
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Cygwin32: A Free Win32 Porting Layer for UNIX Applications

Geoffrey J. Noer
Cygnus Solutions

Cygwin32: A Free Win32 Porting Layer for UNIX® Applications

Geoffrey J. Noer
noer@cygnus.com

Cygnus Solutions
1325 Chesapeake Terrace

Sunnyvale, CA 94089

Abstract

Cygwin32 is a full-featured Win32 porting layer for
UNIX applications, compatible with all Win32 hosts
(currently Microsoft Windows NT, Windows 95, and
Windows 98). It was invented in 1995 by Cygnus
Solutions as part of the answer to the question of how
to port the GNU development tools to the Win32 host.

The Win32-hosted GNUPro compiler tools that use the
library are available for a variety of embedded proces-
sors as well as a native version for writing Win32 pro-
grams. By basing this technology on the GNU tools,
Cygnus provides developers with a high-performance,
feature-rich 32-bit code development environment, in-
cluding a graphical source-level debugger.

Cygwin32 is a Dynamic-Linked Library (DLL) that
provides a large subset of the system calls found in
common UNIX implementations. The current release
includes all POSIX.1/90 calls except for setuid and
mkfifo , all ANSI C standard calls, and many common
BSD and SVR4 services including Berkeley sockets.

This article will discuss our experiences porting the
GNU development tools to the Win32 host and explore
the development and architecture of the Cygwin32
library.

1. Introduction

Cygnus Solutions was founded in 1989 to provide
commercial support and development services for the
GNU development tools, focusing on the embedded
computing industry. The tools include the GNU C/C++
compiler (GCC/G++), assembler (GAS), linker (GLD),
and debugger (GDB). As of June 1998, Cygnus sells
support for over 150 host/target combinations.

When the Free Software Foundation (FSF) first wrote
the GNU tools in the mid-1980s, portability among
existing and future UNIX operating systems was an
important goal. By mid-1995, the tools had been ported
to 16-bit DOS using the go32 32-bit extender by D.J.
Delorie1. However, no one had completed a native 32-
bit port for Windows NT and 95/98. It seemed likely
that the demand for Win32-hosted native and cross-
development tools would soon be large enough to jus-
tify the development costs involved.

2. Porting the GNU Compiler to Win32

The first step in porting the compiler tools to Win32
was to enhance them so that they could generate and
interpret Win32 native object files, using Microsoft’s
Portable Executable (PE) format. This proved to be
relatively straightforward because of similarities to the
Common Object File Format (COFF), which the GNU
tools already supported. Most of these changes were
confined to the Binary File Descriptor (BFD) library
and to the linker.

In order to support the Win32 Application Program-
ming Interface (API), we extended the capabilities of
the binary utilities to handle Dynamic-Linked Libraries
(DLLs). After creating export lists for the specific
Win32 API DLLs that are shipped with Win32 hosts,
the tools were able to generate static libraries that ex-
ecutables could use to gain access to Win32 API func-
tions. Because of redistribution restrictions on Micro-
soft’s Win32 API header files, we wrote our own
Win32 header files from scratch on an as-needed basis.
Once this work was completed, we were able to build
UNIX-hosted cross-compilers capable of generating
valid PE executables that ran on Win32 systems.

The next task was to port the compiler tools themselves
to Win32. Previous experiences using Microsoft Visual
C++ to port GDB convinced us to find another means
for bootstrapping the full set of tools. In addition to

wanting to use our own compiler technology, we
wanted a portable build system. The GNU develop-
ment tools’ configuration and build procedures require
a large number of additional UNIX utilities not avail-
able on Win32 hosts. So we decided to use UNIX-
hosted cross-compilers to build our Win32-hosted
native and cross-development tools. It made perfect
sense to do this since we were successfully using a
nearly identical technique to build our DOS-hosted
products.

The next obstacle to overcome was the many depend-
encies on UNIX system calls in the sources, especially
in the GNU debugger GDB. While we could have re-
written sizable portions of the source code to work
within the context of the Win32 API (as was done for
the DOS-hosted tools), this would have been prohibi-
tively time-consuming. Worse, we would have intro-
duced conditionalized code that would have been ex-
pensive to maintain in the long run. Instead, Cygnus
developers took a substantially different approach by
writing Cygwin32.

