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Abstract sequential 10 is also an important factor in the startup

Large-scale database, data mining, and multimedigf interactive applications. Minimizing IO overhead

applications require large, sequential transfers anand maximizing bandwidth frees power to actually

have bandwidth as a key requirement. This paper inProcess the data.

vestigates the performance of reading and writingFigure 1 shows how data flows in a modern storage
large sequential files using the Windows NT™ 4.0 Filesubsystem. Application requests are passed to the file
System. The study explores the performance of Intedystem. If the file system cannot service the request
Pentium Pro™ based memory and IO subsystems, irfrom its main memory buffers, it passes requests to a
cluding the processor bus, the PCI bus, the SCSI bukpst bus adapter (HBA) over a PCI peripheral bus. The
the disk controllers, and the disk media in a typicaHBA passes requests across the SCSI bus to the disk
server or high-end desktop system. We provide detail§rive controller. The controller reads or writes the disk
of the overhead costs at each level of the system andedia and returns data via the reverse route.

examine a variety of the available tuning knobs. WeT

show that NTFS out-of-the-box performance is quite he, large, bold numpers in Figure 1 indicate the.ad—
good, but overheads for small requests can be qui\éemsed throughputs listed on the boxes of the various

high. The best performance is achieved by using larg ardware components. These are the figures quoted in
requests, bypassing the file system cache, spreadi rdware reviews and specifications. Several factors
the data'across many disks and controllers: and usif€vent you from achie\{ing this PAP (peak advertised
deep-asynchronous requests. This combination allo erformance). The media-transfer speed and the proc-

us to reach or exceed the half-power point of all th ssing power of the on-drive controller limit disk
individual hardware components andwidth. The wire's transfer rate, the disk transfer

rate, and SCSI protocol overheads all limit throughput.

1 Introduction In the case diagrammed in Figure 1, the disk media is

High-speed sequential access is important for bulkhe bottleneck, limiting aggregate throughput to 7.2
data operations typically found in utility, multimedia, MBps at each step of the pipeline. There is a signifi-

data mining, and scientific applications. High-speedcant gap between the advertised performance and this
out-of-the-box performance. Moreover, the

System Bus application consumes between 25% and
4%;\/’/'555 40 MBps 50% of the processor at this throughput..
7.2 MB/s The processor would saturate long before it
= ‘ reached the advertised SCSI or PCI
Application B 10-15 MBps throughputs.

Data He System ~acs) remer The goal of this study is to see if applica-
Buffers tions can do better cheaply - increase se-
qguential 10 throughput and decrease proc-
#0000 2 essor overhead while making as few appli-
TR Disk cation changes as possible. Our goal is to
133 MBps pCI bring the real application performance

7.2 MB/s (RAP) up to thehalf-power point- the

Figure 1 — The Storage Subsystem An application makes requests
of the file system, which transfers them across the PCIl bus to a B . .
adapter that sends them across the SCSI bus to the disk. For each ¢ %I-f of the theorgtlcal maximum perform-
ponent, the upper numbers give the advertised speed and the [o/¥IC€: More succinctly, the goal RAP >
number gives the actual speed in this application reading a single tflileAP/Z Such improvements often represent
significant (2x to 10x) gains over the out-

?int at which the system delivers at least




of-the-box performance. We will see that the half-FILE_FLAG_SEQUENTIAL_SCAN attribute when opening
power point can be achieved without heroic effort,the file with CreateFile() . The total user and sys-
through a combination of techniques. tem processor time was measured GatProc-
gssTimes() and Figure 2 shows the results across a

Our benchmark is a simple application that uses the”". _ .
variety of application request sizes.

NT file system to sequentially read and write a
100 MB file and times the resuReadFileEx() and Buffered, sequential read throughput is nearly constant
IO completion routines were used to kaepsynchro- for request sizes up to 64 KB. The file system pre-
nous requests in flight at all times. All measurementdetches by issuing 64 KB requests to the disk. The disk
were repeated three times and, unless otherwise notezhntroller also prefetches data from the media to its
all the data obtained were quite repeatable (within 3%nternal cache, which hides rotational delay and allows
margin of error). Multiple disk data was obtained bythe disk to approach the media transfer limit. Figure 2
using NT ftdisk to build striped logical volumes and shows a sharp drop in read throughput for request sizes
the basic system configuration used for all our measlarger than 64 KB as the file system and disk prefetch
urements is described in Table 1. mechanism fails (this problem is fixed in NT5). Figure

