
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

NT-SwiFT: Software Implemented Fault Tolerance on Windows NT

Yennun Huang, P. Emerald Chung, and Chandra Kintala
Bell Labs, Lucent Technologies

Chung-Yih Wang and De-Ron Liang
Institute of Information Science, Academia Sinica

NT-SwiFT: Software Implemented Fault Tolerance on Windows NT

Yennun Huang Chung-Yih Wang1

P. Emerald Chung De-Ron Liang1

Chandra Kintala

Bell Laboratories, Institute of Information Science
Lucent Technologies, Inc. Academia Sinica
600 Mountain Avenue Taipei, Taiwan
Murray Hill, NJ 07974 R.O.C.

1This work is sponsored by Lucent Technologies, Inc.

Abstract
More and more high available applications are imple-
mented on Windows NT. However, the current version
of Windows NT (NT4) does not provide some facilities
that are needed to implement these fault tolerant appli-
cations. In this paper, we describe a set of components
collectively named NT-SwiFT (Software Implemented
Fault Tolerance) which facilitates building fault-tolerant
and highly available applications on Windows NT. NT-
SwiFT provides components for automatic error detec-
tion and recovery, checkpointing, event logging and
replay, communication error recovery, incremental data
replications, IP packets re-routing, etc. SwiFT compo-
nents were originally designed on UNIX. The UNIX
version was first ported to NT to run on UWIN
[Korn97]. Gradually a large portion of the software has
been re-implemented to take advantage of native NT
system services. This paper describes these components
and compares the differences in the UNIX and NT im-
plementations. We also describe some applications
using these components and discuss how to leverage NT
system services and cope with some missing features.

1. Introduction

Windows NT has become a popular and viable com-
puting platform for critical applications due to its many
useful features and low hardware costs. The telecom-
munication industry has also started to build fault-
tolerant and highly available applications on NT. To
achieve high reliability and availability in a distributed
environment, three types of techniques have been de-
ployed, namely, transaction processing [Gray93], active

replication [Birman96], and checkpointing/message
logging [Huang93]. Transaction processing is popular in
the financial industry. In a transactional system, appli-
cations usually have a well-defined transaction bound-
ary, such as updating a record. When a fault occurs,
both client and server abort the on-going transaction and
rollback to a clean state. Active replication usually in-
volves several identical servers running synchronously.
It often assumes a deterministic behavior on these serv-
ers and requires an atomic broadcast mechanism to syn-
chronize messages. When a failure occurs in one server,
the failure is masked and the computation continues as
long as there is one server running. No rollbacks are
necessary on either client or server.

Checkpointing and message logging is another way to
provide fault tolerant services. The state of a server is
checkpointed onto backup servers or on stable storage
from time to time. The received messages may also be
logged for recreating state change. When a failure oc-
curs, the failed server process is stopped. Then, either a
backup server is promoted to the primary, or a new pro-
cess is created and its state is recovered by loading its
last checkpoint and replaying its logged messages. Cli-
ent may notice some delay during a recovery, but no
rollback is involved. Many telecommunication applica-
tions constantly manage or monitor some physical de-
vices. Our experience shows that checkpointing and
message logging is most suitable for this type of appli-
cations [Huang95]. To implement checkpoint and mes-
sages logging, we need a number of facilities not pro-
vided by Windows NT 4.0. They are application moni-
toring and failure recovery, application checkpoint and
message logging, file replication, Windows events log-

ging and replay, IP packets dispatching, and IP packets
re-routing in case of a machine failure. As a result, each
application has to implement its own recovery mecha-
nisms. These recovery mechanisms are usually very
complex and hence may not be easy to design and im-
plement by application developers. Therefore, it is de-
sirable to provide them as reusable software compo-
nents.

In Bell laboratories, we have been working on a set of
reusable modules for building reliable and fault tolerant
applications for the last 6 years. The set of modules is
called SwiFT (Software Implemented Fault Tolerance)
[Huang93]. SwiFT has been embedded into tens of tele-
communication systems to improve system availability
and has been licensed to companies such as Tandem
Co., etc. It contains a collection of daemon processes
and libraries. SwiFT can be used to handle both client-
side and server-side error recoveries. The design phi-
losophy of SwiFT is to make the client error recovery as
transparent as possible but provide a set of fault toler-
ance APIs to be embedded into server programs. This
philosophy has proven to be a key to the success of the
SwiFT since developers in Bell Labs often have access
to the source code of server programs but have no con-
trol of client programs developed by other companies.

