
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Harnessing User-Level Networking Architectures for Distributed Object
Computing over High-Speed Networks

Rajesh S. Madukkarumukumana, Hemal V. Shah
Intel Corporation

Calton Pu
Oregon Graduate Institute of Science and Technology

Harnessing User-Level Networking Architectures for Distributed Object
Computing over High-Speed Networks

Rajesh S. Madukkarumukumana
Server Architecture Lab

Intel Corporation
5200 N.E. Elam Young Pkwy

Hillsboro, OR 97124
rajesh@co.intel.com

Calton Pu
Department of Computer Science & Engineering

Oregon Graduate Institute (OGI) of Science and Technology
Portland, OR 97291
calton@cse.ogi.edu

Hemal V. Shah
Server Architecture Lab

Intel Corporation
5200 N.E. Elam Young Pkwy

Hillsboro, OR 97124
hvshah@co.intel.com

Abstract
In a distributed object system such as Distributed Com-
ponent Object Model (DCOM) [5, 7], legacy transport
protocols used for communication limit the performance
over high-speed networks. By making use of a low-
latency, high-bandwidth, and low overhead user-level
networking architecture such as Virtual Interface (VI)
Architecture [8, 18], this performance bottleneck can be
significantly reduced. Since user-level networking ar-
chitectures provide low-level primitives, the challenge
lies in integrating them into high-level applications.
This requires a systematic approach. In this paper, a
methodology to utilize VI Architecture to improve the
performance of DCOM using custom object marshaling
is developed. Initial experimental results demonstrate
that the latencies of small messages in distributed object
computing can be significantly reduced by this method-
ology.
Keywords: Virtual Interface (VI) Architecture, User-
level Networking Architecture, Distributed Component
Object Model (DCOM), Distributed Object Computing,
Custom Object Marshaling.

1. Introduction
Component based software offers modularity, re-

duces applications’ integration and maintenance costs,

and improves deployment flexibility. Distributed object
frameworks like Distributed Component Object Model
(DCOM) [7], Common Object Request Broker Archi-
tecture (CORBA) [16], and Java Remote Method Invo-
cation (RMI) [13] facilitate building distributed appli-
cations from simple components. Distributed object
frameworks use remote procedure call (RPC) mecha-
nism to perform remote object activations and remote
method invocations. The overheads associated with
underlying legacy transport protocols (e. g. UDP, TCP)
used in RPC mechanisms introduce considerable la-
tency over high-speed networks such as System Area
Networks (SANs).

User-level networking architectures, such as the
Virtual Interface (VI) Architecture [8, 18], U-Net [10],
and SHRIMP Virtual Memory Mapped Communication
(VMMC) [2] that are designed to achieve low-latency
and high-bandwidth in a SAN environment, offer an
attractive solution for reducing communication software
overheads. Building high-level applications, using low-
level primitives offered by user-level networking archi-
tectures, is complex. This paper focuses on the chal-
lenge in integrating user-level networking architectures
into distributed object frameworks. In this research,
DCOM is the target distributed object model and VI
Architecture is used as the user-level networking archi-

tecture. This paper provides the following two contri-
butions in harnessing user-level networking architec-
tures for distributed object computing over high-speed
networks:
• A specialization methodology to replace legacy

RPC transports in DCOM with VI-based transport
for SAN environments,

• Latency analysis of standard and VI-enabled
DCOM remoting architecture.

Integration of VI into DCOM remoting architecture is
achieved by custom object marshaling mechanism. This
involves specialization of object implementation and
generation of custom proxy/stub code along with mar-
shaling routines. Initial experimental results provide
evidence of the performance improvement.

The organization of the rest of the paper is as fol-
lows. Brief overviews of VI Architecture and DCOM
are provided in Section 2 and Section 3 respectively. In
Section 4, a mechanism to integrate VI Architecture
into DCOM to reduce remote method invocation laten-
cies is discussed. Experimental results are provided in
Section 5. Section 6 briefly summarizes some related
work. Finally, future work is discussed and conclusion
is drawn in Section 7.