2 also indicates that buffered-sequential writes are

The next section discusses our out-of-the-box meass;ubstantially slower than reads. The file system per-

urements. Section 3 explores the basic capabilities %rms write-back caching by default; it copies the

the hardware storage subsystem. Ways to improve S : '
. . . .contents of the application buffer into one or more file
performance by increasing parallelism are presented in

Section 4. Section 5 provides more detailed discussio%ys'[em buffers and the appllcatlon cons_|ders the write
complete when the copy is made. The file system then

of performance limits and some additional software : : X
tioalesces sequential requests into large 64 KB writes,

considerations. Finally, we summarize and sugge : :
steps for additional study. An extended version of thizeadmg to relatively constant throughput above 4 KB.

paper, and all the benchmark software can be found &tisk controllers also implement write-through and

www.research.microsoft.com/barc/Sequential_|O write-back caching, controlled by the Write-Cache-
Enable (WCE) setting directly at the device [SCSI93].
2 Out-of-the-Box Performance If WCE is disabled, the disk controller announces 10

Our first measurements examine the out-of-the-bogompletion only after the media write is complete. If
performance of our benchmark synchronously readindVCE is enabled, the disk announces write completion
and writing using the NTFS defaults. The benchmarl@s soon as the data is stored in its cache and before the
requests data sequentially from the file system. Sincactual write onto the magnetic disk media. WCE al-
the data is not already in the file system cache, the filloWs the disk to hide the seek and media transfer,
system fetches the data from disk into the cache arnalogous to prefetching for reads. This improves
then copies it to the application’s buffers. Similarly, Write performance by giving pipeline parallelism — the
when writing, the program's data is copied to the filewrite of the media overlaps the transfer of the next
cache and a separate thread asynchronously flushes #{gte on the SCSI even if the file system requests are
cache to disk in 64 KB units. In the out-of the-boxSynchronous. There is no standard default for WCE — a
experiments, the file being written was already allo-Particular drive may be shipped with WCE enabled or

cated but not truncated. The program specified thélisabled by default and a SCSI utility must be used to
alter this setting. The effect of WCE can be dramatic

Processor Gateway 2000 G6-200, 200 MHz Pentium Pro, 1 32-bit PCI bus
64-bit wide 66 MHz memory interconnect, 64MB DRAM 4-way interleave
Host bus adapterr 1 or 2 Adaptec 2940UW Ultra-Wide SCSI adapters (40 MBps)
Disk Seagate Barracuda Interface Capacity RRBM Seek  Transfer (MBps Cdche
Fast-Wide SCsI-2 External | Internal
(ST15150W) FastWide | 4.3 GB 7200 4.2ms20 MBps | 5.9-8.8| 1 MB
Ultra-Wide SCsSI-2
(ST34371W) UltraWide | 4.3 GB 7200 | 4.2ms 40 MBps 10 - 15 512 KB
Software Microsoft Windows NT Server 4.0 SP3, NT file system and fitli&k for striping experiments

Table 1 Basic Hardware and Software Configuration —This system is representative of a small server or high-end desktop
system at the time these studies were performed in mid-1997.
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Figure 2 — Out-of-the-box Performance of a Single Ultra-Wide Drive- File system prefetching allows reads to reach
full media bandwidth at small requests, although there is a sharp drop at very large request sizes. Using WriteiCache-
Enable (WCE) nearly doubles write throughput. Processor cost per megabyte transferred shows that writes are morg expen-
sive than reads and overhead is minimal for requests in the 16 KB to 64 KB range.

as shown in Figure 2 — WCE approximately doubleauniform. The file system prefetches data into the cache
buffered sequential write throughput. When combinedand then copies the data to the application’s buffer.
with file system write buffering, this allows small re- The file cache buffer can be reused as soon as the data
quests to attain throughput comparable to large requett copied to the application. During the write tests, the
sizes and close to the performance of réads. processor load goes through three phases. In the first
ghase, the application writes at memory speed, satu-
rating the processor as it fills all available file system

moved. With 2 KB requests, the 200 MHz processor%uffers. During the second phase, the file system must

saturates when reading writing 16 MBps. With 64 KBf.ree bu_ffers by |n|t|a_t|ng SCSI transfers. New appllca-
tlo[n writes are admitted as buffers become available.
requests, the same processor can generate ab

. o ) .
50 MBps of buffered file 10 — exceeding the Ultra- e processor is about 30% busy during this phase. At

Wide SCSI PAP. As an upper bound, this processotrhe end of this phase, the application closes the file

and memory system can generate up to 480 MBps Oq,nd f_or_ces th_e file system to synchronously flush all
. ! remaining writes - one SCSI transfer at any time.
unbuffered disk traffic.