SwiFT was first implemented and applied on UNIX
systems (UNIX-SwiFT). More than two years ago, we
started porting SwiFT fault tolerance mechanisms to
Windows NT (NT-SwiFT). At the beginning, we were
not sure if NT provides enough mechanisms and utili-
ties for us to implement all fault tolerance utilities we
need. However, after more than two years of NT-SwiFT
effort, we concluded that Windows NT does have all the
facilities that are needed to implement SwiFT on Win-
dows NT although some of the NT-SwiFT implementa-
tions are quite complex. In this paper, we describe the
NT-SwiFT components, their implementation issues
and some examples of using NT-SwiFT to enhance ap-
plications’ reliability and availability. The paper is or-
ganized as follows. Section 2 describes NT-SwiFT
components. Section 3 discusses some implementation
details and issues. Section 4 shows some examples of
using NT-SwiFT and performance measurements. Sec-
tion 5 compares NT-SwiFT with related work. Section
6 concludes the paper.

2. NT-SwiFT Components

As described earlier, NT-SwiFT components can be
used in both client and server error recovery. Therefore,

we describe NT-SwiFT components in two categories -
client components and server components. Please note
that since a program could be both a client and a server,
all these components can be applied in a program.

2.1 Components for client error recovery
The design philosophy of client-side recovery compo-
nents is to make them transparent to client programs.
That is, one can embed NT-SwiFT components into
client programs without modifying the client source
code. A client program may accept a user’s keyboard
and mouse inputs and, at the same time, talk to one or
more server programs running on server machines via
communication channels. When a client application
fails (either due to a program failure, an OS failure or a
machine failure), all input data are lost and all commu-
nication channels are broken. Without any fault toler-
ance facility, the user has to restart the client program,
re-establish communication channels and redo all the
inputs. This could result in a long recovery time and a
frustration of the user. NT-SwiFT provides fault toler-
ance utilities which (1) detect failure of a client pro-
gram; (2) automatically restart a client program at fail-
ure recovery; (3) re-establish communication channels
to server programs; (4) replay all the user inputs and
brings the client program back to the state just before
the failure occurred.

The first component in NT-SwiFT for the client-side
error recovery is watchd. Once watchd detects a failure,
it restarts the application program automatically. If the
client application fails too often (more than a threshold
given to watchd), watchd reboots the machine and then
restarts the application. The second component is
winckp which can be used to transparently checkpoint
an application program state into a file or another proc-
ess. In recovery, the checkpointed state is restored back
to the client application memory. The third component
is winrecord, which can be used to log input events
from the mouse and keyboard of a client machine. In
recovery, the logged input events are replayed to re-
cover the client input data. The last component is libft
library. Libft is used to intercept winsock function calls
in client applications for checkpointing communication
endpoints and logging outgoing messages. In recovery,
libft re-establishes communication endpoints using the
checkpointed information and, if necessary, replays the
logged messages.

2.2 Components for server error recovery

On the server side, watchd can also be used to detect
and recover a server program from a failure. A fault
tolerant application process can register its replication

strategy to watchd. There are two replication strategies
that watchd supports: hot, and cold. In the hot replica-
tion case, watchd monitors all replicas of a fault tolerant
process; if any replica failure is detected, watchd recov-
ers the failed replica on another machine so that the
number of replicas (degree of fault tolerance) remains
constant. In the cold replication scheme, watchd as-
sumes that there is only one active copy of a fault toler-
ant process; if the active copy fails, watchd will first try
to recover the failed process on its local machine; if the
local recovery fails, watchd then migrates the process
onto another machine (a fail-over). Watchd also pro-
vides a few distributed system services such as remote
execution, remote file copy, remote status query, etc.
Many of these services can be invoked by an application
using libft APIs. Watchd detects two kinds of server
failures - hang or crash. To detect a server hang, the
server process needs to periodically sends its heartbeats
to watchd. A server process is considered hung if
watchd does not receive a heartbeat from the server
within a given interval. To send heartbeats to watchd, an
application can call the hbeat() function in libft which
takes a thread id and a timeout value as arguments. To
detect a server crash, watchd pings the server process
periodically. For a hang recovery, watchd kills and re-
starts the hung server process. For a crash recovery,
watchd first determines the cause of the crash. It can be
a machine (including OS failure) or an application pro-
gram failure. To handle a machine, watchd does a fail-
over for the server application by either bringing up a
cold copy of the server application on another machine
or making a warm copy of the server application active.
To handle an application program crash failure, watchd
simply restarts the application. Watchd contains a GUI
for system configuration as shown in figure [watchd].