2. Virtual Interface Architecture
 VI Architecture is a user-level networking ar-
chitecture designed to achieve low latency, high band-
width communication between processes running on
nodes connected by a high-speed network within a
computing cluster. To a user process, the VI Architec-
ture provides direct access to the network interface in a
fully protected fashion. The VI Architecture avoids in-
termediate copies of the data and bypasses operating
system to achieve low latency, high bandwidth data
transfer. The VI Architecture Specification 1.0 [18] was
jointly authored by Intel Corporation, Microsoft Corpo-
ration, and Compaq Computer Corporation.

The VI Architecture uses a VI construct to present
an illusion to each process that it owns the interface to
the network. A VI is owned and maintained by a single
process. Each VI consists of two work queues: one send
queue and one receive queue. On each work queue, De-
scriptors are used to describe work to be done by the
network interface. A linked-list of variable length De-
scriptors forms each queue. Ordering and data consis-
tency rules are only maintained within one VI but not
between different VIs. VI Architecture also provides a
completion queue construct that is used to link comple-
tion notifications from multiple work queues to a single
queue.

Memory protection for all VI operations is provided
by protection tag (a unique identifier) mechanism. Pro-
tection tags are associated with VIs and memory re-

gions. The memory regions used by Descriptors and
data buffers are registered prior to data transfer opera-
tions. Memory registration gives VI NIC a method to
translate virtual addresses to physical addresses. The
user receives an opaque memory handle as a result of
memory registration. This allows user to refer to a
memory region using a memory handle/virtual address
pair without worrying about crossing page boundaries
and keeping track of the mappings of virtual addresses
to tags.

The VI Architecture defines two types of data trans-
fer operations: 1) traditional send/receive operations,
and 2) Remote-DMA (RDMA) read/write operations. A
user process posts Descriptors on work queues and uses
either polling or blocking mechanism to synchronize
with the completed operations. The two Descriptor
processing models supported by VI Architecture are the
work queue model and the completion queue model. In
the work queue model, the VI consumer polls or waits
for completions on a particular work queue. The VI
consumer polls or waits for completions on a set of
work queues in the completion queue model. The proc-
essing of Descriptors posted on a VI is performed in
FIFO order but there is no implicit relationship between
the processing of Descriptors posted on different VIs.

For more details on VI Architecture, the interested
reader is referred to [8, 18]. Figure 2 compares the one-
way latency of UDP with one-way latency of software
emulated VI (in host driver) over a 100 Mbps Ethernet.
The latencies were measured using ping-pong tests and
were averaged over 1000 runs. Figure 2 illustrates that
even the latency of VI emulated in host driver is signifi-
cantly less than the latency of UDP. With VI function-
ality implemented in NIC hardware, the latency can be
significantly reduced further.

C
N

T
L

VI

S
e

nd
Q

ue
u

e

S
en

d
Q

ue
ue

C
N

T
L

VI

S
en

d
Q

ue
u

e

S
e

nd
Q

ue
u

e

Network Interface

Per VI Control and
Synchronization

Kernel
Agent

Control and
Interrupts

User
Process

C
N

T
L

VI

S
en

d
Q

ue
ue

R
ec

ei
ve

Q
ue

ue

User
Process

C
N

T
L

VI

S
en

d
Q

ue
ue

R
ec

ei
ve

Q
ue

ue

User
Process

C
N

T
L

VI

S
en

d
Q

ue
ue

re
ce

iv
e

Q
ue

u
e

Figure 1: VI Queues

One-way Latency for 100 Mbps Ethernet

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600

Message size (in bytes)

L
at

en
cy

 (
in

 m
ic

ro
se

co
n

d
s)