During this third phase, the processor load is negligi-
Write requests of 2 KB present a particularly heavyble.

load on the system. In this case, the filesystem mu%ot all processing overhead is charged to the bench-

read the file prior to the write-back in units of 4 KB - . S
. mark process in Figure 2. Despite some uncertainty in

which more than doubles the load on the system. Thi . o .
e measurements, the basic trend remains: moving

pre-read can be avoided by (1) issuing write requestaata with many small requests costs significantly more

that are at least 4 KB, or (2) truncating the file at OPeMhan moving the same data with fewer larger requests.

ifying TRUNCATE_EXISTIN rather than . L L
by specifying UNCATE_EXISTING  rat _e tha We will return to the cost question in more detail in
OPEN_EXISTING as a parameter tCreateFile() .

e next section.

When we truncated the test file on open, throughput o

2 KB writes was about 3.7 MBps, just less than that of3 Improving Performance - Bypassing

4 KB and larger TRUNCATE_EXISTINGshould only be .

used with small, buffered requests. With 4 KB and the File System Cache

larger requests, extending the file after truncation inOur next experiments bypass file system buffering to

curs overheads which lower throughput up to 20%more closely examine the underlying hardware per-

This effect is discussed further in Section 5.3. formance. This section provides data on both Fast-
) L Wide (20 MBps) and Ultra-Wide (40 MBps) disks.

S_ystem beh?“"or under large reads and ertes_ IS V€¥he Ultra-Wide disk is the current generation of the

different. During the read tests, processor load is fa'”)éeagate Barracuda 4LP product line and the Fast-Wide

disk is the previous generation. Figure 3 shows that the

! Enabling WCE improves performance but risks corruptiond€vices are capable of 30% of tR&P speeds. The

if the disk fails while uncommitted data is in its cache. Theinput ~ file is  opened  with CreateFile(...

on-disk cache may also be lost by SCSI bus resets [SCSI93]FILE_FLAG_NO_BUFFERING|FILE_FLAG_SEQUENTIAL_SC
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Figure 3 — Single Disk Throughputof Unbuffered 10 for Fast-Wide and Ultra Drives — Requests of 8 KB and large
achieve the maximum read throughput. Write throughput is dramatically worse and increases only gradually because writes do
not benefit from prefetching. The chart on the right shows that if drive write caching (WCE) is enabled, write throughput be-
comes comparable to read throughput. The newer Ultra drive has over a 100% advantage for small transfers, and & 50% ad-

vantage for large transfers due to its higher media transfer rate.

AN,...) and the file system performs no prefetching, nahroughput even for requests as large as 1 MB. The
caching, no coalescing, and no extra copies. The datiorage subsystem is completely synchronous — first it
moves directly into the application from the SCSlwrites to the device cache, then to disk — so device
adapter using direct memory access. overhead and latency dominate. Application requests
above 64 KB are broken into multiple 64 KB requests

On large (64 KB) requests, bypassing the file systerpn the 10 subsystem, but these can be simultaneously

copy cu_ts the processor overhead bY a fact_o r of te%utstanding at the device. The half-power write rate is
from 2 instructions per byte to 0.2 instructions PET_ chieved with a request size of 128 KB

byte. Unbuffered sequential reads reach the media '

limit for all requests larger than 8 KB. The older Fast-The right graph of Figure 3 shows that WCE compen-
Wide disk requires read requests of 8 KB to reach itsates for the lack of file system coalescing. The WCE
maximum efficiency of about 6.5 MBps. The newersequential write rates look similar to the read rates and
Ultra-Wide drive plateaus at 8.5 MBps with 4 KB re- the media limit is reached at about 8 KB for the newer
quests. Prefetching by the controller gives pipelinadisk and 64 KB for the older one. The media transfer
parallelism and allows drives to read at their medigime and rotational latency costs are hidden by the
limits. Very large requests continue to perform at meypipeline parallelism in the drive. WCE also allows the

dia rates, in contrast to the problems seen in Figure @ive to perform fewer and larger media writes, re-

with large buffered transfers. ducing the total rotational latency.

