
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Win32 API Emulation on UNIX for Software DSM

Sven M. Paas, Thomas Bemmerl, Karsten Scholtyssik
RWTH Aachen, Lehrstuhl für Betriebssysteme

Win32 API Emulation on UNIX for Software DSM

Sven M. Paas, Thomas Bemmerl, Karsten Scholtyssik
RWTH Aachen, Lehrstuhl für Betriebssysteme
Kopernikusstr. 16, D-52056 Aachen, Germany

e-mail:contact@lfbs.rwth-aachen.de

Abstract. This paper presents a new Win32 API emula-
tion layer called nt2unix. It supports source code com-
patible Win32 console applications on UNIX. We focus
on the emulation of specific Win32 features used for sys-
tems programming like exception handling, virtual mem-
ory management, Windows NT multithreading /
synchronization and the WinSock API for networking. As
a case study, we ported the all-software distributed
shared memory (DSM) system SVMlib - consisting of
about 15.000 lines of C++ code written natively for the
Win32 API - to Sun Solaris 2.5 with absolutely no source
code changes.

1 Introduction
While there exist numerous products and toolkits
designed for porting software from UNIX1 to Windows
NT on source code level (like OpenNT from Softway
Systems, Inc. [14], or other tools [17]), much less effort
has been conducted to provide a toolkit to port Windows
NT applications, especially those using the Win32 API
directly, to UNIX. Apart from some very expensive com-
mercial products in this area likeWind/U from Bristol
Technology, Inc. [2] orMainWin XDE from MainSoft
Corp. [9], a small low cost solution is not known to the
authors. With the emerging importance of Windows NT
[10], more and more applications are newly developed
for the Win32 API, so a migration path to support the
various UNIX flavors even for low level applications is
highly desirable. In this paper, we propose a library
based approach to achieve source code level compatibil-
ity for a specific subset of the Win32 API under the
UNIX operating system.

2 The nt2unix Emulation Layer
In this section, we introduce the functionality of nt2unix
and its strategy to implement a relevant subset of the
Win32 API on Solaris [15], a popular UNIX System V
implementation. Since a complete implementation of the
Win32 API under UNIX is not practicable, we had to
decide which features to support. As our focus lies on
systems programming, we chose the following function
groups to form a reasonable subset:

• Windows NT Multithreading and Synchronization.
This group includes functions for creating, destroy-

ing, suspending and resuming preemptive threads. It
also includes functions to synchronize concurrent
threads and TLS (thread local storage) functions.

• Virtual Memory Management. This group includes the
interface to the virtual memory (VM) manager as well
as functions for memory mapped I/O.

• Windows NT Exception Handling. Win32 supports
user level handlers to catch special exceptions as well
as certain error handling routines. These functions
form another group to be supported.

• Networking. This group concerns networking, which
includes the complete WinSock API (restricted to the
TCP/IP protocol family, however).

Naturally, an emulation layer firstly has to support the
basic data types found in the various C++ header files of
the Win32 API. nt2unix supports most specific simple
Win32 data types, likeDWORD, BOOL, BYTE and so on.
The much more interesting problems arise from the
implementation of certain functions. Some specific prob-
lems we encountered are presented in the next sections.

2.1 Multithreading and Synchronization
In order to support Windows NT multithreading, nt2unix
must keep track of thread associated data normally the
Windows NT kernel stores. This data includes:

• The state of a thread (running, suspended or termi-
nated) - by default, a thread is created in running state;

• Thesuspend counter of a thread (a concept unknown
in the Solaris or POSIX thread API);

• Theexit code of the thread.

nt2unix uses theStandard Template Library (STL) type
map to store the above information for each thread. The
entries in the map are indexed by the Windows NT han-
dle of the thread. Accesses to this map are protected by a
special lock object of classCriticalSection ,
which is a comfortable wrapper around the Windows NT
CRITICAL_SECTION type:

class CriticalSection {
public:

CriticalSection::CriticalSection() {
InitializeCriticalSection(&cs);

}

CriticalSection::~CriticalSection() {
DeleteCriticalSection(&cs);

}
inline void CriticalSection::enter() {

EnterCriticalSection(&cs);
}
inline void CriticalSection::leave() {

LeaveCriticalSection(&cs);
}

protected:
CRITICAL_SECTION cs;