Software Emulated VI NIC
UDP

Figure 2: Emulated-VI vs. UDP Latency

3. Distributed Component Object Model
(DCOM)
The Component Object Model (COM) [5] is an ar-

chitecture and a supporting infrastructure for creating,
using and evolving component software and building
applications using these components. COM provides a
binary standard to which components and its clients
must adhere in order to ensure dynamic interoperability.
Distributed Component Object Model (DCOM) [7] is
an extension to COM for networked environments to
support distributed computing. The overall DCOM ar-
chitecture consists of the COM programming interface,
the interface remoting infrastructure, and the wire pro-
tocol. COM allows clients to communicate with an ob-
ject solely through the use of vtable-based interface
instances. This provides a single programming model
for accessing in-process, local and remote components.
The interface remoting infrastructure in COM facilitates
this location transparency. The DCOM wire protocol
describes the content and the format of what is actually
transmitted across the network when components reside
on remote machines.

3.1 DCOM Architecture
The marshaling architecture in DCOM performs

encoding and decoding of method call/return parameters
into a standard data representation (marshaling and un-
marshaling) that can be sent across the network.
DCOM remoting architecture is abstracted as an Object
RPC (ORPC) layer built on top of DCE RPC infra-
structure. DCE RPC defines the standard data repre-
sentation (NDR) for all relevant data types.

Interface pointers in COM are either returned from
object activations or passed as parameters in method
calls. COM has a special data type not present in DCE
RPC to handle interface pointers in a uniform way.
Marshaling and unmarshaling of COM interface point-
ers entails creation of a stub object in the server process
and a proxy object in the client process respectively.

Proxy and stub are capable of handling remote method
invocations to the marshaled interface.

Client Component
COM

run-time

DCE RPC

Protocol Stack

COM
run-time

DCOM network-
protocol

Security
Provider

DCE RPC

Protocol Stack

Security
Provider

Figure 3: DCOM Architecture

The COM Specification defines various types of
interface pointer marshaling, namely, standard mar-
shaling, handler marshaling, and custom marshaling.
Standard marshaling in COM provides the glue to the
underlying RPC infrastructure and allows the compo-
nent and the client to be completely ignorant of the mar-
shaling and remoting architecture. Compiling the com-
ponent’s Interface Description Language (IDL) file with
the MIDL compiler generates the proxy and stub code
for standard marshaling. Handler marshaling extends
the COM marshaling architecture by allowing the com-
ponent to plug-in smart handlers that can intercept cli-
ent’s method calls and choose to satisfy them or forward
them to the standard proxy. The design of an interface
that focuses only on its function can lead to design deci-
sions that conflict with efficient implementation across
a network. In cases like these, COM allows object
implementers to extend or even override standard mar-
shaling of an interface pointer by the use of custom
marshaling. Custom marshaling maintains complete
client transparency. This architectural extensibility
makes it possible to address network performance issues
without disrupting the established design. For more de-
tails on COM and DCOM architectures, the interested
reader is referred to [5, 7].

Custom marshaling allows the object to dynami-
cally choose how its interface pointers are marshaled.
Custom object marshaling is useful in many techniques
including:
• replacing COM ORPC with other transports,
• marshaling static objects by value,
• adding fault-tolerance and high-availability proper-

ties to objects,
• performing replication transparently to the client

and the component.
Wang et. al. briefly described some of these techniques
in [19]. RPC infrastructure used in COM standard mar-
shaling can work over a variety of legacy transport
protocols like UDP, TCP, etc. Due to the inherent scal-
ability offered by UDP, it is the default (and most

widely used) DCOM protocol. Figure 4 shows the one-
way latency (averaged over 1000 runs) of COM, RPC
and UDP measured using ping-pong tests. DCOM and
RPC measurements used bi-directional conformant ar-
rays with the following method signature:

+5(68/7�0RYH'DWD��

>LQ@�8/21*�$UUD\6L]H�

>LQ��RXW��VL]HBLV�$UUD\6L]H�@��8/21*�
S$UUD\���

The measurements clearly show that for small messages
(common case in distributed object computing frame-
works), latency incurred in RPC and DCOM is domi-
nated by UDP latency.