Writes are significantly slower. The left chart of Fig- Figure 4 shows the processor overhead corresponding
ure 3 shows that throughput increases only graduallio unbuffered sequential writes. In all cases, overheads
with request size. We observed no plateau in writalecrease with request sizes. Requests less than 64 KB
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Figure 4 — Processing Cost of Unbuffered Sequential 1© The larger the request size, the more the cost of the request dan be
amortized. Requests of 64 KB reduce the load to less than 5%. Three drives running independent sequential streams gf 2 KB re-
quests would consume 96% of a 200 MHz Pentium Pro system.




cost about 120s and as requests become larger, thedditional cost of about 2 instructions per byte while
file system must do extra work to fragment them intounbuffered transfers have almost no marginal cost per
64 KB requests to the device. The first chart shows thbyte. Recall that buffered IO saturates the processor at
processor time to transfer each megabyte of data. Isbout 50 MBps for 64 KB requests. Unbuffered 10
suing many small read requests places a heavy load @onsumes about 2.1 ms per megabyte, so unbuffered
the processor while larger requests amortize the fixetD will saturate this system’s processor at about 480
overhead over many more bytes. The time is similaMBps. On the system discussed here, the PCI periph-
for reads and writes regardless of the generation of theral bus would have become saturated long before this
disk and disk cache setting. The center chart of Figurpoint and the memory bus would be near saturation.

4 shows the processor utilization as a function of re-

quest size. At small requests, reads place a heaviér Improving Performance via Parallelism

load on the processor because the read throughput is $fe previous sections examined the performance of
much higher than that of writes. The processor is doingynchronous requests to a single disk. Any parallelism
approximately the same work per byte, but the bytes, the system was due to caching by the file system or
are moving faster so the imposed load is higher. Figisk controller. This section examines two improve-

nally, the chart on the right of Figure 4 shows thements: (1) using asynchronous 10 to pipeline requests

processor time per request. Requests up to 16 KB coand (2) striping across multiple disks to allow media
sume approximately the same amount of time. Since gansfer parallelism.

16 KB request moves eight times as much data as a ) o

2 KB request, we see a corresponding 8x change. UntffSynchronous 10 increases throughput by providing

the request size exceeds 64 KB, larger requests cofie |0 subsystem with more work to do at any instant.

sume comparable processor time. Beyond 64 KB, th&Ne disk and bus can overlap or pipeline the presented
processor time increases because the file system dol9@d and reduce idle time. As seen above, there is not
extra work, breaking the request into multiple 64 KBMuch advantage to be gained by read parallelism on a
transfers and dynamically allocating control structuresSingle disk. The disk is already prefetching and addi-

Note that while the cost of a single request increasééonal outstanding requests create only a small addi-
with request size, the cost per megabyte always gdional overlap on the SCSI transfer. On the other hand,
creases. WCE parallelism dramatically improves single disk

write performance.
As a rule of thumb, requests cost about 1) or

about 10,000 instructions. Buffered requests have alft ©ur asynchronous 10 tests, the application issues
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0528 16 32 62 128 192 0572 "5 16 32 64 128 192 asynchronous requests do not im-
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fetching. Asynchronous requests
—B—-WCE do improve write performance
,515 g15’*:; and, at larger request sizes, matgh
g / s ——p the performance of enablqn
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multiple sequential 10s concurrently. When one re-bus protocol overheads and actual data transfer rates
guest completes, the application asynchronously issuef not scale with advertised bus speed. Further ex-
another as part of the 10 completion routine from theperiments show that three Ultra-Wide disks saturate a
earlier request, attempting to keepequests active at single Ultra-Wide SCSI bus. Two buses support a total
all times. The top of Figure 6 shows the read and writ@f six disks and a maximum read throughput of 60
throughput of a single disk as the number of outstandviBps. When a third adapter and three more disks are
ing requests grows from 1 to 8. Read throughput is naadded, the PCI bus limit is reached and the configura-
much changed, while write throughput improves dration achieves a total of only 72 MBps — just over the
matically. Reads reach the half-power point with 4 KBhalf-power point of the PCI. Adding a fourth adapter
requests. Writes need 3-deep 16 KB requests or 8-despows no additional improvement, although the com-
8 KB requests to reach the half-power point, whichbined SCSI bandwidth of 120 MBps would seem to be
represents a 4x improvement over synchronous 8 KBvell within the advertised 133 MBps of the PCI. While
writes. For requests of 16 KB and more, 3-deep writeshe practical limit is likely to depend on the exact
are comparable to the throughput of when WCE hardware, the PCI half-power point appears to be a

As more disks are added to the system, asynchronogg()d goal.

