
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

A Soft Real-time Scheduling Server on the Windows NT

Chih-han Lin, Hao-hua Chu, Klara Nahrstedt
University of Illinois at Urbana Champaign

A Soft Real-time Scheduling Server on the Windows NT

Chih-han Lin, Hao-hua Chu, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana Champaign
clin2, h-chu3, klara@cs.uiuc.edu

Abstract

We present the design and implementation of a soft
real time CPU server for the time-sensitive multimedia
applications in the Windows NT environment. The
server is a user-level daemon process from which
multimedia applications can request and acquire peri-
odic processing time in the well-known form of
(processing time per period). Our server is based on a
careful manipulation of the real time(RT) priority
class, and it does not require any modifications to the
kernel. It provides (1) the rate monotonic scheduling
algorithm, (2) support for multiple processors (SMP
model), (3) limited overrun protection among real-
time(RT) processes, (4) fair allocation between the RT
and time sharing (TS) processes so that TS processes
are not starved for processing time, (5) accessibility by
a normal user privilege, and (6) an efficient imple-
mentation. We have implemented the CPU scheduling
server on top of the Windows NT 4.0 operating system
with dual Pentium processors, and we have shown
through experiments that our CPU scheduling server
provides good soft real time support for the multime-
dia applications.

1. Introduction

Continuous media processing, such as video/audio
compression/decompression, and 3-D rendering and
animation, are becoming widely-used applications on
computers nowadays. To preserve their temporal be-
havior, multimedia applications require that the un-
derlying systems provide sufficient and periodic proc-
essing time and enforce quality guarantees to the users
(e.g. a fixed video playback rate). However, in the
Windows NT multi-process and time-sharing envi-
ronment, these multimedia applications do not perform
well when they are scheduled concurrently with the
traditional TS applications such as text editors, com-
pilers, web browsers, or computation-intensive jobs.
Oftentimes, the problem lies in untimely scheduling of
the processes rather than insufficient processor capac-
ity. This paper addresses this problem and presents a

user-level middleware solution on top of the Windows
NT operating system with multiple processors.

There have been several research results that address
the issues of accommodating scheduling of soft RT
processes in general purpose operating system envi-
ronment. They are the Constant Utilization Servers[2],
the Processor Reserve of the RT Mach[8,6], the Hier-
archical CPU scheduler[4], the User-level Real Time
Scheduler[7], the Real Time Upcall[3], the Rate-
Controlled Scheduling[11], the Soft RT scheduling
Server[9], the Rialto operating system[5], the Neme-
sis[1], and the SMART system[10]. All except [10]
are based on the general concepts of reservation, re-
source allocation, and scheduling. The RT process
first sends a reservation request, which specifies its
resource demand, e.g., RT Mach convention of
(requested CPU usage time, period), to the resource
manager. Then the resource manager performs an
admission control to determine if there is enough
available resource to allocate for this request. If the
admission control test succeeds, the RT process is
scheduled according to the reserv ation contract.

Our scheduling mechanism is based on the user-level
RT scheduler(URSched) proposed by Kamada[7] in
UNIX. The URSched mechanism is based on the
POSIX.4 fixed priority extension and its priority
scheduling rule. The user-level scheduler is imple-
mented on top of the kernel scheduler, and it runs at
the highest possible fixed-priority. The RT process
waits its turn at the lowest possible priority (called the
waiting priority), and the active RT processes run at
the 2nd highest fixed priority. The user-level scheduler
wakes up periodically to dispatch the RT processes by
moving them between the waiting and the running
priority; during the other time, it just sleeps. When the
scheduler sleeps, the RT process executes at the run-
ning priority. When no RT processes are dispatched,
the TS processes with dynamic priorities are scheduled
by the underlying kernel scheduler. This approach has
shown to have many desirable prope rties:

• It requires no modification to the kernels. The RT
scheduler is implemented as a user-level process.
• It has low computation overhead.
• It provides the flexibility to implement any sched-
uling algorithms in the user-level scheduler, e.g., rate
monotonic, earliest deadline first, or a hierarchical
scheduler.

