An NFS request
has no SID, but for a create request from a directory's
owner, WAFL can use the owning SID from the direc-
tory's ACL and handle ACL inheritance according to
normal NT rules.

In Mixed-qtrees, NFS create requests are handled ac-
cording to normal UNIX rules.

7 UNIX to NT User Mapping
The first ACL release handles non-native NFS requests
using permission mapping rather than user mapping,
because of the cost and complexity of doing user map-
ping on every single NFS request.

However, we believe that with appropriate caching, the
cost of UNIX to NT user mapping can be reduced to an
acceptable level. User mapping requires the following
steps:

� When an NFS request arrives, it contains a UID.
The filer uses /etc/passwd (or NIS) to convert the
UID into a UNIX username.

� The filer converts the UNIX username into an NT
username using a mapping file. (If no mapping is
specified, the filer uses the UNIX username.)

� The filer contacts the NT domain controller (DC) to
determine the SID for the NT username. If there is
no account for the name, the filer uses a default
SID (set to “guest” by default).

� The filer contacts the DC to get the SIDs of all
groups to which the user belongs.

With these mapping rules, the filer has a full set of NT
authentication information, which allows it to validate
NFS requests based on the NT ACL.

With NFS, there is no concept of a session, so the map-
ping must be done for each request. The steps above are
too time consuming to perform on a per-request basis,
so WAFL must cache the mappings. NT networking
sessions may last for days or weeks, so it should be safe
to cache UID-to-SID mappings for at least a few hours.

8 Other Issues

8.1 FAT versus NTFS
NT servers support both FAT filesystems and NTFS
filesystems. FAT is the traditional DOS filesystem – it
has no file-level security at all. The NTFS filesystem
was designed for NT and supports NT ACLs.

Since NTFS-qtrees and Mixed-qtrees both support
ACLs, they must be advertised to NT networking clients
as “NTFS”. (If they were advertised as “FAT”, clients
would assume that they had no ACLs, and would dis-
able the interfaces for controlling ACLs.)

It is less obvious how to advertise UNIX-qtrees. One
can make a case either way, as these two conflicting
arguments show:

� Advertise as “FAT”

UNIX-qtrees don't support ACLs, so advertising
them as FAT sends a clear message to clients not to
use ACLs. Advertising as NTFS would be confus-
ing, since no ACLs are really present and any re-
quest to set ACLs will fail.

� Advertise as “NTFS”

UNIX-qtrees support file level security, and adver-
tising them as NTFS allows the filer to display the
UNIX permissions using faked-up ACLs. Adver-
tising as FAT would be confusing, because it would
seem to imply that no file-level security is present.

In the end, we decided to advertise UNIX-qtrees as
FAT, because this seems least likely to confuse Win-
dows programs that absolutely must have ACLs.

Still, there are several situations in which it is useful to
construct a fake ACL for an NT-style file, as described
above in 5.2.1:

(1) In Mixed-qtrees

Mixed-qtrees contain both UNIX-style and NT-
style files. To support ACLs they must be adver-
tised as “NTFS”, yet not all files in them contain
ACLs.

(2) In NTFS-qtrees that originated as UNIX or Mixed-
qtrees

A qtree's security style can be changed at any time,
so a qtree that began as UNIX-qtree may later be
converted to NTFS. In this case, it will clearly be
advertised as “NTFS”, but it may contain files
without ACLs.

(3) In UNIX-qtrees accessed via an NTFS or Mixed
Share.

The root of a filesystem may have NTFS or Mixed
security, but it may contain a UNIX-qtree. In this
case, the C$ (or root) share will be advertised as
“NTFS”, but a user can go down into the UNIX-
qtree and then try to display an ACL.

8.2 Migration
For sites using old filers, migration to the NTFS secu-
rity model is an important issue.

System administrators can update the security model for
any qtree (including the root of the filesystem), using
the qtree command. The syntax is:

qtree security qtree [unix|ntfs|mixed]

When a UNIX-qtree is converted to an NTFS-qtree,
shares are advertised as “NTFS” instead of “FAT”. The
files themselves are not converted to NT-style files, so
they behave as described in section 5, Handling Non-
Native NT Requests. Of course, the owner of a file can
set an ACL, converting the file to NT-style. Also, Ne-
tApp will ship a Windows utility to run through a tree
and set a real ACL on each file based on its UNIX per-
missions. This is useful since the faked-up ACL doesn’t
show the exact permissions for a file.

When an NTFS-qtree is converted to a UNIX-qtree,
shares are advertised as “FAT” instead of “NTFS”, and
any ACLs in the qtree are simply ignored. ACLs are not
actually deleted – however – so if the qtree is converted
back to NTFS, the ACLs will still be present. The best
way to delete the ACLs is to write a script that runs as
root and chowns each file to its existing owner. (Re-
member that doing a chown or chmod deletes the ACL
on a file.)

8.3 Group Mapping
With user mapping, it shouldn’t be necessary to map
between NT and UNIX groups. When an NT user is
mapped into a UNIX user, the filer also identifies the
UNIX groups for that user, so access based on group
rights will work correctly.

Unfortunately, this approach doesn't work for a user that
isn't successfully mapped. Consider an NT user named
“nt-john” who is a member of the group “nt-
engineering”. If “nt-john” successfully maps to the
UNIX account “unix-john”, then he'll get all group
membership associated with “unix-john”, presumably
including “unix-engineering”. On the other hand, if “nt-
john” doesn't map to “unix-john”, then he'll simply be-
come UNIX “nobody”, with no special group rights at
all.