IO gives significant benefits for reads and large trans5 Detailed Performance Measurements
fers as well as smaller writes. The lower charts of Fig-

ure 6 show the results when the file is striped acros&h€ Previous sections provided an overview of a typi-
four Fast-Wide SCSI disks on a single host bus adapt&?! Storage system and discussed a number of parame-
(and single SCSI busfidisk is used to bind the drives ters affectlng sequential /O throughput_. This section
into a stripe set and each successive disk gets the ndvestigates the hardware components in order to ex-
64 KB file chunk in round-robin fashion. At 4 KB and Pl&in the observed behavior.

8 KB requests, increasing request depth increas . . .
throughput as requests are spread across multip 1 Disk Controller Caching and Prefetching
disks. With a chunk size of 64 KB, 8-deep 8 KB re-A simple model for the cost of a single disk read as-
quests will have I0s outstanding to more than on&umes no pipelining and separates the contributing
drive 7/8 of the time, approximately doubling the factors:

throughput. Smaller request depths distribute the load
less effectively — with only two requests outstanding, ) _
|Os are outstanding to more than one drive only 1/4 of + Disk_SeekTime
the time. Similarly, smaller request sizes are less ef- +(Transfer_sre/Media_Trarsfer_Ratg
fective since more requests are required for each stripe + (Request_8&/SCSI_TranterRatq

chunk. At 4 KB requests and 8 deep requests, at mosI‘Ihe fixed overhead term includes time for the appli-

two drives are used, and this only 3/8 of the time, ation to issue and complete the 10, the time to arbi-

Striping large rquests improves the throughput ofrate and transfer control information on the SCSI bus,
both reads and writes and the bottleneck moves frorgonvertin the target loical block to phvsical media
the disk media to the SCSI bus. Each disk can deIiveIr 9 9 9 pny

about 6 MBps, so four disks should deliver up to ocation. The fixed time also includes the disk con-

24 Vips. The expenmerts al saurated_at_aboul 1 SO comnans randing. a0 e o prc
16 MBps, so the RAP bandwidth of our Fast-Wide 9 y q ’

SCSI subsystem is 80% of the 20 MBPAP. Ultra- two terms are the time required to locate and move the

Wide SCSI (not shown) also delivers 75%RAP or Qata from the p_hysu:al medla into the drive cache. The
final term the time required to transfer data from the
about 30 MBps.

disk cache over the SCSI bus.

Both large request sizes and multiple disks are re- . L .
quired to reach the SCSI bus half-power point. Fas‘:‘_l'he actual disk behavior is more complicated because

Wide SCSI can reach half-power points with two diskscontrollers prefetch and cache data. The media
. transfer and seek times can overlap the SCSI transfer
at read requests of 8 KB and write requests of 16 KB.. . L ;
: time. When a SCSI request is satisfied from the disk
Using 64 KB or larger requests, transfer rates up to . .
. . cache, the seek time and some part of the fixed over-

75% of the advertised bus bandwidth can be observ AR . . .
ead is eliminated. Even without buffering, sequential

with three disks. Ultra-Wide SCSI reaches the half_transfers incur only short seek times. Large transfers
power point with three disks and 16 KB read requests Y : 9

or 64 KB write requests. Only with very large readsc@n Minimize rotational latency by reading the entire
can we reach 75% of the advertised bandwidth. The

RequestService_ime = Fixed_Serice_Time



track — full-track transfers can start with the next secseconds; the 34371W drive (Ultra-Wide) has overhead
tor to come under the read-write head. of about 0.3 milliseconds.