3. Initial Goals

The original goal of Cygwin32 was simply to get the
development tools working. Completeness with respect
to POSIX.12 and other relevant UNIX standards was
not a priority.

Part of our definition of “working native tools” is hav-
ing a build environment similar enough to UNIX to
support rebuilding the tools themselves on the host
system, a process we call self-hosting. The typical con-
figuration procedure for a GNU tool involves running
“configure”, a complex Bourne shell script that deter-
mines information about the host system. The script
then uses that information to generate the Makefiles
used to build the tool on the host in question.

This configuration mechanism is needed under UNIX
because of the large number of varying flavors of
UNIX. If Microsoft continues to produce new variants
of the Win32 API as it releases new versions of its
operating systems, it may prove to be quite valuable on
the Win32 host as well.

The need to support this configuration procedure added
the requirement of supporting user tools such as sh,
make, file utilities (e.g. ls and rm), text utilities (e.g.
cat, tr), shell utilities (e.g. echo, date, uname), sed, awk,
find, xargs, tar, and gzip, among many others. Previ-
ously, most of these user tools had only been built
natively (on the host on which they would run). As a

result, we had to modify their configure scripts to be
compatible with cross-compilation.

Other than making the necessary configuration changes,
we wanted to avoid Win32-specific changes since the
UNIX compatibility was to be provided by Cygwin32
as much as possible. While we knew this would be a
sizable amount of work, there was more to gain than
just achieving self-hosting of the tools. Supporting the
configuration of the development tools would also pro-
vide an excellent method of testing the Cygwin32
library.

Although we were able to build working Win32-hosted
toolchains with cross-compilers relatively soon after the
birth of Cygwin32, it took much longer than we ex-
pected before the tools could reliably rebuild them-
selves on the Win32 host because of the many
complexities involved.

4. “Harnessing the Power of the Internet”

Instead of keeping the Cygwin32 technology proprie-
tary and developing it in-house, Cygnus chose to make
it publicly available under the terms of the GNU Gen-
eral Public License (GPL), the traditional license for the
GNU tools. Since its inception, we have made a new
“GNU-Win32 beta release” available via ftp over the
Internet every three or four months. Each release in-
cludes binaries of Cygwin32 and the development tools,
coupled with the source code needed to build them.
Unlike standard Cygnus products, these free releases
come without any assurances of quality or support, al-
though we provide a mailing list that is used for discus-
sion and feedback.

In retrospect, making the technology freely available
was a good decision because of the high demand for
quality 32-bit native tools in the Win32 arena, as well
as significant additional interest in a UNIX portability
layer like Cygwin32. While far from perfect, the beta
releases are good enough for many people. They pro-
vide us with tens of thousands of interested developers
who are willing to use and test the tools. A few of them
are even willing to contribute code fixes and new func-
tionality to the library. As of the last public release,
developers on the Net had written or improved a sig-
nificant portion of the library, including important
aspects such as support for UNIX signals and the
TTY/PTY calls.

In order to spur as much Net participation as possible,
the Cygwin32 project features an open development
model. We make weekly source snapshots available to
the general public in addition to the periodic full GNU-

Win32 releases. A developers’ mailing list facilitates
discussion of proposed changes to the library.

In addition to the GPL version of Cygwin32, Cygnus
provides a commercial license for supported customers
of the native Win32 GNUPro tools.

5. The Cygwin32 Architecture

Now we turn to an analysis of the actual architecture of
the Cygwin32 library.

When a binary linked against the library is executed,
the Cygwin32 DLL is loaded into the application’s text
segment. Because we are trying to emulate a UNIX
kernel which needs access to all processes running
under it, the first Cygwin32 DLL to run creates shared
memory areas that other processes using separate
instances of the DLL can access. This is used to keep
track of open file descriptors and assist fork and
exec , among other purposes. In addition to the shared
memory regions, every process also has a
per_process structure that contains information
such as process id, user id, signal masks, and other
similar process-specific information.