The above discussed scheduling mechanism was used
and further expanded by additional mechanisms, al-
gorithms, and policies in our QoS-aware resource
management middleware [9], called QualMan. In
this context, the middleware is understood as a sys-
tem software between operating system and applica-
tions that provides access to extended and flexible OS
services, e.g. real time support, to applications with-
out any modifications of the operating systems. Our
middleware provides the following ser vices :

• Rate Monotonic Scheduling algorithm.
• Overrun Protection among RT processes.
• Fair allocation between the RT and TS processes.
• Access to system services with normal user privi-
leges.

Based on lessons learned from the soft RT scheduling
server in the UNIX environment, we design, imple-
ment, and test the soft real-time scheduling server in
the Windows NT environment. In addition, we pro-
vide support for scheduling of RT and TS processes on
multiple processors. The paper is organized as follows:
section 2 explains the scheduling server architecture;
section 3 describes the implementation on the Win-
dows NT platform, and discusses the differences be-
tween UNIX and the Windows NT operating system;
section 4 shows the experimental results; section 5
presents the concluding remarks.

2. Server Architecture and Design

Our server architecture contains three major compo-
nents—the broker, the dispatcher, and the dispatch
tables as shown in Figure 1. A RT Client is an exter-
nal component representing an application which re-
quests the scheduling services from the scheduling
server.

Before we describe each component in detail, we dis-
cuss the priority levels in the Windows NT system

because they play an important role in our architecture
and design. Each NT process or its main thread has a
scheduling priority. Each thread’s priority is deter-
mined by the priority class of its process and the pri-
ority level of the thread within the priority class of its
process. Note that our scheduler is a process scheduler
and it does not schedule the various threads in each RT
process. There are four possible priority classes for a
process:

1 IDLE_PRIORITY_CLASS
2 NORMAL_PRIORITY_CLASS
3 HIGH_PRIORITY_CLASS
4 REALTIME_PRIORITY_CLASS

There are seven possible priority levels within each
priority class:

1 THREAD_PRIORITY_IDLE
2 THREAD_PRIORITY_LOWEST
3 THREAD_PRIORITY_BELOW_NORMAL
4 THREAD_PRIORITY_NORMAL
5 THREAD_PRIORITY_ABOVE_NORMAL
6 THREAD_PRIORITY_HIGHEST
7 THREAD_PRIORITY_TIME_CRITICAL

2.1 Client RT Process

A RT process can reserve a certain amount of CPU
time from the real-time scheduling server. At a later
time, it can also free or modify a reservation through
an application program interface (API) defined in Ta-
ble 1.

The client’s reservation request contains the process
ID and its resource specification in the form: pe-
riod=P(ms), and CPU usage in percentage=U. The
amount of CPU time per period, denoted E, is com-
puted as E = U*P. For example, if a RT process re-
quests a reservation for CPU usage = 30%, period =
100ms, and the request is accepted by the scheduling
server, then the scheduling server will guarantee that
the RT process is scheduled for 30ms of CPU time
every 100ms, given that the RT process is runnable.

Write Read

DispatchRequest

Broker

Dispatch Table

RT Client Process

Dispatcher

Figure 1: The Soft RT Server Architecture

Table 1: Application program interface

int Cpu::reserve(int pid, double
util, int period)

Reserve CPU time corresponding to util over the time period for the
process pid. Return 1/0 for resource admission su ccess/failure.

int Cpu::freeReserve(int pid) Free the reservation hold by process pid. Return 1/0 for suc-
cess/failure.

double Cpu::getAvailResource() Return the amount of available CPU resource in the system.
int Cpu::modifyReserve(int pid,
double newUtil, int newPeriod)

Modify the reservation held by process pid. Return 1/0 for resource
admission success/failure.