At the extremes, some simplifications should occurAt larger requests, no simple model applies. At 64KB,
For small (2KB) requests, the fixed overhead domithe computed SCSI transfer times do not account for
nates the transfer times (>0.5ms). For largeahe full prefetch hit time and the remainder is greater
(> 32 KB) requests, the media-transfer time (> 8 ms}than the observed fixed overhead times. The media-
dominates. The fixed overhead is amortized over dransfer rate is not the limit because of the delay be-
larger number of bytes and the SCSI transfer rate isveen requests. Without the delay, the measurements
faster (> 2x) than the media-transfer rate. We measshowed larger variation and the total time was not

Table 3 — Variation across disk generation Narrow-ST15150N Fast-Wide- Ultra-Wide-

- The elpsed time in ms for a cache hit apd ST15150W ST34371W

prefetch hit of varying request sizes directlySize Cache | Prefetch| Cache | Prefetch| Cache | Prefetch
Times are measured from an ASPI driver Hit Hit Hit Hit Hit Hit

program issuing SCSI commands and by5K 0.96 0.56 0.93 0.59 8.14 0.30
passig the NT file gstem. For the l@e | 1K 1.01 0.63 0.97 0.59 8.14 0.32
request sizes, the drive igiven sufficient| 2ok 1.11 0.75 1.02 0.58 8.14 0.34
time between muests to ensure that the g4k 1.33 0.93 1.13 0.61 8.13 0.40
request is alwgs satisfied fromprefetch| gk 1.75 1.38 1.36 0.86 8.13 0.51
buffers and not limited Yo media transfer gk 263 295 1.81 1.31* 8.13 0.74*
rates. Surisingly, the cache hit times a €30k 4.35 3.093* 275 2 25* 8.13 1.22%
always larger than the prefetch hit times. 64K 16.50 7 30* 16.50 4.05* 815 2 15*

ured the fixed overhead component for three generdully accountable to media transfer. The total time
tions of Seagate drives: the Narrow 15150N, the Fas&ppears to be due to a combination of prefetch hit and
Wide 15150W, and the Ultra-Wide 34371W. Table 3new prefetch. A 64KB request may span up to three
shows the results. The cache hit data were obtained laisk tracks and at least that many prefetch buffers.
reading the same disk blocks repeatedly. The prefetcWhether or not the disk prefetches beyond the track
hit column was obtained using the benchmark programecessary to satisfy the current request is unclear and
to sequentially read a 100 MB file. To ensure that thdikely to be implementation specific. Whether or not
prefetched data would be in the drive cache at althe disk can respond promptly to a new SCSI request
times, a delay was inserted between SCSI requests fathen queuing a new prefetch is also unclear.

) . N
those transfers marked with asterisks (*). Intelligence and caching in the drive allows overlap

We expected that the cache hit case would be a simpénd parallelism across requests so simple behavioral
way to measure fixed overhead. The data are alreadyodels no longer capture the behavior. Moreover,
in the drive cache so no media operation is necessargirive behavior changes significantly across imple-
The results, however, tell a different story. The preimentations [Worthington95]. While the media-transfer
fetch hit times are uniformly smaller than the cache hilimit remains a valid half-power point target for bulk
times. The firmware appears to be optimized for prefile transfers, understanding smaller scale or smaller
fetching — it takes longer to recognize the reread as data set disk behavior seems difficult at best.

cache hit. In fact, the constant high cache hit times of

the 34371W imply that this drive does not recognized.2 ~SCSI Bus Activity

the reread as a cache hit and rereads the same fylle used a bus analyzer to measure SCSI bus activity.
track at each request. At 64 KB, the request spamfable 4 summarizes the contribution of each protocol
tracks; the jump in the 15150 drive times may also beycle type to the total bus utilization while reading the
due to media rereads. standard 100 MB file. Comparing the first two col-

The prefetch hit data follow a simple fixed cost plusUMmns: small requests suffer from two disadvantages:

SCsI transfer model up through 8 KB request sizessmall requests spend a lot of time on overheadialf

The SCSI transfer time was computed using the adhe bus utilization (30% of 60%) goes to setting up the

vertised bus rate. The 15150 drives (both Narrow angtansfer. There are eight individual 8KB requests for

Fast-Wide) have fixed overhead of about 0.58 milli-each 64KB request. This causes the increased arbitra-
tion, message, command and select phase times.