};

struct ThreadInfo {
ThreadInfo::ThreadInfo() {

ThreadInfo::init(THREAD_RUNNING);
}
ThreadInfo::ThreadInfo(DWORD aState) {

ThreadInfo::init(aState);
}
inline void ThreadInfo::init(DWORD aState) {

state = aState;
suspendCount = 0;
exitCode = 0;
threadHasBeenResumed = FALSE; // see below

}
DWORD suspendCount;
DWORD state;
DWORD exitCode;
volatile BOOL threadHasBeenResumed;
// A special flag to synchronize
// SuspendThread() / ResumeThread()

};

typedef map<HANDLE, ThreadInfo,
less<HANDLE> > ThreadInfoMap;

static ThreadInfoMap ThreadInfos;
static CriticalSection ThreadInfoLock;

Important problems occur in order to support the Win32
functions SuspendThread () and ResumeThread ().
At first glance, it seems obvious that these two functions
can easily be emulated by the Solaris functions
thr_suspend () and thr_resume (). However, this is
not the case, since there is a lost signal problem to be
avoided when a thread suspends. The situation using the
POSIX thread API is even worse, because there are no
functions available for resuming or suspending threads
anyway.
To understand this, we have a deeper look at our imple-
mentation ofSuspendThread () using the Solaris thread
API. When this function is called, the lock protecting the
thread data is acquired. Afterwards, the suspend counter of
the thread is incremented, if possible. If the old suspend
counter is zero, two cases may occur: the thread may sus-
pend itself or another thread. If the first case is true, the
lock is released before actually callingthr_suspend ()
to avoid deadlock. In the second case, a lost signal problem
must be avoided, since under Solaris, resuming threads
doesnot work in advance, that is, resume actions are not

queued if the target thread is not yet suspended at all. Our
solution to this problem is to let theResumeThread ()
implementation poll until the thread which has to be
resumed has indicated its new state by setting a special
flag, threadHasBeenResumed . So the code forSus-
pendThread () looks like the following:

DWORDSuspendThread (HANDLE hThread) {
BOOL same = FALSE;
// this flag indicates whether
// a thread suspends itself.
// If same == TRUE, we must avoid a
// “lost signal“ problem, see below.
ThreadInfoLock.enter();
ThreadInfoMap::iterator thisThreadInfo =

ThreadInfos.find(hThread);
if (thisThreadInfo != ThreadInfos.end()) {

// found it.
DWORD oldSuspendCount =

(*thisThreadInfo).second.suspendCount;
if (oldSuspendCount < MAXIMUM_SUSPEND_COUNT)

(*thisThreadInfo).second.suspendCount++;
if (oldSuspendCount < 1) {

(*thisThreadInfo).second.state =
THREAD_SUSPENDED;

if (same =
(thr_self() == (thread_t)hThread)){
// if the thread suspends itself,
// we must release the lock.
(*thisThreadInfo).second.\

threadHasBeenResumed = FALSE;
ThreadInfoLock.leave();

}
// DANGER!!! If at this point, another
// thread is scheduled in ResumeThread(),
// the resume „signal“ may get lost.
// To avoid this, ResumeThread()
// polls until the thread is really
// resumed, i.e. until
// threadHasBeenResumed == TRUE.
if (thr_suspend((thread_t)hThread)) {

perror(“thr_suspend()“);
return 0xFFFFFFFF;

}
(*thisThreadInfo).second.\

threadHasBeenResumed = TRUE;
if (!same)

ThreadInfoLock.leave();
} else

// thread is already sleeping
ThreadInfoLock.leave();

return oldSuspendCount;
}
// Thread not found.
ThreadInfoLock.leave();
return 0xFFFFFFFF;

}

The correspondingResumeThread () code is as follows:

DWORDResumeThread (HANDLE hThread) {
ThreadInfoLock.enter();
ThreadInfoMap::iterator thisThreadInfo =

ThreadInfos.find(hThread);
if (thisThreadInfo != ThreadInfos.end()) {

// found it.
DWORD oldSuspendCount =

(*thisThreadInfo).second.suspendCount;
if (oldSuspendCount > 0) {

(*thisThreadInfo).second.suspendCount--;
if (oldSuspendCount < 2) {

// oldSuspendCount == 1 -> new
// value is 0 -> really resume thread
(*thisThreadInfo).second.state =