The DLL is implemented using the Win32 API, which
allows it to run on all Win32 hosts. Because processes
run under the standard Win32 subsystem, they can
access both the UNIX compatibility calls provided by
Cygwin32 as well as any of the Win32 API calls. This
gives the programmer complete flexibility in designing
the structure of their program in terms of the APIs used.
For example, they could write a Win32-specific GUI
using Win32 API calls on top of a UNIX back-end that
uses Cygwin32.

Early on in the development process, we made the
important design decision that it would not be necessary
to strictly adhere to existing UNIX standards like
POSIX.1 if it was not possible or if it would signifi-
cantly diminish the usability of the tools on the Win32
platform. In many cases, an environment variable can
be set to override the default behavior and force
standards compliance.

5.1. Windows NT != Windows 95/98

While Windows 95 and Windows 98 are similar enough
to each other that we can safely ignore the distinction
when implementing Cygwin32, Windows NT is an
extremely different operating system. For this reason,
whenever the DLL is loaded, the library checks which
operating system is active so that it can act accordingly.

In some cases, the Win32 API is only different for his-
torical reasons. In this situation, the same basic func-
tionality is available under 95/98 and NT but the
method used to gain this functionality differs. A trivial
example: in our implementation of uname, the library
examines the sysinfo.dwProcessorType struc-
ture member to figure out the processor type under
95/98. This field is not supported in NT, which has its
own operating system-specific structure member called
sysinfo.wProcessorLevel .

Other differences between NT and 95/98 are much
more fundamental in nature. The best example is that
only NT provides a security model.

5.2. Permissions and Security

Windows NT includes a sophisticated security model
based on Access Control Lists (ACLs). Although some
modern UNIX operating systems include support for
ACLs, Cygwin32 maps Win32 file ownership and per-
missions to the more standard, older UNIX model. The
chmod call maps UNIX-style permissions back to the
Win32 equivalents. Because many programs expect to
be able to find the /etc/passwd and /etc/group
files, we provide utilities that can be used to construct
them from the user and group information provided by
the operating system.

Under Windows NT, the administrator is permitted to
chown files. There is currently no mechanism to
support the setuid concept or API call. Although we
hope to support this functionality at some point in the
future, in practice, the programs we have ported have
not needed it.

Under Windows 95/98, the situation is considerably
different. Since a security model is not provided,
Cygwin32 fakes file ownership by making all files look
like they are owned by a default user and group id. As
under NT, file permissions can still be determined by
examining their read/write/execute status. Rather than
return an unimplemented error, under Windows 95/98,
the chown call succeeds immediately without actually
performing any action whatsoever. This is appropriate
since essentially all users jointly own the files when no
concept of file ownership exists.

It is important that we discuss the implications of our
“kernel” using shared memory areas to store informa-
tion about Cygwin32 processes. Because these areas
are not yet protected in any way, in principle a mali-
cious user could modify them to cause unexpected
behavior in Cygwin32 processes. While this is not a
new problem under Windows 95/98 (because of the

lack of operating system security), it does constitute a
security hole under Windows NT. This is because one
user could affect the Cygwin32 programs run by
another user by changing the shared memory informa-
tion in ways that they could not in a more typical
WinNT program. For this reason, it is not appropriate
to use Cygwin32 in high-security applications. In
practice, this will not be a major problem for most uses
of the library.

5.3. Files

Cygwin32 supports both Win32- and POSIX-style
paths, using either forward or back slashes as the
directory delimiter. Paths coming into the DLL are
translated from Win32 to POSIX as needed. As a
result, the library believes that the file system is a
POSIX-compliant one, translating paths back to Win32
paths whenever it calls a Win32 API function. UNC
pathnames (starting with two slashes) are supported.

The layout of this POSIX view of the Windows file
system space is stored in the Windows registry. While
the slash (‘/’) directory points to the system partition by
default, this is easy to change with the Cygwin32
mount utility. In addition to selecting the slash parti-
tion, it allows mounting arbitrary Win32 paths into the
POSIX file system space. Many people use the utility
to mount each drive letter under the slash partition (e.g.
C:\ to /c , D:\ to /d , etc…).

The library exports several Cygwin32-specific func-
tions that can be used by external programs to convert a
path or path list from Win32 to POSIX or vice versa.
Shell scripts and Makefiles cannot call these functions
directly. Instead, they can do the same path translations
by executing the “cygpath” utility program that we pro-
vide with Cygwin32.