One-way Latency for 100 Mbps Ethernet

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350

Message size (in number of unsigned integers)

L
at

en
cy

 (i
n

 m
ic

ro
se

co
n

d
s)

UDP

Standard RPC over UDP

DCOM over Standard RPC

Figure 4: UDP, RPC, and DCOM Latency

4. DCOM Remote Method Invocation
over VI Architecture Transport

 COM marshaling architecture is extensible
through its implementation of proxies and stubs as in-
process COM servers. A COM object implementation
advertises its ability to perform custom marshaling by
exporting a standard COM interface called IMarshal.
An object that does not export the IMarshal interface
gets the standard proxy and stub by default. As part of
marshaling an interface pointer, COM allows objects to
perform any arbitrary action (like creating a custom
stub) and to provide any block of data representing the
custom object reference. The object can also specify the
class identity (CLSID) of the custom proxy that can
unmarshal the custom object reference on the client
side.

Upon receiving the marshaled data, COM runtime in-
stantiates the specified custom proxy in the client proc-
ess. The custom proxy uses the marshaled object refer-
ence data to setup a connection to the stub and exposes
the same vtable representation of the remoted interface
to the client. Figure 5 illustrates a custom marshaling
architecture that uses the high performance user-level

VI transport for inter-process communications. The
architectural details are described next.

4.1 Object Specialization using IMarshal
To enable COM remoting over VI transport,

the object implementation needs to be specialized to
expose the standard IMarshal interface. This is achieved
by performing a source-to-source transformation of the
object implementation. COM supports the notion of
composing an object from binary composites using a
component re-use technique called aggregation [5].
COM aggregation is useful in specialization as it allows
composing objects dynamically. To minimize the source
transformation needed to expose the IMarshal interface,
the specialized object aggregates IMarshal from the
inner custom stub. The specialization process is auto-
mated by a "Custom Marshaling Wizard" integrated into
the Microsoft Developer Studio environment as a
"DevStudio Add-In" component.

In the current prototype, COM automation
interfaces, non-C++ object implementations, and VI
Remote DMA (RDMA) operations are not supported. In
order to support co-existence of standard and custom
remote proxies and to preserve object identity, the
available context information needs to be extended by
using either ‘channel hooks’ [9] or custom class facto-
ries. Security features are not present in the current
custom marshaler, but can be provided using standard
Windows NT challenge/reply authentication.

ClientClient
process/machineprocess/machine

Standard Standard
RPCRPC

VIA VIA
TransportTransport

IMarshalIMarshal

ServerServer
process/machineprocess/machine

Custom StubCustom Stub

IFooIFoo

IBarIBar

StandardStandard
StubStub

StandardStandard
StubStub

ObjectObject

Custom StubCustom Stub
 Managers Managers

InterfaceInterface
Stub forStub for

IFooIFoo

InterfaceInterface
Stub forStub for

IBarIBar

InterfaceInterface
Stub forStub for

IFooIFoo

InterfaceInterface
Stub forStub for

IBarIBar

IStubMgrIStubMgr

Custom ProxyCustom Proxy

InterfaceInterface
Proxy forProxy for

IFooIFoo

InterfaceInterface
Proxy forProxy for

IBarIBar

IProxyMgrIProxyMgr

Custom Proxy Custom Proxy
ManagerManager

IBarIBar

IFooIFoo

IMarshalIMarshal

Client1Client1

Client2Client2 StandardStandard
ProxyProxy

IBarIBar

IFooIFoo

Figure 5: Custom Object Marshaling

4.2 Anatomy of Custom Stub/Proxy
A custom stub (proxy) is itself a COM object.

A custom stub consists of a stub manager and interface
stubs for each of the component’s marshaled interfaces.
Each custom stub manager represents an endpoint con-
nection from a specific remote client process to the
marshaled object. A custom stub manager manages
endpoint creation and destruction, data transfers, and
object lifetime. It also dispatches method requests to
interface stubs. The custom stub uses the context and
marshal flags passed as IMarshal method parameters to
delegate unsupported contexts (e.g. table marshaled and
local objects) to the standard marshaler. Each interface
stub unmarshals method parameters from receive buff-
ers, dispatches actual object methods, marshals return
parameters into the reply buffers, and returns to the stub
manager. The stub manager sends the reply buffer to the
client. On the client side, each custom proxy is a peer to
the corresponding custom stub and consists of proxy
manager and interface proxies.