THREAD_RUNNING;
do { // Loop until the target thread

// is really resumed.
if (thr_continue((thread_t)hThread)){

ThreadInfoLock.leave();
return 0xFFFFFFFF;

}
// Give up the CPU so that the resumed
// thread has a chance to update the
// associated threadHasBeenResumed
// flag.
thr_yield();

} while (!(*thisThreadInfo).\
second.threadHasBeenResumed);

}
}
ThreadInfoLock.leave();
return oldSuspendCount;

}
// thread not found.
ThreadInfoLock.leave();
return 0xFFFFFFFF;

}

Other caveats occur in order to support synchronization
function likeEnterCriticalSection () andLeave-
CriticalSection (), because under Windows NT the
CRITICAL_SECTION objects can be acquired recur-
sively (that is, a lock owning thread may acquire the same
lock without deadlocking), while Solaris / POSIX thread
mutexes are not. The solution to this problem is again to
reinvent the wheel and try to emulate this behavior. We use
the standard Windows NT type

typedef struct _RTL_CRITICAL_SECTION {
PRTL_CRITICAL_SECTION_DEBUG DebugInfo;
LONG LockCount;
LONG RecursionCount;
HANDLE OwningThread;
HANDLE LockSemaphore;
DWORD Reserved;

} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

for each critical section object and its thus possible to keep
track of recursive lock acquires and releases:

WINBASEAPI VOID WINAPI EnterCriticalSection (
LPCRITICAL_SECTION lpCriticalSection) {
thread_t me = thr_self();
if (lpCriticalSection->OwningThread ==

(HANDLE)me) {

// I have the lock.
// This cannot be a race condition.
lpCriticalSection->RecursionCount++;
return;

}
if(mutex_lock((mutex_t *)(lpCriticalSection

->LockSemaphore))) {
DBG("mutex_lock() failed"); return;

}
// got it. I must be the first thread:
if (lpCriticalSection->RecursionCount) {

DBG("RecursionCount != 0"); return;
}
lpCriticalSection->RecursionCount = 1;
lpCriticalSection->OwningThread = (HANDLE)me;

 return;
}

If the thread acquiring a lock is the same thread already
owning the lock, the recursion counter is incremented.
This cannot be a race condition, because no other thread
can change this value at the time the lock is blocked. Oth-
erwise, mutex_lock () (or pthread_mutex_lock ()
in the POSIX version) is called. If the lock is successfully
acquired, the recursion counter must be 0 and is set to 1
afterwards.

WINBASEAPI VOID WINAPI LeaveCriticalSection (
LPCRITICAL_SECTION lpCriticalSection) {
thread_t me = thr_self();
if (lpCriticalSection->OwningThread ==

(HANDLE)me) {
lpCriticalSection->RecursionCount--;
if(lpCriticalSection->RecursionCount < 1) {

lpCriticalSection->OwningThread =
(HANDLE)0xFFFFFFFF;

if(mutex_unlock((mutex_t *)
lpCriticalSection->LockSemaphore))
DBG("mutex_unlock() failed");

}
} else

DBG("not lock owner");
 return;
}

When leaving a critical section, the recursion counter is
decremented if the call was recursive. If the counter is 0 no
thread owns the lock anymore, hencemutex_unlock ()
(or pthread_mutex_unlock () in the POSIX version)
must be called. It is an error if the caller ofLeaveCrit-
icalSection () was not the owner of the lock.

2.2 Virtual Memory Management
Win32 supports an interface to the VM system, especially
to protect and map virtual memory pages. Like for threads,
nt2unix has to keep track of data for each file mapping in
the system. nt2unix stores the following information for
each mapping:

struct FileMapping {
LPVOID lpBaseAddress;

// the virtual base address of the mapping
DWORD dwNumberOfBytesToMap;

// the mapping size in bytes
HANDLE hFileMappingObject;

// the file handle
char FileName[MAX_PATH];

// the file name
DWORD refcnt;

// the number of references to the mapping
};
static vector<FileMapping> FileMappings;