Figure [watchd]: watchd GUI

Libft has four major sets of functions for servers:

1 Critical data checkpointing: Libft allows an appli-
cation to select critical data from data segment (e.g.
global or static variables) and heap (e.g. data allo-
cated via malloc()). The critical data can be saved
to a file or to another process on a local or a remote
machine, or a protected segment of its own virtual
address space. In case of a process crash, the data
can be restored into the memory of a newly created
process.

2 Communication channel recovery: Libft can inter-
cept winsock system calls, such as accept(), listen(),
send(), recv() so that winsock communication end-
points and messages can be logged. Libft recreates
communication endpoints and replays logged mes-
sages during a recovery.

3 Requesting services from Watchd: Libft provides
functions for system configurations such as regis-
tering a host or a process to be monitored by
watchd. In addition, it allows an application to
send heart-beats to watchd and to invoke distributed
system services such as remote file copy and status
query from watchd.

4 Intercepting kernel calls for system handles and file
updates: Libft can be used to intercept calls that
create system handles and that change file contents
or attributes. This interception is needed in winckp
for transparent checkpointing and roll-back recov-
ery [Wang95].

A server program may also create and update files dur-
ing execution. To make a fail-over possible in a share-
nothing environment, component REPL can be used to
do selective and incremental file replication. By using
the watchd GUI, a user can specify the types of files
that he/she wants to be replicated (see figure [watchd]).
For example, a user enters ppt in the “File Replicator”
sub-window in the watchd GUI and REPL replicates all
powerpoint files of a machine onto one or more backup
machines. REPL is typically used in a fail-over envi-
ronment where files could become unavailable when a
machine crashes. REPL has also been used for disaster
recovery for UNIX applications where a backup ma-
chine/disk is located in very far away site.

In a cluster environment, NT-SwiFT provides ONE-IP
driver (oneip.sys) to dispatch and fail-over IP packets.
The ONE-IP driver provides a single IP image for a
cluster of machines. This ONE-IP mechanism transpar-

ently distributes TCP/IP requests to a set of server ma-
chines in a cluster for load balancing and failure recov-
ery [Damani97]. The ONE-IP driver can be installed on
a set of server machines. A distributed election protocol
is used to select one machine as the dispatcher. All
server machines in the cluster share the same cluster IP
address. In a typical configuration, they (including the
dispatcher) run the same applications such as a web
server, database servers and internet service daemons to
provide services. Client applications use the cluster IP
address to access a server for services. To achieve load
balancing and fault tolerance, the dispatcher picks up
the client requests and forwards them to one of the
server machines for a service. If the dispatcher fails,
watchd detects the failure and promotes another ma-

chine to become a dispatcher.

3. Implementation Issues

The mechanisms of NT-SwiFT derive from those of
UNIX-SwiFT. However, due to the differences between
UNIX and NT, their implementations are very different.
As mentioned in [Korn97], there are many ways to port
UNIX applications to Windows NT. In fact, the first
porting effort we tried was to use the UWIN developed
by D. Korn in AT&T Labs. However, we later decided
to re-implement the NT-SwiFT components from
scratch due to the following considerations:

1. Some of the UNIX-SwiFT components such as
REPL, ONE-IP, libckp and libft depend on the
UNIX internals. They can not be ported directly by
using a library mechanism such as UWIN [Korn97]
or a subsystem such as OpenNT [Walli97].

2. We did not want to depend on any third-party soft-
ware.

3. We wanted to enhance watchd with a Windows
GUI and threads.

4. To understand how NT application fails, we need
to have intimate knowledge of the NT architecture.
Re-implementing SwiFT on NT using native NT
system services help us to understand the NT inter-
nals better.

In this section, we describe how NT-SwiFT components
are implemented and the differences in implementations
between the UNIX-SwiFT and the NT-SwiFT.