The users start the RT process at the NOR-
MAL_PRIORITY_CLASS which is like any other
Time Sharing (TS) processes. When the RT process
calls the CPU reserve() API, it opens an inter-process
communication (IPC) with the broker through which
the reserve parameters and the acceptance result are
exchanged. To address the security problem which
one process can modify or free another process’s re-
source reservation through the API, the broker per-
forms an ownership check to make sure that the calling
process can be permitted to change the resource reser-
vation of the specified RT process. Then the broker
and the dispatcher schedule the RT process by ma-
nipulating its priority, the mechanism is described be-
low.

2.2 Broker and Dispatch Table

The broker receives requests from the client RT proc-
esses. It performs an admission control test for the
non-preemptive rate monotonic scheduling algorithm
[12] to determine whether the new client RT process
can be scheduled. Note that all equations must be sat-
isfied for the admission test to succeed. Given a total
of m periodic RT processes and a single processor
system (N=1), let the RT processes be sorted according
to sizes of their periods. Let ei and pi be the execution
time and the period of the i-th client RT process, em

and pm be the execution time and period of the RT
process with the smallest period, and r be the overall
percentage of processor capacity allocated to the RT
processes.

e

p
r N

i

ii

m

=
∑ ≤

1

(eq. 1)

p e em m i m i≥ + ≤ <m ax ()1
 (eq. 2)

p e e e F p e pi i j m j i j j i j j
j i

m

≥ + + −≤ ≤ ≠
= +
∑m ax (,) (,)1

1

(eq. 3)

w here F x y ceil
x

y
(,) ()= + 1

Given an N processors system, the broker needs to
decide how to place the multiple RT processes into the
multiple processors. The broker maintains a set of RT
processes that are admitted and are assigned to run on
each of the processors. The set of processes for each
processor must satisfy both eq. 2 and 3. When a new
RT process request arrives, the broker tries to place the
new RT process in each of the processors (1..N) by
performing the above one-processor admission trial on
the processor. During the one-processor admission
trial, the new process is inserted into the existing set of
processes corresponding to that processor, and eq. 2
and 3 are checked. If the trial succeeds, the broker
will admit the new RT process which is assigned to
that processor. If the trial fails, the broker will try to
place the new RT process in the next processor. If the
broker cannot find any processor that can accommo-

date the request, the RT process is rejected and not
schedulable.

If it is schedulable, the broker will put the RT process
into the waiting RT process pool by changing its pri-
ority to the waiting priority at
IDLE_PRIORITY_CLASS level.

The broker is a daemon process running at a normal
priority (The server’s priority class is NOR-
MAL_PRIORITY_CLASS and the priority of its pri-
mary thread is THREAD_PRIORITY_NORMAL). It
can be started at the system boot time. It will wake up
when a new client RT process request arrives. The
broker needs to be run with the privilege of LocalSys-
tem (equivalent to the root privilege in UNIX) so that
it can start a RT process. The broker process does not
perform the actual dispatching of the RT processes and
does not enforce reservations. However, it needs to
start (at the startup time) the dispatching process. The
reason for separation between the broker process and
the dispatcher process is that the admission and
schedulability test in the broker may have variable
computation time, hence it may affect the timing of
dispatching. The other reason is that the admission
and schedulability tests do not need to be done in real
time. As a result, the broker runs at a normal priority
and the dispatcher at a higher RT priority.