The virtual base address for the mapping is stored in
lpBaseAddress , while the size of the mapping object
in bytes is stored indwNumberOfBytes . The handle of
the mapped file and / or its file name are stored in
hFileMappingObject and FileName[] , respec-
tively. The abovestruct is allocated for a specific map-
ping by calling our emulation of
CreateFileMapping () or CreateFileMap-
pingA (), respectively. It is deallocated if therefcnt
counter keeping track of the open references to the map-
ping for the mapping is 0. Using a STL-stylevector of
mappings, Windows NT mapping is achieved by using
mmap():

WINBASEAPI LPVOID WINAPI MapViewOfFileEx (
HANDLE hFileMappingObject,
DWORD dwDesiredAccess,
DWORD dwFileOffsetHigh,
DWORD dwFileOffsetLow,
DWORD dwNumberOfBytesToMap,
LPVOID lpBaseAddress) {
int prot = 0, flags = 0; LPVOID ret;

if (dwFileOffsetHigh > 0)
DBG(“Ignoring dwFileOffsetHigh“);

// Filter the protection bits
// and mapping flags ...
prot = dwDesiredAccess & FILE_MAP_ALL_ACCESS;
flags = ((dwDesiredAccess & FILE_MAP_COPY) ==

FILE_MAP_COPY) ? MAP_PRIVATE : MAP_SHARED;
if (lpBaseAddress)

flags |= MAP_FIXED;
// Search and update the mapping
// in the vector.
vector<FileMapping>::iterator i =

FileMappings.begin();
while(i != FileMappings.end() &&

i->hFileMappingObject !=
hFileMappingObject)

i++;
if (i != FileMappings.end()) {

if (dwNumberOfBytesToMap)
i->dwNumberOfBytesToMap =

dwNumberOfBytesToMap;
} else

return 0;
if ((ret =

(LPVOID)mmap((caddr_t)lpBaseAddress,
(size_t)i->dwNumberOfBytesToMap, prot,
flags, (int)hFileMappingObject,
(off_t)dwFileOffsetLow)) ==

(LPVOID)MAP_FAILED)
return 0;

if (mprotect((caddr_t)ret,
(size_t)i->dwNumberOfBytesToMap,
prot) == -1)

perror(“mprotect()“);
return ret;

}

The similar functionMapViewOfFile () is now easily
implemented by callingMapViewOfFileEx () with the
last parameterlpBaseAddress set to 0. The mentioned
refcnt for each mapping is decremented by a call to
UnMapViewOfFile (). However, the above implementa-
tion has a 4 GB limit concerning the maximum size of the
mapped file, because this is the maximum file mapping
size possible under Solaris.
The memory access protection bits of a file mapping under
Windows NT have more a less equivalent values under
UNIX. However, not all bit masks are supported, namely
PAGE_GUARD andPAGE_NOCACHE:

2.3 Windows NT Exception Handling
Windows NT provides two means of delivering exceptions
to user level processes:

• by embracing the code with a__try{} ...
__except(){} block;

• by installing an exception handler calling
SetUnhandledExceptionFilter ().

Because the first method is a proprietary language exten-
sion, only the second method is supported by nt2unix.
Exceptions are mapped to semantically more or less equiv-
alent UNIX-style signals, like denoted in the following
table. Note that not all exception codes of Windows NT
have meaningful counterparts in a UNIX environment:

Windows NT Protection Bits UNIX Bits

PAGE_READONLY PROT_READ

PAGE_READWRITE (PROT_READ |
PROT_WRITE)

PAGE_NOACCESS PROT_NONE

PAGE_EXECUTE PROT_EXEC

PAGE_EXECUTE_READ (PROT_EXEC
|PROT_READ)

PAGE_EXECUTE_READWRITE (PROT_EXEC |
PROT_READ |
PROT_WRITE)

PAGE_GUARD n/a

PAGE_NOCACHE n/a

Windows NT EXCEPTION_* Code UNIX Signal

ACCESS_VIOLATION SIGSEGV

FLT_INVALID_OPERATION SIGFPE

The emulation of Windows NTs exception handling
requires carefully converting UNIX-style types like
siginfo_t anducontext_t to a Windows NT-style
struct EXCEPTION_POINTERS . To fill in this
struct , the stack frame of the signal handler method
must be examined, which is very system dependent.
For example, the page fault info is extracted in a SIG-
SEGV handler for Solaris SPARC (__SPARC), Solaris
x86 (__X86) and Linux x86 (__LINUXX86) in the fol-
lowing way:

switch (sig) {
case SIGSEGV:

// A segmentation violation.
ExceptionInfo.ExceptionRecord->

ExceptionCode = EXCEPTION_ACCESS_VIOLATION;
ExceptionInfo.ExceptionRecord->

ExceptionInformation[0] =
#if defined(__SPARC)

(*(unsigned *)((ucontext_t*)uap)
->uc_mcontext.gregs[REG_PC] & (1<<21));

#elif defined(__X86)
(((ucontext_t*)uap)->

uc_mcontext.gregs[ERR] & 2);
#elif defined(__LINUXX86)

stack[14] & 2;
#endif

if (ExceptionInfo.ExceptionRecord->
ExceptionInformation[0])
ExceptionInfo.ExceptionRecord->

ExceptionInformation[0] = 1;
// 1 == write access

ExceptionInfo.ExceptionRecord->
ExceptionInformation[1] =

#ifdef __LINUXX86
stack[22];

#else
(DWORD)sip->si_addr;

#endif
break;

// other signals processed here ...
}

If a SIGSEGV is caught, the exception type is set to
EXCEPTION_ACCESS_VIOLATION. In the next state-
ments, the type of the fault (read or write) as well as the
faulting address must be extracted from the stack. Under
Solaris SPARC, the type of the fault is coded in bit 21 of
theREG_PC register, while under Solaris x86, bit 2 of the
ERR register contains this information. Under Linux x86,
bit 2 of thestack at position 14 stores this bit ofERR
according to the Linux 2.0 kernel source.
The faulting address under Solaris is located under

sip->si_addr , wheresip of type siginfo_t* is
the second parameter of the signal handler function
installed. Under Linux, the value is found at position 22 of
the signal handler stack.
Of course, this code is not portable and must be imple-
mented again for each UNIX derivative.

2.4 Networking
The standard protocol family available under UNIX is
TCP/IP. With nt2unix, we map the WinSock API with
respect to this protocol to the standard BSD sockets API.
The main difference between the Windows NT and the
BSD socket API is due to some new Windows NT data
types and definitions:

typedef int SOCKET;
#define INVALID_SOCKET (SOCKET)(-1)
#define SOCKET_ERROR (-1)

Additionally, Windows NT defines the Windows Sockets
(WinSock) API error codes (WSA*). The only real problem
while emulating the WinSock API under BSD was found
for theselect () call. This function has the prototype

int select (int nfds, fd_set FAR *readfds,
fd_set FAR *writefds,
fd_set FAR *exceptfds,
const struct timeval FAR * timeout);

A source of hard to find programming errors is that the
fd_set data type is usually implemented as a bit mask
under UNIX, while Windows NT implements this data
type as an ordinary array. That is the reason why Windows
NT ignores the first parameternfds which defines the
highest bit to be scanned while waiting for pending input.
That is, you can unfortunately write Windows NT code
usingselect () which doesnot run under BSD.

2.5 Summary
The following table shows a summary of all functions
implemented within nt2unix.

ILLEGAL_INSTRUCTION SIGILL

IN_PAGE_ERROR SIGBUS

SINGLE_STEP SIGTRAP

Windows NT EXCEPTION_* Code UNIX Signal

Win32 Functions
emulated

Emulation is
based on

Multi-
threading

CreateThread()
GetCurrentThread()

GetCurrentThreadId()
ExitThread()

TerminateThread()
GetExitCodeThread()

SuspendThread()

ResumeThread()

Sleep()

thr_create()
thr_self()
thr_self()
thr_exit()
thr_kill()

STL
thr_self(),

thr_suspend()
thr_yield(),

thr_resume()
thr_yield(),

thr_suspend(),
poll()