Win32 file systems are case preserving but case insen-
sitive. Cygwin32 does not currently support case dis-
tinction because, in practice, few UNIX programs
actually rely on it. While we could mangle file names
to support case distinction, this would add unnecessary
overhead to the library and make it more difficult for
non-Cygwin32 applications to access those files.

Symbolic links are emulated by files containing a magic
cookie followed by the path to which the link points.
They are marked with the System attribute so that only
files with that attribute have to be read to determine
whether or not the file is a symbolic link. Hard links
are fully supported under Windows NT on NTFS file
systems. On a FAT file system, the call falls back to

simply copying the file, a strategy that works in many
cases.

The inode number for a file is calculated by hashing its
full Win32 path. The inode number generated by the
stat call always matches the one returned in d_ino
of the dirent structure. It is worth noting that the
number produced by this method is not guaranteed to
be unique. However, we have not found this to be a
significant problem because of the low probability of
generating a duplicate inode number.

5.4. Text Mode vs. Binary Mode

Interoperability with other Win32 programs such as text
editors was critical to the success of the port of the
development tools. Most Cygnus customers upgrading
from the older DOS-hosted toolchains expected the new
Win32-hosted ones to continue to work with their old
development sources.

Unfortunately, UNIX and Win32 use different end-of-
line terminators in text files. Consequently, carriage-
return newlines have to be translated on the fly by
Cygwin32 into a single newline when reading in text
mode. The control-z character is interpreted as a valid
end-of-file character for a similar reason.

This solution addresses the compatibility requirement at
the expense of violating the POSIX standard that states
that text and binary mode will be identical. Conse-
quently, processes that attempt to lseek through text
files can no longer rely on the number of bytes read as
an accurate indicator of position in the file. For this
reason, an environment variable can be set to override
this behavior.

5.5. ANSI C Library

We chose to include Cygnus’ own existing ANSI C3

library “newlib” as part of the library, rather than write
all of the lib C and math calls from scratch. Newlib is a
BSD-derived ANSI C library, previously only used by
cross-compilers for embedded systems development.

The reuse of existing free implementations of such
things as the glob , regexp , and getopt libraries
saved us considerable effort. In addition, Cygwin32
uses Doug Lea’s free malloc implementation that
successfully balances speed and compactness. The
library accesses the malloc calls via an exported
function pointer. This makes it possible for a
Cygwin32 process to provide its own malloc if it so
desires.

5.6. Process Creation

The fork call in Cygwin32 is particularly interesting
because it does not map well on top of the Win32 API.
This makes it very difficult to implement correctly.
Currently, the Cygwin32 fork is a non-copy-on-write
implementation similar to what was present in early
flavors of UNIX.

The first thing that happens when a parent process forks
a child process is that the parent initializes a space in
the Cygwin32 process table for the child. It then
creates a suspended child process using the Win32
CreateProcess call. Next, the parent process calls
setjmp to save its own context and sets a pointer to
this in a Cygwin32 shared memory area (shared among
all Cygwin32 tasks). It then fills in the child’s .data
and .bss sections by copying from its own address
space into the suspended child's address space. After
the child’s address space is initialized, the child is run
while the parent waits on a mutex. The child discovers
it has been forked and longjumps using the saved jump
buffer. The child then sets the mutex the parent is
waiting on and blocks on another mutex. This is the
signal for the parent to copy its stack and heap into the
child, after which it releases the mutex the child is
waiting on and returns from the fork call. Finally, the
child wakes from blocking on the last mutex, recreates
any memory-mapped areas passed to it via the shared
area, and returns from fork itself.

While we have some ideas as to how to speed up our
fork implementation by reducing the number of con-
text switches between the parent and child process,
fork will almost certainly always be inefficient under
Win32. Fortunately, in most circumstances the spawn
family of calls provided by Cygwin32 can be substi-
tuted for a fork /exec pair with only a little effort.
These calls map cleanly on top of the Win32 API. As a
result, they are much more efficient. Changing the
compiler’s driver program to call spawn instead of
fork was a trivial change and increased compilation
speeds by twenty to thirty percent in our tests.