The broker computes its schedule for the RT processes
in its dispatch table using the non-preemptive rate mo-
notonic algorithm. The dispatch table is a shared
memory object where the broker writes the computed
schedule into it and the dispatcher reads from it. The
dispatch table contains a repeatable time frame of
slots, each slot corresponds to a time slice of a proces-
sor. Each slot can be assigned to a RT process PID, or
is free which means yielding the control to the NT
kernel scheduler to schedule TS processes. Note that
Windows NT allows the system to have multiple proc-
essors in a symmetric multiprocessing model (SMP).
Given N processors, we can run N processes concur-
rently. Therefore the dispatch table has N columns of
repeatable time slots, where the i-th column corre-
sponds to the schedule on the i-th processor. We show
a sample dispatch table for a dual processors system in
Table 2. Note that it is possible that the broker may
make a massive change to the dispatch table when
accepting a new RT process, while the dispatcher is
dispatching time slots located at middle of a time
frame. This massive change may cause undesirable
shifts in the rate monotonic schedule and may disrupt
the guaranteed time slots assigned to some RT proc-
esses. As a result, the dispatcher will keep a separate

private copy of the dispatch table which it uses for
dispatching. This private copy of the dispatch table is
only updated with the broker when the dispatcher
reaches the end of its time frame.

Table 2: A sample dispatch table for a dual processors
system.

Slot
Number

Time Process
PID

Process
PID

0 0-20ms 100 102
1 20-40ms 101 103
2 40-60ms 100 102
3 60-80ms free free
4 80-100ms 100 102
5 100-120ms free 103
6 120-140ms 100 102
7 140-160ms free free

The repeatable frame in Table 2 has a length of
160ms, and it contains 8 time slots of 20ms each. The
sample dispatch table is a result of a rate monotonic
schedule, where process 100 is assigned to run on
processor #1 and according to the contract
(period=40ms, execution time=20ms), process 101 is
assigned to run on processor #1 and according to the
contract (period=160ms, execution time=20ms), proc-
ess 102 is assigned to run on processor #2 and accord-
ing to the contract (period=40ms, execution
time=20ms), and processor 103 is assigned to run on
processor #2 and according to the contract
(period=80ms, execution time=20ms). There are 4
free slots where TS processes can run. The minimum
number of free slots is maintained by the broker to
provide a fair share of the CPU time to the TS proc-
esses. In the above dispatch table, a total of 31.25%
(100ms out of possible 320ms) of processing capacity
is guaranteed to the TS processes. The site adminis-
trator can adjust this TS allocation value, which is (1-
r) in the admission control equations, to be what is
considered as a fair allocation between the TS and RT
processes. For example, if the computer is used heav-
ily for RT applications, the TS allocation value can be
set to a small percentage number.

2.3 Dispatcher

The dispatcher is a periodic process running at the
highest possible fixed priority with
(REALTIME_PRIORITY_CLASS
+THREAD_PRIORITY_TIME_CRITICAL). The

dispatcher maps the dispatch table into its address
space, and its job is to dispatch the RT process re-
corded at the time slot for all the processors. The dis-
patcher contains the next slot number. At the begin-
ning of each dispatch slot, a periodic RT timer signals
the dispatcher to schedule the next RT process. The
length of time to switch from the end of one time slot
to the beginning of the next time slot is called the dis-
patch latency. The dispatch latency is our scheduling
overhead and it should be kept at a minimal value.

Consider the sample dispatch table in Table 2 at 20 ms
when the next slot number is 1. The following steps
are taken by the dispatcher:

 1. The periodic timer wakes up the dispatcher process
at 20ms. The dispatcher preempts RT process 100(or
102) if it is running on processor 1(or 2).

 2. The dispatcher sets the RT processes 100 and 102 to
the waiting priority (IDLE_PRIORITY_CLASS) using
the system call SetPriorityClass().

 3. The dispatcher promotes the RT processes 101 and
103 to the running priority
(REALTIME_PRIORITY_CLASS). It binds the RT
processes 101/102 to processors #1/#2 using the sys-
tem call SetProcessAffinityMask().

4. The dispatcher puts itself to sleep. As a result, the
RT processes 101/102 are scheduled on processors
#1/#2 for 20ms until the timer wakes up the dispatcher
again.