3 A Case Study: SVMlib

3.1 Overview
SVMlib [11, 16] (Shared Virtual Memory Library) is an

all-software, page based, user level shared virtual memory
[1] subsystem for clusters of Windows NT workstations. It
is one of the first (among [7] and [12]) SVM systems for
this operating system. The source code of SVMlib consists
of about 15.000 lines of C++ code written natively for the
Win32 API. The library has been designed to benefit from
several Windows NT features like preemptive multithread-
ing and support for SMP machines. Unlike most software
DSM systems, SVMlib itself is truly multithreaded. It also
allows users to create several preemptive user threads to
speed up the computation on SMP nodes in the cluster.
Currently the library uses TCP/IP sockets for communica-
tion purposes but it will also support efficient message
passing using the Dolphin implementation [3] of theScal-
able Coherent Interface (SCI) [5].
SVMlib provides a C/C++ API that allows the user to cre-
ate and destroy regions of virtual shared memory that can
be accessed fully transparently. Different synchronization
primitives such as barriers and mutexes are part of the API.
To keep track of accesses to the shared regions, SVMlib
handles page faults within the regions via structured
exception handling provided by the C++ run time system
of Windows NT.
At the current stage, two different memory consistency
models are supported by three different consistency proto-
cols. The first consistency model offers the widely used
though fairly inefficientsequential consistency [8] model.
This model is supported by single writer as well as multi-
ple writer protocols. Secondly, the distributed lock based
scope consistency [6] is implemented.

3.2 Design Issues
When designing an SVM system, several design choices
have to be made. When we started this project our primary
goal was to develop a highly flexible and extendable
research instrument. We therefore decided to build SVMlib
as a set of independent modules where each can be
exchanged without influencing the other modules.
Another important choice was the platform to build SVM-
lib on. As Windows NT is a modern operating system with
some interesting features like true preemptive kernel
threads, SMP support and a rich API we decided to use
workstations running Windows NT as the primary plat-
form. Figure 1 shows the overall design of SVMlib. On the
top level four modules are used.
The first is thememory manager that handles the creation
and destruction of shared memory regions, catches page
faults and implements the memory dependent part of the
user interface. The memory manager manages a set of
regions where each region can use a different consistency
model and coherence protocol.
The second part is thelock manager that provides an inter-
face that allows the user to create and destroy primitives
for distributed process synchronization - mutexes as well

Thread
Synchro-
nization

InitializeCritical-
Section()

DeleteCriticalSection()
EnterCriticalSection()
LeaveCriticalSection()

mutex_init()

mutex_destroy()
mutex_lock()

mutex_unlock()

Thread
Local

Storage
(TLS)

TlsAlloc()
TlsGetValue()
TlsSetValue()

TlsFree()

thr_keycreate()
thr_getspecific()
thr_setspecific()
pthread_key_

delete()

 Object
Handles

CloseHandle()
DuplicateHandle()

WaitForSingleObject()

close()
dup(), dup2()

thr_join()

Process
Functions

GetCurrentProcess()
GetCurrentProcessId()

ExitProcess()

getpid()
getpid()
exit()

VM
Manage-

ment

VirtualAlloc()
VirtualFree()

VirtualProtect()
VirtualLock()

VirtualUnlock()

mmap(), valloc(),
mprotect()

mprotect(), free()
mprotect(),
memcntl()
mlock()

munlock()

Memory
Mapped

I/O

MapViewOfFile()
MapViewOfFileEx()
UnmapViewOfFile()
CreateFileMapping()

mmap()
mmap()

munmap()
STL

Error
Handling

WSAGetLastError()
GetLastError()
SetLastError()

WSASetLastError()

errno
errno
errno
errno

WinSock
API

WSAStartup()
WSACleanup()
closesocket()
ioctlsocket()
all BSD-style

functions!

-
-

close()
ioctl()

socket(5) family

Excep-
tion

Handling

SetUnhandled-
ExceptionFilter()
GetException-
Information()

UnhandledExcep-
tionFilter()

sigaction()

Miscella-
neous

GetSystemInfo()
GetComputerName()
QueryPerformance-

Frequency()
QueryPerformance-

Counter()

sysinfo()
gethostname()

-
gettimeofday()

Win32 Functions
emulated

Emulation is
based on

as global barriers and semaphores.
For internode communication purposes thecommunicator
is used. The user will never directly use this module. It is
for internal purposes only. The communicator provides a
simple interface containing a barrier, a broadcast algorithm
and the possibility to send messages to each other node.
This module has been designed to be active itself. To take
advantage of the SMP support of Windows NT the com-
municator uses threads to handle incoming messages.
The last main module is theinterval manager that allows
to implement weak consistency models like lazy release
consistency or the currently used scope consistency. The
user will never have to access this module directly. It is
used as a bridge between the memory and the lock man-
ager when weak consistency models are used. This is
needed because both locks and memory pages handle a
part of the weak consistency model.
SVMlib provides several API personalities to the applica-
tion programmer. First of all, a native C and C++ API is
provided. For compatibility to other SVM systems and
existing shared memory implementations, other interfaces
to shared memory programming are supported. Currently,
these interfaces include theShared Memory Interface
(SMI) [4], the macro interface ofStanford Parallel Appli-
cations for Shared Memory (SPLASH) [18] and the
Coherent Virtual Machine (CVM) [13]. Other interfaces
are planned to be supported in the future.