3.1 Watchd

Watchd runs on every machine in a network and uses an
adaptive diagnosis protocol [HUANG93] to detect ma-
chine failures, i.e., each watchd pings its neighbor
watchd; if its neighbor fails, watchd pings its next

neighbor and so on. The UNIX version uses three proc-
esses to implement watchd. The three processes com-
municate using socket messages and UNIX signals
(SIGUSR1 and SIGUSR2). In NT, since there are no
corresponding SIGUSR1 and SIGUSR2 signals, all
functions of NT-watchd are implemented in one process
with four NT threads. The first thread is the polling
thread to detect failures; the second one is the GUI
thread for system configuration and display; the third
one is the service thread that accepts requests from ap-
plications and from other watchds; the last thread is the
heart-beat thread that accepts application heart beats for
a hang detection. Threads are synchronized using sema-
phores and critical sections. The main advantage of us-
ing threads is its low performance overhead – most of
the interprocess communication overhead in UNIX
watchd modules is removed. However, the main disad-
vantage of using threads is that self-recovery and fault
containment are difficult, if not impossible, to achieve.
For example, in UNIX-watchd a crash of any module (a
process) can be recovered automatically and the failure
is transparent to watchd clients. However, in NT-
watchd, any crash of a watchd module (a thread) causes
the entire watchd process to crash.

Watchd uses OpenProcess() and WaitForMultipleOb-
jects() to detect a application crash (vs. kill(pid, 0) and
SIGCHLD in UNIX). It uses non-blocking socket calls
and time-outs to detect machine failures. Watchd detects
a process hang by listening to its heartbeats. An appli-
cation can send its heart beats to watchd by calling
hbeat() functions in libft.

3.2 Libft

Libft contains three sets of functions – the first set is for
dynamic memory allocation and recovery, the second
set of functions is for system configuration and the last
set of functions is to intercept winsock calls and kernel
calls. The implementations of the first two sets of func-
tions are almost identical on both UNIX and NT. More
information on libft APIs and their implementation can
be found in [Huang93]. However, implementations of
the last set of functions (intercepting calls) between
UNIX and NT are very different. In UNIX, the inter-
ception of system and socket calls is done by using the
dynamic shared library mechanism (i.e. dlopen() and
dlsym()). On Windows NT, interception of system calls
is achieved by modification of import address tables and
by the library injection mechanisms [Richter97-18]. To
checkpoint and recover kernel states, NT-SwiFT has to
intercept all NT calls which create file handles, process
handles, thread handles, socket handles and windows
handles. It also has to intercept socket calls for mes-

sages logging and replay and file system calls which
change files contents and attributes. A complete list of
kernel and winsock calls intercepted by libft is illus-
trated in Table 1.

3.3 REPL

REPL implementation includes one module to intercept
file system calls and three daemon processes for send-
ing messages and replaying file system calls. The im-
plementations of the daemon processes are very similar
to the UNIX ones. However, the facilities for inter-
cepting file system calls are very different. On UNIX,
we use the dynamic shared library mechanism (dlopen()
and dlsym()) to intercept and replay file system calls.
On NT, we implement a filter driver, named REPL.sys,
to intercept file system calls. When a specified type of
file is changed, REPL driver intercepts the changes and
sends messages to remote backup machines. REPL
daemons on remote backup machines then replay the
changes to update the files. REPL daemons are all user-
level processes, which send I/O messages, log I/O mes-
sages and replay I/O messages between the primary host
and the backup host. These daemon processes handle
link failures, machine failures, I/O failures on the
backup machine, messages lost, etc. so that the repli-
cated files are consistent as long as they can be ac-
cessed. Libft also uses REPL modules to make check-
point files replicated on all backup machines.

3.4 Winckp

Winckp is a utility program that provides snapshot and
rollback functions to an application in a transparent
way. Winckp deals with executable files and no source
code is needed. Winckp starts the application by Cre-
ateProcess() and obtains its process handle and the
thread handle of its main thread. The GUI interface of
Winckp allows a user to take snapshot of an application
or roll back the memory of an application. To take a
snapshot, Winckp suspends the main thread and stores
the thread context and memory content into a check-
point file. The thread context is obtained and restored
using GetThreadContext() and SetThreadContext(). The
memory image is obtained and restored using Read-
ProcessMemory() and WriteProcessMemory(). Winckp
determines the address and the amount of memory
needed to be saved. An NT process has about 2GB of
private address space, ranging from 0x00010000
through 0x7FFEFFFF [Richter97-3]. Note that not
every region in this space needs to be saved. The Vitu-
alQueryEx() system call allow us to examine the space
region by region. A memory region is necessary to be
saved if its write access is enabled and if its physical
storage is committed [Richter97-5]. Winckp also stores

the MEMORY_BASIC_INFORMATION structure
along with each memory region. During a rollback op-
eration, the application main thread is suspended.
Winckp reads the thread context from the checkpoint
file and calls SetThreadContext(). It then calls
WriteProcessMemory() to restore the memory content.