Marshaling method parameters into the stan-
dard data representation (NDR) provides heterogeneity
and allows application programmers to use any user-
defined data structures as method parameters. NDR
marshaling (Pickling) used by the custom proxies and
stubs avoids intermediate buffer copies by marshaling
method parameters directly into registered transmission
buffers. Procedural encoding is used to avoid buffer
packing complexities, and incremental encoding is used
to meet dynamic memory requirements. The NDR rou-
tines are generated from a transformed IDL file derived
from the original application IDL file using the follow-
ing rules:
1. Each method is split into a request method and a

reply method. The request method contains all the
method parameters passed from the client to the
object. The reply method contains parameters re-
turned from the object to the client including the
HRESULT. Any parameter that is used in attributes
of return parameters is also included in the reply
method.

2. Since request and reply method parameters are
marshaled at one end and unmarshaled at the other
end, each parameter is declared bi-directional and a
level of indirection is added to it. The added indi-
rection is propagated in parameter attributes as
well.

3. Marshaling of interface pointers in method pa-
rameters are handled separately as Windows NT
encoding services do not currently support them.

4. Custom proxies and stubs support a set of special
interfaces to allow marshaling of interface pointers
that are references to custom proxies.

The following example shows an IDL transformation
using some of the above rules.

By running the MIDL compiler over the trans-
formed IDL file along with a supporting application
configuration file (ACF), the NDR encoding routines
are generated. The custom proxy (stub) dynamic link
library (DLL) is created from the generated NDR rou-
tines, interface proxy (stub) templates, and the static
proxy (stub) manager code. The whole process of cus-
tom proxy and stub generation can be automated by
integrating it into the "Custom Marshaling Wizard".
Figure 10 provides a snapshot of "Custom Marshaling
Wizard".

5. Experimental Results
In order to demonstrate DCOM performance im-

provements achieved by integrating user-level VI trans-
ports, a set of experiments was carried out. In the ex-
periments, a pair of server systems, with dual 200 MHZ
Pentium  Pro processors (with 256K L2 cache), Intel
82440FX PCI chipset, and 64 MB memory, was used as
a pair of host nodes. Intel Pro100B Ethernet (100 Mbps)
NIC with VI functionality emulated in software (host
driver), Myricom’s Myrinet [3] NIC (1.28 Gbps) with
VI functionality emulated on NIC firmware, and Gi-
gaNet’s cLANTM GNN1000 interconnect (1.25 Gbps full
duplex) [11] with VI functionality implemented on NIC
hardware were used as VI NIC prototypes. The software

Original Method’s Signature:

HRESULT MoveData(
[in] ULONG ArraySize,
[in, out, size_is(ArraySize)]
ULONG *pArray);

Transformed Methods’ Signatures:

void MoveData_Request(
[in, out] ULONG *ArraySize,
[in, out, unique, size_is(, *ArraySize)]
ULONG **pArray);

void MoveData_Reply(
[in, out] HRESULT *ReturnCode,
[in, out] ULONG *ArraySize,
[in, out, unique, size_is(, *ArraySize)]
ULONG **pArray);

Generated NDR Routines:

void MoveData_Request(
 handle_t IDL_handle,
 ULONG *ArraySize,

ULONG ** pArray);
void MoveData_Reply(

 handle_t IDL_handle,
HRESULT *ReturnCode ,
ULONG *ArraySize,

 ULONG **pArray);

environment used for all the experiments included Win-
dows NT 4.0 with service pack 3 and Microsoft Vis-
ual C++ 5.0.