We have encountered a problem in the Windows NT
that the periodic timer may fail to wake up the dis-
patcher when the RT process overruns its assigned
slot. Overrun is defined as an additional time to the
reserved processing time of an admitted RT process.
Take the example of process 101 in Table 2 and it has
reserved 20ms out of every 160ms. It would be over-
running when it uses more than 20 ms of processing
time (say 30ms) to complete one iteration run. When
an overrun occurs, the invocation of the dispatcher will
be delayed till the RT process finishes its overrun due
to the timer problem. This means that one process
overrun can delay the dispatching of the process in the
next time slot. Hence, until we resolve the preemption
timer problem in Windows NT, we assume well-
behaved RT processes. In the meantime, the dis-

patcher takes two actions to control the overrun. The
first one is that the dispatcher will monitor for any
misbehaving RT processes that are overrunning on a
regular basis and it will remove them. We currently
define a misbehaving process as one that is overrun-
ning for more than 20% of its reservation and for more
than 3 iterations during the most recent 10 iterations.
Take the example of process 101 in Table 2. It would
be misbehaving if during the 10 most recent iteration
runs, it uses more than 24ms (which is 20% more than
the 20ms reservation) of processing time for more than
3 times. The parameters that define a misbehaving
process can be set by the system administration to be
either more strict or lax. The second action is that the
dispatcher will use some of the TS allocation, by tem-
porarily assigning the free slots to the RT process
whose time slots are taken by overrunning RT proc-
esses.

3. Implementation

We have implemented our server architecture on a HP
Vectra Xu system which has two Intel Pentium 200
processors and 96M of memory. It runs Windows NT
4.0 operating system. The dispatch latency consists of
4 SetPriorityClass() system calls, 2 SetProcessAffin-
ityMask() system calls, and 3 context switches. The
average dispatch latency, over 10,000 runs, is meas-
ured as 0.64 ms. The time slot is set to be 20ms, and
the overhead comes to be 3.2%.

4. Experimental Result

The experiment consists of the following load of ap-
plications running concurrently:

• The MPEG player, written by MSSG (MPEG
Software Simulation Group), plays a 320x240 MPEG-
1 file “twister.mpg” that contains a clip of the movie
Twister at 20 frames per second (FPS).
• The same MPEG player plays a second 320x240
MPEG-1 file “lecture.mpg” that contains a speaker
giving a lecture, at 20 frames per second.
• The Microsoft Visual C++ Compiler compiles the
MSSG MPEG player.
• Four compute programs calculate the sin and cos
tables using the infinite series fo rmula.

twister (NRT)

0

50

100

150

200

250

300

350

1 90 17
9

26
8

35
7

44
6

53
5

62
4

71
3

80
2

89
1

98
0

lecture (NRT)

0

50

100

150

200

250

300

350

1 90 17
9

26
8

35
7

44
6

53
5

62
4

71
3

80
2

89
1

98
0

twister (RT)

0

50

100

150

200

250

300

350

1 90 17
9

26
8

35
7

44
6

53
5

62
4

71
3

80
2

89
1

98
0

lecture (RT)

0

50

100

150

200

250

300

350

1 90 17
9

26
8

35
7

44
6

53
5

62
4

71
3

80
2

89
1

98
0

Figure 2: The inter-frame time for the MPEG player that plays the “twister.mpg” and “lecture.mpg” files at 20
frames per second. The y axis measures the inter-frame time in ms, and x axis shows the frame numbers. The top
two graphs show the result for the Windows NT kernel scheduler, and the bottom two graphs show the result for
our scheduling server with processor reservation for the “twister.mpg” at (100%, 50ms) and “lecture.mpg” at
(80%, 50ms).