However, spawn and exec present their own set of
difficulties. Because there is no way to do an actual
exec under Win32, Cygwin32 has to invent its own
Process IDs (PIDs). As a result, when a process per-
forms multiple exec calls, there will be multiple
Windows PIDs associated with a single Cygwin32 PID.
In some cases, stubs of each of these Win32 processes
may linger, waiting for their exec’ d Cygwin32
process to exit.

5.7. Signals

When a Cygwin32 process starts, the library starts a
secondary thread for use in signal handling. This thread
waits for Windows events used to pass signals to the
process. When a process notices it has a signal, it scans
its signal bitmask and handles the signal in the appro-
priate fashion.

Several complications in the implementation arise from
the fact that the signal handler operates in the same
address space as the executing program. The im-
mediate consequence is that Cygwin32 system func-
tions are interruptible unless special care is taken to
avoid this. We go to some lengths to prevent the
sig_send function that sends signals from being in-
terrupted. In the case of a process sending a signal to
another process, we place a mutex around sig_send
such that sig_send will not be interrupted until it has
completely finished sending the signal.

In the case of a process sending itself a signal, we use a
separate semaphore/event pair instead of the mutex.
sig_send starts by resetting the event and incre-
menting the semaphore that flags the signal handler to
process the signal. After the signal is processed, the
signal handler signals the event that it is done. This
process keeps intraprocess signals synchronous, as re-
quired by POSIX.

Most standard UNIX signals are provided. Job control
works as expected in shells that support it.

5.8. Sockets

Socket-related calls in Cygwin32 simply call the func-
tions by the same name in Winsock, Microsoft’s im-
plementation of Berkeley sockets. Only a few changes
were needed to match the expected UNIX semantics —
one of the most troublesome differences was that
Winsock must be initialized before the first socket
function is called. As a result, Cygwin32 has to
perform this initialization when appropriate. In order to
support sockets across fork calls, child processes ini-
tialize Winsock if any inherited file descriptor is a
socket.

Unfortunately, implicitly loading DLLs at process
startup is usually a slow affair. Because many
processes do not use sockets, Cygwin32 explicitly loads
the Winsock DLL the first time it calls the Winsock
initialization routine. This single change sped up GNU
configure times by thirty percent.

5.9. Select

The UNIX select function is another call that does
not map cleanly on top of the Win32 API. Much to our
dismay, we discovered that the Win32 select in
Winsock only worked on socket handles. Our imple-
mentation allows select to function normally when
given different types of file descriptors (sockets, pipes,
handles, and a custom /dev/windows windows
messages pseudo-device).

Upon entry into the select function, the first opera-
tion is to sort the file descriptors into the different
types. There are then two cases to consider. The sim-
ple case is when at least one file descriptor is a type that
is always known to be ready (such as a disk file). In
that case, select returns immediately as soon as it
has polled each of the other types to see if they are
ready. The more complex case involves waiting for
socket or pipe file descriptors to be ready. This is
accomplished by the main thread suspending itself,
after starting one thread for each type of file descriptor
present. Each thread polls the file descriptors of its
respective type with the appropriate Win32 API call.
As soon as a thread identifies a ready descriptor, that
thread signals the main thread to wake up. This case is
now the same as the first one since we know at least
one descriptor is ready. So select returns, after
polling all of the file descriptors one last time.

6. Performance

Early on in the development process, correctness was
almost the entire emphasis. As Cygwin32 became
more complete, performance became a much important
issue. We knew that the tools ran much more slowly
under Win32 than under Linux on the same machine,
but it was not clear at all whether to attribute this to
differences in the operating systems or to inefficiencies
in Cygwin32.

The lack of a working profiler has made analyzing
Cygwin32’s performance particularly difficult. Al-
though the latest version of the library includes “real”
itimer support, we have not yet found a way to imple-
ment virtual itimers. This is the most reliable way of
obtaining profiling data since concurrently running pro-
cesses aren’t likely to skew the results. We will soon
have a combination of the gcc compiler and the GNU
profile analysis tool gprof working with “real” itimer
support which will help a great deal in optimizing
Cygwin32.

Even without a profiler, we knew of several areas inside
Cygwin32 that definitely needed a fresh approach.