VI and UDP latency tests measure the time to copy
the contents from an application’s data buffer to another
application’s data buffer across an interconnect using a
round-trip (ping-pong) test. DCOM and RPC latency
measurements used bi-directional conformant arrays as
method parameters with the method signature described
in Section 4.2. VI architecture provides both polling and
blocking models for synchronization. In the polling
model, the user thread directly polls on the status of
descriptors posted on VI work queues, thereby avoiding
interrupt generation and processing overheads at the
cost of increased CPU utilization. Reducing interrupts
has a significant impact on the capacity of the system in
addition to reducing the per-packet send/receive laten-
cies. For GigaNet VI NICs, the experiments were car-
ried out for both polling and blocking models. In the
experiments involving Ethernet and Myrinet, only poll-
ing model was used.

In all the experiments, COM servers and clients
used were free-threaded and COM security features
were disabled. In case of custom stubs and proxies,
method parameters and other information (including the
NDR header) are marshaled and unmarshaled directly
into and out of registered send/receive communication
buffers to avoid intermediate data copies.

The VI Architecture is designed to enable applica-
tions to communicate over a SAN that provides high
bandwidth, low latency communication with low error
rates. At the NIC level, the VI Architecture provides
three levels of reliability: Unreliable Delivery, Reliable
Delivery, and Reliable Reception. Only VIs with the
same reliablility level can be connected. In the experi-
ments, the level of reliability used in each VI was Reli-
able Delivery. According to [18], this level of reliability
guarantees that all data submitted to a reliable delivery
VI will arrive at its destination exactly once, intact, and
in the order submitted, in the absence of errors. For this
level of service, transport errors are considered cata-
strophic and should be extremely rare. Due to this level
of service used along with low error rates on high-speed
networks, error recovery in form of application speci-
fied timeouts was incorporated in custom marshaled
proxies and stubs.

Figures 6 and 7 compare one-way COM remote
method invocation latencies (averaged over 1000 runs)
between the standard and the specialized components
across Ethernet and Myrinet interconnects respectively.
Since the VI functionality was emulated either in host
driver or in NIC firmware, the performance measure-
ments are conservative.

From Figures 6 and 7, it is clear that VI-based
communication in DCOM substantially reduces the per-
formance bottleneck due to the use of legacy protocol
stack. In the case of Ethernet, one-way latency was re-
duced by more than 150 microseconds (30% - 60 %) by
using VI-based communication in DCOM. Due to un-
availability of the standard WindowsTM NT NDIS driver
on Myrinet, UDP-based measurements were not ob-
tained. Interestingly, Figure 7 indicates that on Myrinet
the performance of DCOM over VI is better than that of
COM over local RPC for small messages (≤ 2 KB). The
VI-emulation in Ethernet driver is useful for proof-of-
concept validation, but it achieves only limited per-
formance. Even though the VI-emulation on Myrinet
NIC performs better, the slow (33MHZ) on-board con-
troller (MCP) limits the overall gain.

One-way Latency for Ethernet

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350

Message size (in number of unsigned integers)

L
at

en
cy

 (
in

 m
ic

ro
se

co
n

d
s)

Software Emulated VI NIC

UDP

RPC Over UDP

DCOM over RPC

DCOM over Software Emulated VI NIC

Figure 6: DCOM over VI on Ethernet (Polling
Model)

One-Way Latency for Myrinet

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Message Size (in number of unsigned integers)

L
at

en
cy

 (
in

 m
ic

ro
se

co
n

d
s)

VI Emulated on NIC

DCOM over VI Emulated on NIC

COM over Local RPC

Figure 7: DCOM over VI on Myrinet (Polling
Model)

 Figures 8 and 9 show the results of similar experi-
ments over the GigaNet cLANTM GNN1000 native VI
NICs using blocking and polling synchronization mod-

els respectively. The results obtained over GigaNet VI
NICs confirm that availability of core VI functionality
in special purpose hardware on network adapters can
significantly improve communication performance.
Figures 8 and 9 also demonstrate that the specialization
methodology developed in this paper can deliver the
raw performance offered by these high-speed intercon-
nects to higher level COM applications.