The graphs in Figure 2 show the measurement of inter-
frame time on the MPEG player under the above
specified load. The top two graphs show the result for
the “twister.mpg” (upper left) and “lecture.mpg”
(upper right) under the Windows NT scheduler without
our scheduling server. The bottom two graphs show
the result for the 20 FPS “twister.mpg” (lower left)
with 100% processor reserve every 50 ms, and the 20
FPS “lecture.mpg” (lower right) with 80% processor
reserve every 50ms. The “twister.mpg” playback re-
quires more processor time because it contains lots of
action with rapid moving background, whereas the
“lecture.mpg” playback contains slow moving action
with almost no changes in background. Using the
Windows NT scheduler, jitter over 200ms (equivalent
to 4 frames time) occurs frequently for both MPEG
video. Using our scheduling server, jitter over 200ms
does not occur at all.

5. Conclusion

Our experiments validate the design and implementa-
tion of the soft real-time scheduling server for con-
tinuous media processing. Our contribution is that

under the control of our scheduling server within the
Windows NT environment, (1) RT processes obtain a
desired amount of CPU time to satisfy soft real-time
requirements; (2) RT processes are monitored and
protected against overruns of other RT processes; (3)
RT processes have access to timing QoS guarantees
and systems services with normal user privileges; and
(4) TS processes get a minimum amount of CPU time
and do not starve.

References

1. Richard Black, Paul Barham, Austin Donnelly,
Neil Stratford. Protocol Implementation in a Verti-
cally Structured Operating System. IEEE LCN, Nov.
1997.
2. Z. Deng, J.W.-S. Liu, J. Sun. Dynamic Schedul-
ing of Hard Real-Time Applications in Open System
Environment. Technical Report No. UIUCDCS-R-96-
1981, Department of Computer Science, University of
Illinois at Urbana-Champaign, Oct. 1996.
3. R. Gopalakrishnan. Efficient Quality of Service
Support Within Endsystems for High Speed Multime-
dia Networking. PhD Thesis, Washington University.
Dec. 96.

4. Pawan Goyal, Xingang Guo, Harrick Vin. “ A
Hierarchical CPU Scheduler for Multimedia Operating
System”. The proceedings of Second Usenix Sympo-
sium on Operating System Design and Implementation,
Seattle WA, Oct 1996.
5. Michael B. Jones, Daniela Rosu, Marcel-Catalin
Rosu. “CPU Reservations and Time Constraints: Effi-
cient, predictable Scheduling of Independent Activi-
ties”. Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP '97), St. Malo,
France, Oct. 1997.
6. Chen Lee, Ragunathan Rajkumar, Cliff Mercer.
Experience with Processor Reservation and Dynamic
QoS in Real-Time Mach. Multimedia Japan, 1996.
7. Jun Kamada, Masanobu Yuhara, Etsuo Ono.
“User-level Realtime Scheduler Exploiting Kernel-
level Fixed Priority Scheduler”. Multimedia Japan,
March 1996.
8. Clifford W. Mercer, Stefan Savage, Hideyuki
Tokuda. Processor Capacity Reserves: Operating
System Support for Multimedia Applications''. IEEE
International Conference on Multimedia Computing
and Systems. May 1994.
9. Klara Nahrstedt, Hao-hua Chu, Srinivas Narayan.
QoS-Aware Resource Management for Distributed
Multimedia Application. Technical Report No. UI-
UCDCS-R-97-2030, Department of Computer Science,
University of Illinois at Urbana-Champaign, Oct.
1996.
10. Jason Nieh, Monica Lam. The Design, Imple-
mentation and Evaluation of SMART: A Scheduler for
Multimedia Applications. Proceedings of the Six-
teenth ACM Symposium on Operating Systems Princi-
ples, St. Malo, France, Oct. 1997.
11. David K.Y. Yau and Simon S. Lam. Adaptive
Rate-Controlled Scheduling for Multimedia Applica-
tions. ACM Multimedia Conference, Boston, MA,
Nov. 1996.
12. R. Nagarajan and C. Vogt. Guaranteed-
Performance Transport of Multimedia Traffic over the
Token Ring. Technical Report 43.9201, IBM Euro-
pean Networking Center, IBM Heidelberg, Germany,
1992.