While we rewrote those sections of code, we used the
speed of configuring the tools under Win32 as the pri-
mary performance measurement. This choice made
sense because we knew process creation speed was es-
pecially poor, something that the GNU configure
process stresses.

These performance adjustments made it possible to
completely configure the development tools under NT
with Cygwin32 in only ten minutes and complete the
build in just under an hour on a dual Pentium Pro 200
system with 128 MB of RAM. This is reasonably com-
petitive with the time taken to complete this task under
a typical flavor of the UNIX operating system running
on an identical machine.

7. Ported Software

In addition to being able to configure and build most
GNU software, several other significant packages have
been successfully ported to the Win32 host using the
Cygwin32 library. Following is a list of some of the
more interesting ones (most are not included in the free
Internet distributions):

• X11R6 client libraries, enabling porting many X
programs to the existing free Win32 X servers.
Examples of successfully ported X applications
include xterm, ghostview, xfig, and xconq.

• xemacs and vim editors.

• GNU inetutils. It is possible to run the inetd
daemon as a Windows NT service to enable UNIX-
style networking, using a custom NT login binary
to allow remote logins with full user authentica-
tion. One can achieve similar results under
Windows 95/98 by running inetd out of the
autoexec.bat file, providing a custom 95/98-
tailored login binary.

• KerbNet, Cygnus’ implementation of the kerberos
security system.

• CVS (Concurrent Versions System), a popular
version control program based on RCS. Cygnus
uses a kerberos-enabled version of CVS to grant
secure access to our source code to local and
remote engineers.

• ncurses, a library that can be used to build a
functioning version of the pager “less”.

• ssh (secure shell) client and server.

• PERL 5 scripting language.

• The bash, tcsh, ash, and zsh shells. Full job control
is available in shells that support it.

• Apache web server (some source-level changes
were necessary).

• TCL/TK 8; also tix, itcl, and expect. (TCL/TK
needed non-trivial configuration changes).

Typically, the only necessary source code modification
involves specifying binary mode to open calls as
appropriate. Because our Win32 compiler always gen-
erates executables that end in the standard .exe suffix,
it is also often necessary to make minor modifications
to makefiles so that make will expect the newly built
executables to end with the suffix.

8. Future Work

Standards conformance is becoming a more important
focus. In the last release, all POSIX.1/90 calls are im-
plemented except for mkfifo and setuid . X/Open
Release 44 conformance may be a desirable goal, but
we have not pursued this yet. While the current version
of the library passes most of the NIST POSIX test
suite5 with flying colors, it performs poorly with respect
to mimicking the UNIX security model, so there is still
room for improvement. When we consider how to im-
plement the setuid functionality, we will also look
into a secure alternative to the library’s usage of the
shared memory areas.

Cygwin32 does not yet support applications that use
multiple Windows threads, even though the library
itself is multi-threaded. We expect to address this
shortcoming through the use of locks at strategic points
in the DLL. It would also be desirable to implement
support for POSIX threads.

Although Cygwin32 allows the GNU development
tools that depend heavily on UNIX semantics to suc-
cessfully run on Win32 hosts, it is not always desirable
to use it. A program using a perfect implementation of
the library would still incur a noticeable amount of
overhead. As a result, an important future direction
involves modifying the compiler so that it can
optionally link against the Microsoft DLLs that ship
with both Win32 operating systems, instead of
Cygwin32. This will give developers the ability to
choose whether or not to use Cygwin32 on a per-
program basis.

9. Proprietary Alternatives

When we started developing Cygwin32, alternatives to
writing our own library either did not exist or were not
mature enough for our purposes. Today, we know of
three proprietary alternatives to Cygwin32: UWIN from
AT&T Laboratories, NuTCracker from DataFocus, and
OpenNT from Softway Systems.

UWIN6 (“UNIX for Windows”) was developed by
David Korn for AT&T Laboratories. Its architecture
and API appears to be quite similar to our library. Its
single biggest advantage over Cygwin32 is probably its
more complete support for the UNIX security model.
UWIN binaries are available for free non-commercial
use, but its source code is not available.

NuTCracker, by DataFocus, is another proprietary
product that is built on top of the Win32 subsystem.
Version 4.0 of the product appears to be quite complete,
including such features as support for POSIX threads.