Table 4 — SCSI Activity by Phase For Phase 8KB Requests 64KB Requests

8KB requests, only 45% of the SCSI bus 1 Disk 1 Disk 2 Disks 3 Disks
is data transfer (column 2). The balance Arbitrate 1.1% 0.4% 0.6% 0.4%
goes to SELECT/RESELECT activity and  Arbitrate Win 0.6% 0.2% 0.3% 0.2%
parameter messaging. Larger requests Reselect 0.2% 0.1% 0.1% 0.1%
make much more efficient use of the hus Select 25.204 0.2% 0.8% 4.4%
- for 64KB requests, utilization drops By (Re)Select End 0.3% 0.1% 0.1% 0.1%
half and data transfer makes up almpst Message In 18.5% 7.4% 11.4% 9.1%
90% of that time (column 3). When mofe Message Out 5 5% 1.4% 2.8% 3.6%
disks are added, this efficiency drops Command 2 1% 0.5% 1.0% 1.1%
somewhat in favor of more message traf- Data In 44.9% 89 3% 82 2% 80.4%,
fic and SELECT activity. The thre.e.-di K Data In End 0.7% 0.3% 0.4% 0.2%
system reaches over _99% bus ut|||z_at O hata Out i i i i
andconsumes significantly more tirme Data Out End - § : :
in SELECT(column 5).
Status 0.7% 0.2% 0.3% 0.4%
Bus Utilization 59.8% 30.1% 67.8% 99.3%

Small requests spend little time transferring user 5.3 Allocate
data. At 64KB, 90% of the bus utilization is due to
application data transfer. At 8KB, only 45% of the bus
time is spent transferring application data.

Unbuffered file writes have a serious performance
pitfall. The NT file system forces unbuffered writes to
be synchronous whenever a file is newly created and
The last two columns of Table 4 show the effects ofyhenever the file is being extended either explicitly or
SCSI bus contention. Adding a second disk doublegy writing beyond the end of file. This synchronous
throughput but bus utilization increases 125%. Thawrite behavior also happens for files that are truncated
extra 25% is spent on increased handshaking (SHspecifying theTRUNCATE_EXISTING attribute atcre-
LECT activity and parameter passing). The SCShierile()  or after open wittsetEndOfFile() ).

adapter is pending requests to the drives and must re-

SELECT the drive when the request can be satisfieés illustrated in Figure 12, allocation _severely impacts

by the drive. More of the bus is consumed coordinat@Synchronous 10 performa_lnce. The file system allows
ing communication among the disks. Adding a thirgonly one request outstandln_g to the_volume. If the ac-
disk increases throughput and fully consumes the SCSESS Pattern is not sequential, the file system may ac-
bus, as discussed in Section 3. The SELECT activitj“@lly zero any new blocks between requests in the
increases again, further reducing the time available fogXt€nded region. Buffered sequential writes are not as
data transfer. The overall bus efficiency decreases aeverely affected, but still benefit from preallocation.

disks are added because more bus cycles are requirkgt€"ding a file incurs at most about a 20% through-
coordinate among the drives. put penalty with small file system buffered writes.

There is one notable excep-

20 Figure 12 — File Allocate/Extend| tion. If you use tiny 2 KB
Allocate/Extend While Writing Behavior — When a file is beip| requests, allowing the file
extended (new space allocated at thesystem to allocate storage
end), NT forces ynchronous writel dynamically actually im-
poSXend behavior toprevent rguests from| proves performance. The
arriving at the disk out-of-order. file system does not pre-read

SeCUI’iy mandates that the Vall.e the data prlor to attemptlng
zero be returned to a reader ofyan to coalesce writes.

byte which is allocated but has npt
yet been written. The fileystem| To maximize asynchronous
must balanceperformance @ainst| write performance, you
the need toprevent programs from| should preallocate the file
allocating files and then reading data storage. If the space is not
) ‘ . ‘ . ‘ " ‘ " ‘ o 128 10 from files deallocated by other use ;. pre-allocated, the NT file

Request Size (KB) The extra gllocate writes dramati- system will first zero it be-
cally slow write performance.

4-disk write-
8 deep

=
o

1-disk write

=
o

Throughput (MB/s)