To recover an application process from a failure, winckp
not only has to restore the process memory content but
also has to recreate all the handles that were owned by
the process before the recovery. To checkpoint and re-
cover kernel states, winckp uses the libft interception
facilities to intercept all NT calls which create file han-
dles, process handles, thread handles, socket handles,
such as CreateProcess(), CreateFile(), CreateThread(),
etc. Winckp records each handle value and the parame-
ters that are used to create the handle. In recovery,
winckp recreates all the handles by replaying the calls
with the recorded parameters. To make the values of the
recovered handles equal to their recorded values,
winckp uses a different mechanism from the UNIX ver-
sion (namely libckp [Wang95]). In libckp, each newly
created handle is duplicated to its old value by using the
dup2() call. In NT, since there is no function that can
duplicate a handle to a given handle value, winckp uses
a loop that keeps duplicating a handle using Duplicate-
Handle() call till the returned handle value is equal to
the recorded value. Then, all other handles are closed.
This process is repeated till all the handles are created.2

Winckp also uses libft to intercept file system calls.
When an application takes a checkpoint, it has not only
to save its memory contents but also its file contents and
attributes. When the application rolls back to its previ-
ous checkpointed state, it has to undo all file updates
after the last checkpoint as well as restore its memory
content. The file roll-back mechanism uses the libft
interception routines as described in [Wang95].

3.5 Winrecord

In winrecord, we are primarily interested in system
events related to keyboard strokes and mouse inputs.
Win32 subsystem provides a hook that allows a user
application to monitor system events such as keyboard
strokes, window messages, debugging information, etc.,
and to react to these events through a user-defined call-
back procedure. User application may specify those
system events of interest and install the corresponding
callback procedures via the Win32 API. Winrecord
captures those events by calling SetWindowsHookEx()
with flag WH_JOURNALRECORD, and all keyboard

2 This mechanism does not work for Windows handles.

events and mouse events are copied from the Win32
system’s message queue to our callback procedure.
These events are kept in a temporary file. To replay, we
insert these events one after the other in their timestamp
order back to Win32 system message queue by install-
ing the WH_JOURNALPLAYBACK callback proce-
dure. The Win32 system temporarily disables the inputs
from keyboard and mouse when the
WH_JOURNALPLAYBACK callback procedure is
installed. It executes only the events fed from the call-
back procedure until our event log is up and the
WH_JOURNALPLAYBACK callback procedure is un-
installed.

3.6 ONE-IP driver

The ONE-IP driver is an NDIS (Network Driver Inter-
face Specification) intermediate driver. It is sitting be-
tween transport drivers and NDIS NIC (Network Inter-
face Card) mini-ports. The driver is installed on every
machine in the cluster. Our design works in the follow-
ing way: all the client request packets are first sent to
the dispatcher machine and the dispatcher machine se-
lects a server from the cluster and forwards the packet
to that server. A problem is that all machines share the
cluster IP address. In order for a packet to reach the
dispatcher, only the dispatcher should reply ARP re-
quests for the cluster IP. In our implementations, when
the immediate driver on a server machine receives an
ARP request packet for the cluster IP address, if it is not
the dispatcher, it discards the ARP packet.

On the dispatcher machine, when the NIC driver re-
ceives a packet, it calls the ReceiveHandler() in the
transport interface of the ONE-IP intermediate driver.
The ReceiveHandler() examines the packet. If the
packet is from a client request, it contains an Ethernet
packet header and an IP packet in the lookahead buffer.
If the destination address of the IP packet matches the
cluster IP address, a server is selected based on a hash
value of the client IP address (source address in the IP
packet). The Ethernet packet header is then modified in
the following way: the source MAC address is changed
to the dispatcher’s MAC address; the destination MAC
address is changed to the selected server’s MAC ad-
dress. The packet is then sent to the NIC driver by
NdisSend() call and reaches the selected server. Since a
dispatcher can also be servicing requests, if the dis-
patcher itself is selected, then the packet is passed up to
the protocol driver without modifications.