OpenNT from Softway Systems7 takes a markedly dif-
ferent approach by providing a capable POSIX sub-
system for Windows NT, implemented with the
Windows NT source code close at hand. At least in
principle, writing a separate POSIX subsystem should
result in better performance because of the lack of
overhead imposed when implementing a library on top
of the Win32 subsystem. More importantly, by avoid-
ing the compromises inherent in supporting both Win32
and POSIX calls in one application, it should be possi-
ble for OpenNT to conform more strictly to the relevant
standards.

However, there are two substantial drawbacks to
OpenNT’s approach. The first is that it is not possible
to mix UNIX and Win32 API calls in one application, a
feature that is highly desirable if you are attempting to
do a full native Win32 port of a UNIX program gradu-
ally, one module at a time. The second drawback is
that OpenNT does not and cannot support Windows
95/98, a requirement for many applications, including
the GNUPro development tools.

The lack of source code, coupled with the licensing fees
associated with each of these commercial offerings,
might still have required us to have written our own
library if we were faced with the same porting chal-
lenge today.

10. Summary and Conclusions

Cygwin32 is a UNIX-compatibility library that can be
used to port UNIX software to Win32 operating sys-

tems. In this paper, I have examined our motivations
for writing Cygwin32. I have analyzed its architecture
in some detail, paying extra attention to those areas
where UNIX and Win32 differ the most. I have listed
examples of successfully ported software and touched
on performance issues. I have discussed where we
expect to take Cygwin32 in the future. Finally, I have
described the proprietary alternatives to our library.

As you can see from the list of ported software pre-
sented earlier in this paper, Cygwin32 can be used to
facilitate greatly the process of porting significant
UNIX applications to Win32 hosts. For some applica-
tions, it may be desirable to invest in a true native
Win32 port in order to remove the overhead imposed
by Cygwin32. However, the increased portability and
time saved by using Cygwin32 should make it an
attractive option in many situations.

11. Availability

Please consult our project WWW page to obtain more
information about Cygwin32, including how to down-
load the latest source code and binary release:

http://www.cygnus.com/misc/gnu-win32

For more information about the GNUPro development
tools, please visit:

http://www.cygnus.com/product/gnupro.html

12. Acknowledgements

The author wishes to thank the many other people who
have helped write Cygwin32, in particular Steve
Chamberlain who wrote the original implementation of
the library. Jeremy Allison, Doug Evans, Christopher
Faylor, Philippe Giacinti, Tim Newsham, Sergey
Okhapkin, and Ian Taylor have all made significant
contributions to the library. The author also appreciates
the feedback and proofreading help given to him by
Eric Bachalo, Chip Chapin, Christopher Faylor,
Kathleen Jones, Robert Richardson, Stan Shebs, Sonya
Smallets, and Ethan Solomita, as well as from Stephan
Walli, his USENIX paper advisor.

13. Trademarks

GNUPro is a registered trademark of Cygnus Solutions.
Windows NT, Windows 95, Windows 98, Win32,
Windows, and Visual C++ are either registered
trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. UNIX is a
trademark of the Open Group. OpenNT is a trademark

of Softway Systems. All other trademarks belong to
their respective holders.

1 D.J. Delorie: The DJGPP Project. Available from
http://www.delorie.com/djgpp.
2 ISO/IEC 9945-1:1996. (ANSI/IEEE Std 1003.1, 1996
Edition) — POSIX Part 1: System Application Program
Interface (API) [C Language].
3 ISO/IEC 9899:1990, Programming Languages — C.
4 The X/Open Release 4 CAE Specification, System
Interfaces and Headers, Issue 4, Vol. 2, X/Open Co,
Ltd., 1994.
5 NIST POSIX test suite. Available from
http://www.itl.nist.gov/div897/ctg/posix_form.htm.
6 Korn, David G. UWIN — UNIX for Windows.
Proceedings of the 1997 USENIX Windows NT Annual
Technical Conference.
7 Walli, Stephen R. OpenNT: UNIX Application
Portability to Windows NT via an Alternative
Environment Subsystem. Proceedings of the 1997
USENIX Windows NT Workshop Proceedings.