3.3 Performance Impact of the Emulation
Using nt2unix, we ported the source code of SVMlib to
Sun Solaris 2.5.1 withabsolutely no source code changes.
Though the development of nt2unix was in fact driven by
our goal to port SVMlib to UNIX, this was very surprising,
since, at first glance, a DSM implementation naturally is
very system dependent. To show the impact of the Win32
emulation, we give usual metrics characterizing the perfor-
mance of the SVM library:

• Page Fault Detection Time. This value includes the
mean time from the occurrence of a processor page fault
on a protected page to the entrance of the handling rou-
tine. That is, this time includes all operating system
overhead to deliver a page fault exception to user code.
Note that there seems to be no difference between the
Windows NT Server and NT Workstation (WS) version
with respect to exception handling. We compared these
values with user level page fault detection under Solaris
2.5.1 for Intel and SPARC using nt2unix, respectively.
As mentioned, under UNIX, the memory exception han-
dling mechanism of Windows NT is emulated by catch-
ing theSIGSEGV signal.

• Page Fault Time. This value includes the mean time to
handle one page fault. This time excludes the page fault
detection time mentioned above. It includes the over-
head due to the coherence protocol and communication
subsystem. In the current implementation, the times
measured are mainly influenced by the high TCP/IP
latency. The measurements were made using the FFT
application of the set of CVM [13] examples. This
application implements a Fast Fourier Transformation
on a 64 x 64 x 16 array. The coherence protocol used is
a multiple reader / single writer protocol implementing
sequential consistency. We compared three configura-
tions running FFT: (1)CVM on Solaris: the CVM sys-
tem running on Solaris 2.5.1, Sun SS-20, Ethernet; (2)
SVMlib on nt2unix: the Solaris version of SVMlib, run-
ning on the same platform as (1), but with nt2unix emu-
lation layer; (3)SVMlib on Win32: the native Win32
version of SVMlib, running on Windows NT 4.0, Intel
Pentium-133, FastEthernet. Naturally, the Win32 time
values mainly reflect the improved network perfor-
mance of FastEthernet.

Windows NT Kernel Services

Win32 APIWinSock 2.0 API

SVMlib API [SMI, SPLASH, CVM...]

MemoryManager LockManager

Communicator

Page
Fault
Handling

IntervalManager

Figure 1: SVMlib layers

Super-
SPARC,
50 MHz

Pentium,
 133
MHz

Pentium
Pro,

200 MHz

Windows NT 4.0
Server / WS

- 28 µs 19µs

Solaris 2.5.1
& nt2unix

135µs 92µs 48µs

N
o
d
e
s

Read /
Write /
Average

Fault Time
[ms]

(CVM on
Solaris)

Read /
Write /
Average

Fault Time
[ms]

(SVMlib on
nt2unix)

Read /
Write /
Average

Fault Time
[ms]

(SVMlib on
Win32)

2 11.3 /
0.8 /
4.4

4.5 /
1.3 /
2.2

3.4 /
1.1 /
1.8

It is clear that the above measurements are not sufficient to
determine the overall performance of nt2unix, but they
show reasonable results with respect of key functions used
to implement SVMlib on Windows NT: multithreading,
networking and exception handling.

3.4 Summary and Conclusion
In this paper, we introduced nt2unix, a library providing an
important subset of the Win32 API on UNIX based sys-
tems. The library makes it possible to port Win32 console
applications to UNIX with much less effort. The first ver-
sion of nt2unix was developed and tested on Solaris 2.5 for
SPARC and Intel Processors, respectively. At the moment,
we are extending the implementation to support more
generic UNIX platforms and POSIX interfaces:

• The current version supports the POSIX thread API
additionally to the Solaris thread API. This required
slightly different implementation ofResumeThread ()
and SuspendThread (), because POSIX doesnot
include functions equivalent to Solaristhr_resume ()
andthr_suspend ().