o

1 deep equals
8-deep extend




fore letting your program read it. rather than the Disk Administrator applicatfolisk
Administrator limits the allocation size to 512, 1024,
5.4 Alignment 2048, or 4096 bytes, while format command allows
The NT 4.0 file system (using tHedisk mechanism) increments up to 64 KB. The cost of using a 64 KB
supports host-based software RAID 0, 1, andA5 allocation unit is the potential wasted disk space if the
fixed stripe chunk sizeof 64 KB is used to build Vvolume contains many small files; the file system al-
RAIDO stripe sets. Each successive disk gets the nextays rounds the file size to the allocation unit.
64KB chunk in round-robin fashion. The chunk size is .
not user-settable and is independent of the number & Summary and Conclusions
size of the stripe set components. The file system allofhe NT 4.0 file system out-of-the-box sequential 10
cates file blocks in multiples of the file systattoca-  performance is good: reads are close to the media limit
tion unit chosen when the volume is formatted. Theand writes are near the half-power point. This per-
allocation unit defaults to a value in the range offormance comes at some cost; the file system is copy-
512 bytes to 4 KB depending on the volume size. Théng every byte, and coalescing disk requests into 64
stripe chunk and file system allocation units are totallykKB units. Write throughput can be nearly doubled by
independent; NT does not take the chunk size intenabling WCE, although this risks data corruption, and
account when allocating file blocks. Thus, files on asimilar results can be achieved by using large requests
multiple-disk stripe set will almost always be mis-and issuing asynchronous requests. NT file striping
aligned with respect to stripe chunk size. across multiple disks is an excellent way to increase
Figure 13 shows the effect of this misalignment.throughpm’ t_)Ut ?n o_rd_er to take advanta_ge of t_he avaik-
Alignment with the stripe chunk improves perform- able parallelism; striping must be combined with large
ance by 15-20% at 64 KB requests. A misaligneqand deep asynchronous requests.
64 KB application request causes two disk requestan application can saturate a SCSI bus with three
(one of 12 KB and another of 52 KB) that must bothdrives. By using multiple SCSI busses, it can saturate a
be serviced before the application request can conPCI bus. By using multiple PCI buses, it could saturate
plete. As shown earlier, splitting application requestshe processor bus and memory subsystem. If the sys-
into smaller units reduces drive efficiency. The drivetem configuration is balanced (disks do not saturate
array and host-bus adapter sees twice the number bfisses, busses do not saturate), the NT file system can
reach the half-power point. In fact,

__ Alignment, 4-disk (Ultra), 3-deep Figure 13 — Alignment Across| applications can reach the sum of the
—— Cnatgned Read P Disks in a Stripe Set— The per-|  device media limits by using a com-
e e fs?rr_r;::r;e r?lz _‘Z zfm?;ri% ttg ;hi . bination of (1) large request sizes, (2)
I n‘e fle‘ I u I I
25}| g Unaligned wite | that is mis-alined lty 12KB. If deep asynchronous requests, (3)

» / requests plit across stpe set ¥VC|§ (4) striping, and (5) unbuf-
/ step boundaries, read perform- ered 10.

Throughput (MB/s)

) o ance. carn be VEdUCEdJOmeaW Write performance is often signifi-
20% and writes ¥ 15%. The| cantly Jower than read performance.
5 effect is more pronounced with |8

The main pitfalls in writing files are:
(2) if a file is not already allocated,
the file system will force sequential

writing in order to prevent applica-

requests and some of those requests are small. As thens from reading data left on disk by the previous file
SCSI bus becomes loaded, the performance degradgsing that disk space (2) if a file is allocated but not

tion becomes more noticeable. When requests are igyncated on open, then smaller than 4 KB buffered
sued 8-deep, there are eight 64 KB requests active gfites will first read a 4 KB unit and then overwrite

any given time. In the misaligned case, there are 1f3) if the stripe chunk size is not aligned with the file
requests of mixed 12 KB and 52 KB sizes to be coorsystem allocation size, large requests are broken into
dinated. two smaller requests split across two drives, which
Misalignment can be avoided by using the NT filedoubles the number of requests to the drive array.
systemformat command at the command prompt

requests outstandin because
2 4 8 16 32 64 128 192 there is more activjvt on the
Request Size (KB) SCSI bus and more contention.

2 A command of the formformat e: /fs:ntfs
/a:64k ' to create a file system with 64 KB allocation.



The measurements suggest a number of ways of doinge have not explored the tradeoffs and overheads of
efficient sequential file access: using the other methods. This analysis focused on a
. Larger requests are faster. Requests should bsélfngle ben_chmark application issuing a smgle_stream
) ) of sequential requests. A production system is likely to
at least 8 KB, 64 KB if possible. o i
have several applications competing for storage re-

« Small requests consume significantly moresources. This complicates the model since the device
processor time per byte than larger ones. 2 KB rearray no longer sees a single sequential request stream.
guests consume more than 30% of the processor
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