Thus, it might seem useful to explicitly map “nt-
engineering” to “unix-engineering” so that group level
access would be permitted even if user mapping fails.

On the other hand, maintaining a group-mapping file
seems at least as hard as maintaining a user-mapping
file. If NT and UNIX administration are sufficiently
coordinated to map groups, why not just map users in-
stead? It seems simpler to support just one kind of map-
ping rather than two.

8.4 Share Level ACLs
Share level ACLs are now based on NT SIDs, and they
can be edited over the network using the NT Server
Manager.

For backward compatibility, share level ACLs based on
UNIX user names will continue to function, although
they cannot be controlled via Server Manager.

8.5 POSIX ACLs
Although POSIX ACLs are not currently a requirement,
we wanted to ensure that our design for NT ACLs did
not preclude support for POSIX ACLs later. In fact, our
integrated security model could easily be enhanced to
allow UNIX-style files to have either POSIX ACLs or
traditional UNIX permissions. Since there are subtle
semantic differences between NT ACLs and POSIX
ACLs, we would maintain the distinction between NT-
style files and UNIX-style files, and we would continue
to use user mapping to handle non-native requests.

POSIX ACLs would allow – but not require – some
additional enhancements. For instance, a faked-up
POSIX ACL could reflect the NT ACL more accurately
than faked up UNIX permissions can.

9 Implementation
Earlier sections describe how WAFL uses NT ACLs
when processing requests. This section focuses on two
additional implementation issues. Section 9.1 describes
how WAFL stores the ACL on disk, and section 9.2
describes the NT administrative protocols that the filer
must support in order to correctly handle NT ACLs.

9.1 Storing NT ACLs
UNIX permissions are easy to store, because they have
a small, fixed size. NT ACLs are more difficult to store,
because they have a variable size, depending on the
number of ACEs (Access Control Entries) they contain,
and they can get quite large. NT currently restricts
ACLs to 64KB, but that limit is arbitrary and could eas-
ily grow in the future.

WAFL’s on-disk format uses 128-byte inodes to de-
scribe files, much like the Berkeley Fast Filesystem
[Hitz94, McKusick84]. WAFL stores UNIX permis-
sions in the inode itself, but NT ACLs obviously don’t
fit. Instead, files with NT ACLs have a pointer to a sec-
ond inode, called a xinode (extended inode), that con-
tains the ACL data. In essence, the ACL is being stored
as a special hidden file.

To reduce storage overhead, WAFL shares xinodes
whenever possible. If two files have exactly the same
ACL, then WAFL points both files at the same xinode.
The link count in the xinode tracks the number of refer-
ences, just as it does for a regular file, and the xinode is
deleted only when its link count drops to zero.

This technique produces incredible storage savings be-
cause large numbers of files have the same ACL. This
makes sense if you consider how ACLs are set. At cre-
ate time, files inherit the ACL from their parent direc-
tory, which means that the ACL will match an already
existing one. And when ACLs are set manually, they
are commonly applied to an entire subtree at once, so –
again – a large number of files share the same ACL.

9.2 NT Administrative Protocols
To handle NT ACLs correctly, the NetApp filer must
support a surprising number of NT administrative pro-
tocols. To understand why, consider what happens when
an NT user pops up the ACL editor on a remote file.

First, the ACL editor contacts the filer server and re-
quests the ACL. In order to display the ACL, the ACL
editor must convert the SIDs in the ACL into human
readable user names. One might expect the editor to
contact the NT Domain Control (DC) directly to per-
form this conversion, but it does not. Instead it sends
conversion requests to the file server. At first this seems
surprising, but it makes sense when you consider that
the client may be in a different NT domain than the file
server it is talking to. In addition, an NT file server may
define local users that are not known to the domain
controller.

Editing an ACL generates even more requests. When
creating a new ACL entry, the ACL editor must display
a list of all possible users and groups, and – again –
instead of contacting the DC directly, it requests this
information from the file server.

Thus, to support ACLs, the NetApp filer must support a
wide variety of NT administrative protocols, both as a
server, in order to receive the appropriate requests, but
also as a client so that it can forward requests on to the
DC. In addition, in order to convince clients to talk with
it, the filer must advertise itself as a full-fledged NT
server, which requires it to speak even more NT ad-
ministrative protocols.

The end result is that the NetApp filer supports many of
the administrative interfaces that NT administrators
expect in an NT file server. The filer is visible in the
network neighborhood, and it can be managed using
Server Manager and User Manager.

10 Bibliography
[Bach86] Maurice J. Bach. The Design of the UNIX
Operating System. Prentice-Hall, 1986

 [Hitz94] Dave Hitz, James Lau, and Michael Malcolm,
“File System Design for an NFS File Server Appli-
ance.” Winter USENIX Conference Proceedings,
USENIX Association, Berkeley, CA, January, 1994.

 [Hitz95] Dave Hitz. “An NFS File Server Appliance
(TR-3001).” Network Appliance, Mountain View, Cali-
fornia, March 1995.

 [McKusick84] Marshall K. McKusick. “A Fast File
System for UNIX.” ACM Transactions on Computer
Systems 2(3): 181-97, August 1984.

[Reichel93] Rob Reichel. “Inside Windows NT Secu-
rity.” Windows/DOS Developer’s Journal, April 1993.

 [Watson96] Andy Watson. “Multiprotocol Data Ac-
cess: NFS, CIFS, and HTTP (TR-3014).” Network Ap-
pliance, Mountain View, California, December 1996.