One desired feature for the ONE-IP driver is the capa-
bility to dynamically reconfigure the dispatching hash
function, the cluster IP address or the cluster size. To

achieve this, we create a logical device in the ONE-IP
driver by IoCreateDevice() and expose a device name in
the NT object namespace, \\device\oneip. A user-level
program can change parameters in the ONE-IP driver
by first obtaining a handle to the logical device by Cre-
ateFile() with the device name and then issuing a De-
viceIoControl() via the handle.

To make the ONE-IP dispatching mechanism fault tol-
erant, we integrate ONE-IP driver with the watchd
daemon. As mentioned earlier, watchd runs on every
machine in a SwiFT domain. When the first watchd
comes up in the domain, it makes its own ONE-IP
driver the primary dispatcher by calling the DeviceIo-
Control (sys_handle, SET_PRIMARY,…). When the
dispatcher machine fails, the neighboring watchd de-
tects the failure and set its ONE-IP driver the new pri-
mary dispatcher.

The UNIX implementation of ONE-IP is done in the
NetBSD kernel [Damani97] [Wang 97]. The dispatcher
runs our modified kernel and is configured to run in the
routing mode. The main kernel modifications are in the
IP forwarding layer ([Wright 95] p.222). We modified
the ip_forward() routine so that the selected
server’s IP address is used as the next hop for the
packet.

Since the UNIX implementation involves changing ker-
nel code, it is difficult to port to a system where the
kernel source code is unavailable. On the other hand,
the NDIS driver approach on NT is much easier to be
adopted into a product.

4. Applications and Overhead

We are currently working with a few projects in Lucent
Technologies to embed NT-SwiFT in their systems to
improve their fault tolerance and availability. In one
project, the system uses NT-SwiFT to detect application
failures such as process crashes and hangs. Once a fail-
ure is detected, watchd stops the process and restart the
process. If a process fails too many times in a given
interval, watchd then automatically reboots the NT ma-
chine and restarts the application. In another project,
we are using watchd and libft to provide a warm backup
scheme for a switch prototype implemented on Win-
dows NT where processes on the primary board check-
point their critical states to the backup processes on a
backup board whenever necessary. When a failure is
detected, watchd makes the backup board the primary
by changing a flag in the shared memory of the board.

In a normal situation, watchd polls applications and
machines every 10 seconds and one polling takes about
10 milliseconds on a Pentium 180MHz machine. By
polling, watchd increases the CPU utilization by about
4%. Libft overhead depends on the frequency of check-
pointing and message logging. In one study, it showed 5
to 10% increases for the service time of a server pro-
gram when checkpoint and message logging were used.
REPL overhead also depends on the intensity of I/O
write operations. One study showed 14% decrease of
I/O throughputs when using REPL in replicating files
for a disaster recovery.

5. Comparison with Related Work

Some of the NT-SwiFT functions are also provided by a
few commercial NT cluster mechanisms. A survey on
NT clustering solutions can be found in [NT-
CLUSTER]. Examples of NT clustering solutions are
Microsoft MSCS, Tandem CAS, Marathon Endurance,
Apcon PowerSwitch, NCR LifeKeeper, Veritas
FirstWatch, Octopus HA+, etc. These commercial NT
cluster products provide basic fail-over and detection
capabilities. Some of them also provide file replication
or disk-mirroring facilities for persistent data recovery.
However, there are at least three major differences be-
tween NT-SwiFT and these clustering tools:

1. The fundamental design philosophy is different
between NT-SwiFT and these commercial tools.
Most of these tools assume application programs
can not be changed and therefore all the recovery
mechanisms have to be completely transparent to
application programs. Consequently, these cluster-
ing tools provide either no application APIs or a
very small set of APIs to be embedded into appli-
cation programs. Our design philosophy considers
the recovery mechanisms into two categories: client
recovery and server recovery. We also think that
the client error recovery mechanisms have to be
transparent to the client application programs.
However, we believe that a truly fault tolerant
server application has to be enhanced with fault tol-
erance APIs. Therefore, a large part of our effort is
to design and implement a set of fault tolerance
APIs for the server application developers3. As a
result, the APIs provided by libft are more powerful
and complete than those provided by these com-
mercial clustering tools. These fault tolerance APIs

3 Note that except some functions in libft, all other com-
ponents in NT-SwiFT can be used transparently with
application programs.

also have to interact with other components in
SwiFT such as watchd, REPL, winrecord, winckp
and ONE-IP. Therefore, an integration of all fault
tolerance components is a must but none of the
commercial clustering tools provides such integra-
tion.