Figure 8: DCOM over VI on GigaNet (Blocking
Model)

Figure 9: DCOM over VI on GigaNet (Polling
Model)

The NDR processing continues to be a significant
part of the remaining COM remote method invocation
overhead (this was verified by using Intel VTune per-
formance monitoring tool) and is a good candidate for
further optimization using other specialization tech-
niques like partial evaluation as proposed by Muller et.
al. [15]. Figures 8 and 9 also indicate that the DCOM
performance over GigaNet VI NICs is better than the
performance of COM over local RPC for small mes-
sages (≤ 5 KB for blocking model and ≤ 8 KB for poll-
ing model).

For both GigaNet and Myrinet, DCOM over VI
outperformed COM over local RPC for small messages.

In case of COM over local RPC, communication be-
tween proxy and stub involves overheads of context
switching and synchronization. On the other hand, since
proxy and stub reside on different nodes in DCOM, the
cost of context switching between proxy and stub is
eliminated. The advantage of VI Architecture here is
that the VI NIC performs the tasks of multiplexing, de-
multiplexing, and data transfer scheduling normally
being performed by an OS kernel and device driver in
legacy transports. Thus, OS overheads are significantly
reduced in case of DCOM over VI. This suggests that
for small messages, with high-speed interconnects and
low overhead user-level networking architecture like VI
Architecture, the cost of moving data between two pro-
cesses residing on different nodes can be less than the
cost of moving data between two local processes resid-
ing on the same node.

6. Related Work
Application level optimizations such as application

level framing and integrated layer processing are used
by Schmidt et. al. [12] to reduce CORBA latency.
COMERA [19] proposes an extensible COM remoting
architecture for transparent fault tolerance, migration,
and replication properties. Quarterware kit [17] enables
building middleware implementations that can be cus-
tomized for performance and additional features. Muller
et. al. [15] showed how specialization techniques like
partial evaluation can be applied to improve RPC per-
formance. All of the above approaches use application
level optimizations but do not address utilizing user-
level networking architectures to improve performance.
Damianakis et. al. [6] pointed out that performance of
higher level programming models such as stream sock-
ets and remote procedure calls can be improved by us-
ing a user-level networking architecture. This paper
adds on to their findings by improving object middle-
ware performance using VI Architecture.

7. Future Work and Conclusion
Object specialization through custom object mar-

shaling requires modifications to the object implemen-
tation, even though this can be fully automated. By
adding a new protocol sequence for VI Architecture in
addition to current suite of RPC protocols
(ncadg_ip_udp, ncacn_ip_tcp, etc.) complete client and
object transparency can be achieved. We are currently
investigating this approach.

In this paper, custom marshaling based object spe-
cialization methodology was developed to integrate
high-performance user-level networking architectures
into distributed component object model (DCOM). The
experimental results confirm that high-performance
provided by VI Architecture can be delivered to high

One-way Latency for Giganet - Polling Model

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Message Size (in number of unsigned integers)

L
at

en
cy

 (
in

 m
ic

ro
se

co
n

d
s)

COM over Local RPC

DCOM over Native VI NIC

VI Native on NIC

One-way Latency for Giganet - Blocking Model

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Message Size (in number of unsigned integers)

L
at

en
cy

 (
in

 m
ic

ro
se

co
n

d
s)

COM over Local RPC

VI Native on NIC

DCOM over Native VI NIC

level COM applications using this specialization meth-
odology. Standard high volume servers (SHVs), com-
modity high-speed interconnects, and standard based
user-level networking architectures like VI Architecture
can open new horizons to off-the-shelf distributed ap-
plications by providing high performance at low cost.

Acknowledgements
We would like to acknowledge David Fair,

Roy Larsen, Wire Moore, Greg Regnier, and Mitch
Shults of Intel Corporation for their many useful sug-
gestions and reviews.

References
1. Andrew Birrell, Greg Nelson, Susan Owicki, and

Edward Wobber, Network Objects, DEC SRC Re-
search Report 115.