• We have a running Linux/x86 version of nt2unix using a
POSIX thread library. We found that especially the
exception handling is very system dependent, because
the signal handler stack frame has to be inspected to
extract the detailed exception information.

As a case study, we ported a complex DSM system with no
source code changes at all from Windows NT to Solaris.
We found that the performance impact of the emulation is
acceptable. The complete source code of the nt2unix
library is available upon request, please e-mail to
contact@lfbs.rwth-aachen.de .

References

 [1] Berrendorf, R.; Gerndt, M.; Mairandres, M.; Zeisset,
S.: A Programming Environment for Shared Virtual
Memory on the Intel Paragon Supercomputer, ISUG
Conference, Albuquerque, 1995

 [2] Bristol Technology Inc., URL:

http://www.bristol.com/
 [3] Dolphin Interconnect Solutions:PCI-SCI Cluster

Adapter Specification. Jan. 1996.
 [4] Dormanns, M.; Sprangers, W.; Ertl, H.; Bemmerl, T.:

A Programming Interface for NUMA Shared-Memory
Clusters. Proc. High Perf. Comp. and Networking
(HPCN), pp. 698-707, LNCS 1225, Springer, 1997.

 [5] IEEE:ANSI/IEEE Std. 1596-1992, Scalable Coherent
Interface (SCI). 1992.

 [6] Iftode, L.; Singh, J. P.; Li, K.:Scope Consistency: A
Bridge between Release Consistency and Entry Con-
sistency. In Proc. of the 8th ACM Annual Symp. on
Parallel Algorithms and Architectures (SPAA‘96),
June 1996

 [7] Itzkovitz, A., Schuster, A., Shalev, L.:Millipede: a
User-Level NT-Based Distributed Shared Memory
System with Thread Migration and Dynamic Run-
Time Optimization of Memory References, Proc. of
the USENIX Windows NT Workshop, Seattle, 1997

 [8] Lamport, L.: How to make a multiprocessor com-
puter that correctly executes multiprocess programs,
IEEE Transactions on Computers, C-28(9), pp. 690-
691, September 1979

 [9] MainSoft Corp., URL:
http://www.mainsoft.com/

 [10] Microsoft Windows NT Homepage, URL:
http://www.microsoft.com/ntserver/

 [11] Paas, S. M.; Scholtyssik, K.:Efficient Distributed
Synchronization within an all-software DSM system
for clustered PCs. 1st Workshop Cluster-Computing,
TU Chemnitz-Zwickau, November 6-7, 1997

 [12] Speight, E., Bennett, J. K.:Brazos: A Third Genera-
tion DSM System, Proc. of the USENIX Windows NT
Workshop, Seattle, 1997

 [13] Thitikamol, K.; Keleher, P.:Multi-Threading and
Remote Latency in Software DSMs. In: 17th Interna-
tional Conference on Distributed Computing Sys-
tems, May 1997

 [14] Softway Systems, Inc. URL:
http://www.softway.com/

 [15] Sunsoft Solaris Homepage, URL:
http://www.sun.com/software/
solaris/

 [16] SVMlib Project Homepage, URL:
http://www.lfbs.rwth-aachen.de/
~sven/SVMlib/

 [17] UNIX to NT resource center, URL:
http://www.nentug.org/unix-to-nt/

 [18] Woo, S. C.; Moriyoshi Ohara, M.; Torrie, E.; Singh,
J. P., and Gupta, A.:The SPLASH-2 Programs: Char-
acterization and Methodological Considerations. In
Proc. of the 22nd International Symposium on Com-
puter Architecture, pp. 24-36, Santa Margherita Lig-
ure, Italy, June 1995

3 12.0 /
0.8 /
5.8

4.6 /
1.8 /
2.7

3.4 /
1.4 /
2.3

4 16.7 /
0.9 /
7.1

4.9 /
1.8 /
3.1

4.0 /
1.5 /
2.4

N
o
d
e
s

Read /
Write /
Average

Fault Time
[ms]

(CVM on
Solaris)

Read /
Write /
Average

Fault Time
[ms]

(SVMlib on
nt2unix)

Read /
Write /
Average

Fault Time
[ms]

(SVMlib on
Win32)

1UNIX is a registered trademark of The Open Group licensed
exclusively in conjunction with a brand program.