2. Most of these clustering tools assume transaction
model for error recovery while our focus is on the
checkpoint and roll-back recovery. As a result,
none of these tools integrate roll-back recovery
mechanisms such as process checkpoint,
events/messages logging and replay, etc. into their
recovery mechanisms. Without an integrated solu-
tion, application developers may have to design and
implement a lot of recovery routines into their pro-
grams.

3. NT-SwiFT provides facilities to do application re-
juvenation [Garg96]4, IP requests dispatching, pro-
cess migration and load balancing. As a result, NT-
SwiFT can not only increase application availabil-
ity but also improve application robustness, per-
formance and scalability.

6. Concluding Remarks and Future work
The goal of NT-SwiFT research is to understand the
fault-tolerance and high availability requirements of
applications running on NT and to create generic and
reusable components that can facilitate the development
of these applications. We have described components
including watchd for process failure detection and re-
covery, libft for critical data checkpointing, communi-
cation messages logging and recovery, REPL for on-line
incremental file replication and disaster recovery,
winckp for transparent process checkpointing, winre-
cord for mouse and keyboard events logging and re-
playing, and ONE-IP for IP packets dispatching, fail-
over and re-routing. We have demonstrated that lever-
aging specific facilities on Windows NT such as filter
drivers, intermediate drivers, library injection and
memory management routines makes the implementa-
tion of some fault tolerance mechanisms easier on Win-
dows NT than on UNIX.

Currently, we are working on enhancing the NT-SwiFT
to deal with process thread failure detection and recov-
ery, incremental state checkpoint to remote processes,
integration of the NT-SwiFT with some middle-ware

4 Application rejuvenation is a mechanism which
monitors applications behaviors, predicts applications
failures and rejuvenates unhealthy applications even
before they actually fail.

tools such as CORBA and DCOM, dynamic process
migration for load balancing, intercepting calls in other
DLLs such as advapi32.dll, user32.dll, GDI32.dll, etc.,
and the compatibility of NT-SwiFT with other popular
commercial clustering tools such as MSCS.

Acknowledgements: Gaurav Suri and Yi-Min Wang
implemented the first prototype of watchd and libft in
NT-SwiFT. Recently, Woei-Jyh Lee joined our NT-
SwiFT team and contributed in the porting of ONE-IP
driver and watchd. The authors would also like to thank
the users of the NT-SwiFT who constantly provide
ideas for improvements and Dave Korn for his help in
using UWIN and comments on this paper.

References:

[Birman96] Kenneth P. Birman, "Building Secure and
Reliable Network Applications", Manning Publication
Co. 1996.

[Damani97] Damani, O. P., Chung, P.-Y., Huang, Y.,
Kintala, C. M., and Wang, Y-M., "ONE-IP: Techniques
for Hosting a Service on a Cluster of Machines", Sixth
International World Wide Web Conference (WWW6),
Santa Clara, pp. 735-743, Apr. 1997.

[DDK-NDIS] "Network Drivers", Windows NT 4.0
DDK, Microsoft MSDN Library.

[Huang93] Huang, Y. and Kintala, C. "Software Im-
plemented Fault Tolerance", Proceedings of the 23rd
IEEE Fault Tolerant Computing Symposium (FTCS23),
Toulous, France, June 1993, Pages 2-10.

[Huang95] Y. Huang and Y. Wang, ‘‘Why optimistic
message logging has not been used in telecommunica-
tion", Proceedings of the 25th IEEE Fault Tolerant
Computing Symposium (FTCS25), Pasadena, Califor-
nia, page 459-463, 1995.

[Garg96] S. Garg and Y. Huang and K. Trivedi and C.
Kintala, ‘‘Minimizing Completion Time of a Program
by Checkpointing and Rejuvenation",ACM SIGMET-
RICS 96, Philadelphia, PA, pages 252-261, May, 1996.

[Gray93] J. Gray and A. Reuter, "Transaction Process-
ing: Concepts and Techniques", Morgan Kaufmann
Publishers, 1993.

[Richter96-3] J. Richter, "Processes", Chapter 3, in Ad-
vanced Windows, Ed. 3, pp.33-72, Microsoft Press,
1996.