2. M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E.
Felten, and J. Sandberg, “ A Virtual Memory
Mapped Network Interface for the Shrimp Multi-
computer”, Proc. of the 21st Annual Symposium on
Computer Architecture, 1994, pp. 142-153.

3. N. J. Boden, D. Cohen, R. Felderman, A. Kulawik,
C. Seitz, J. Seizovic, and Wen-King Su, "Myrinet:
A Gigabit-per-Second Local-Area Network", IEEE
MICRO, Vol. 15, No. 1, February 1995, pp. 29-36,
http://www.myri.com/research/publications/Hot.ps

4. P. E. Chung, Y. Huang, S. Yajnik, D. Liang, J.
Shih, C.-Y. Wang, and Y.-M. Wang, “DCOM and
CORBA Side by Side, Step by Step, and Layer by
Layer”, C++ Report, January 1998.

5. Component Object Model Specification, Microsoft
Corporation, 1995. http://www.microsoft.com/com

6. Stefanos Damianakis, Angelos Bilas, Cezary Dub-
nicki, and Edward W. Felten, “Client Server Com-
puting on SHRIMP”, IEEE MICRO, Janu-
ary/February 1997, Vol. 17, No. 1.

7. DCOM Architecture, Microsoft Corporation, 1997.

8. Dave Dunning, Greg Regnier, Gary McAlpine, Don
Cameron, Bill Shubert, Frank Berry, Anne Marie
Merritt, Ed Gronke, Ellen Deleganes, David Fair,
Chris Dodd, and Justin Rattner, “The Virtual Inter-
face Architecture: A Protected, Zero Copy, User-
level Interface to Networks”, IEEE MICRO,
March/April 1998, Vol. 18, No. 2, pp. 66-76.

9. Guy Eddon and Henry Eddon, “Understanding the
DCOM Wire Protocol by Analyzing Network Data

Packets”, Microsoft Systems Journal, March 1998,
pp. 45-63.

10. Thorsten von Eicken, Anindya Basu, Vineet Buch,
and Werner Vogels, “U-Net: A User-Level Net-
work Interface for Parallel and Distributed Com-
puting”, Proc. of the 15th ACM Symposium on Op-
erating System Principles, 1995, pp. 40-53.

11. GigaNet Incorporated, GigaNet cLAN Product
Family, http://www.giga-net.com/products

12. Aniruddha S. Gokhale and Douglas C. Schmidt,
“Principles for Optimizing CORBA Internet Inter-
ORB Protocol Performance”, Proc. of Hawaii In-
ternational Conference on System Sciences
(HICSS), January 1998.

13. Java Remote Method Invocation – Distributed
Computing for JAVA,
http://java.sun.com/marketing/collateral/javarmi.ht
ml

14. Mary Kirtland, “The COM+ Programming Model
Makes it Easy to Write Components in Any Lan-
guage”, Microsoft System Journal, December 1997.

15. Gilles Muller, Renaud Marlet, Eugen-Nicolae Vo-
lanschi, Charles Consel, Calton Pu and Ashvin
Goel, “Fast, Optimized Sun RPC Using Automatic
Program Specialization”, Proc. of the International
Conference on Distributed Computing Systems
(ICDCS-18), May 1998.

16. Object Management Group, The Common Object
Request Broker: Architecture and Specification, 2.0
edition, July 1995.

17. Ashish Singhai, Aamod Sane, and Roy H. Camp-
bell, “Quarterware for Middleware”, Proc. of the
International Conference on Distributed Comput-
ing Systems (ICDCS-18), May 1998.

18. Virtual Interface Architecture Specification, Ver-
sion 1.0, December 1997. http://www.viarch.org/

19. Yi-Min Wang and Woei-Jyh Lee, “COMERA:
COM Extensible Remoting Architecture”, Proc. of
4th USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS), April 1998.
http://www.research.att.com/~ymwang/papers/HT
ML/COMERA/S.html

Figure 10: A Snapshot of "Custom Marshaling Wizard"