[Korn97] D. Korn, “UWIN – UNIX for Windows”,
Proceedings of Usenix Windows NT Workshop, Seattle,
Washington, pp. 133-145, 1997.

[NTCLUSTER] "Lab Reports: Clustering Solutions for
Windows NT", Windows NT Magazine, pp.54-95, June
1997.

[Richter97-5] J. Richter, "Win32 Memory Architec-
ture", Chapter 5, in Advanced Windows, Ed. 3, pp.115 -
144, Microsoft Press, 1997.

[Richter97-18] J. Richter, "Breaking Through Process
Boundary Wall", Chapter 18, in Advanced Windows,
Ed. 3, pp.899-970, Microsoft Press, 1997.

[Walli97] S. R. Walli, “OpenNT: UNIX Application
Portability to Windows NT via an Alternative Environ-
ment Subsystem”, Proceedings of Usenix Windows NT
Workshop, Seattle, Washington, pp. 123-132, 1997.

[Wang95] Y. Wang and Y. Huang and K. Vo and E.
Chung and C. Kintala, “Checkpoint and its applica-
tions”, Proceedings of the 25th IEEE Fault Tolerant
Computing Symposium, Pasadena, California, pp. 22-
31, 1995.

[Wang97] Y.-M. Wang, O. P. Damani, P. E. Chung, Y.
Huang and C. M. Kintala, Web Server Clustering with
Single-IP Image: Design and Implementation", in Proc.
Int. Symp. on Multimedia Information Processing, Dec.
1997, also in
http://www.research.att.com/~ymwang/papers/newONE
-IP.htm

WINDOWS
SOCKET

(Wsock32.dll)

accept, bind, closesocket, con-
nect, ioctlsocket, listen, set-
sockopt, shutdown, socket,
send, recv, recvfrom, sendto

File
Operations

(Kernel32.dll)

CopyFileA, CopyFileExA,
CopyFileExW, CopyFileW,
CreateFileA, CreateFileW, De-
leteFileA, DeleteFileW, Move-
FileA, MoveFileW, MoveFile-
ExA, MoveFileExW, OpenFile,
ReadFile, ReadFileEx, Read-
FileScatter, SetFilePointer,
UnlockFile, UnlockFileEx,
WriteFile, WriteFileEx, Write-
FileGather.

Directory
(Kernel32.dll)

CreateDirectoryA, CreateDi-
rectoryExA, CreateDirectory-
ExW, CreateDirectoryW, Re-
moveDirectoryA, RemoveDi-
rectoryW,
SetCurrentDirectoryA, SetCur-
rentDirectoryW.

Process and
Thread

(Kernel32.dll)

CreateRemoteThread, Cre-
ateThread, CreateProcessA,
CreateProcessW, ExitProcess,
ExitThread, OpenProcess, Ter-
minateProcess, Termi-
nateThread.

Event
(Kernel32.dll)

CreateEventA, CreateEventW,
OpenEventA, OpenEventW,
ResetEvent, SetEvent.

NamedPipe
(Kernel32.dll)

ConnectNamedPipe, Cre-
ateNamedPipeA, Cre-
ateNamedPipeW, Disconnect-
NamedPipe, SetNamedPipe-
HandleState,
WaitNamedPipeA, Wait-
NamedPipeW.

MailSlot
(Kernel32.dll)

CreateMailslotA, CreateMail-
slotW, SetMailslotInfo.

Mutex
(Kernel32.dll)

CreateMutexA, CreateMutexW,
OpenMutexA, OpenMutexW,
ReleaseMutex

Semaphore
(Kernel32.dll)

CreateSemaphoreA, Create-
SemaphoreW, OpenSemapho-
reA, OpenSemaphoreW, Re-
leaseSemaphore

CriticalSection
EnterCriticalSection, Initialize-

(Kernel32.dll) CriticalSection, InitializeCriti-
calSectionAndSpinCount,
LeaveCriticalSection

DLL Library
(Kernel32.dll)

FreeLibrary, FreeLibrary-
AndExitThread, LoadLibraryA,
LoadLibraryExA, LoadLibra-
ryExW, LoadLibraryW

Other handles
(Kernel32.dll)

CloseHandle, DuplicateHandle,
SetHandleCount, SetHandleIn-
formation

Table 1. A summary of NT system calls that are inter-
cepted in NT-SwiFT.

