
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

A Transparent Checkpoint Facility On NT

Johny Srouji, Paul Schuster, Maury Bach, and Yulik Kuzmin
Intel Corporation

A Transparent Checkpoint Facility On NT

Johny Srouji
Johny.Srouji@intel.com

Paul Schuster
Paul.Schuster@intel.com

Maury Bach
Maury.Bach@intel.com

Yulik Kuzmin
Yulik.Kuzmin@intel.com

Intel Corporation, Israel Design Center

Abstract

With the increased use of networks of NT workstations
for long-running engineering applications, process
checkpointing and process migration can avoid wasted
computer cycles and improve system utilization. The
problem we solve is how to capture and reconstruct
process state transparently and efficiently without
affecting the correctness of the application.

A checkpoint facility enables the intermediate state of a
process to be saved to a file. Users can later resume
execution of the process from the checkpoint file. This
prevents the loss of data generated by long-running
processes due to program or system failures, and it also
facilitates debugging when the bug appears after the
program has executed for a long time.

This paper describes the implementation of a
checkpoint library that permits users to save temporary
state of long-running multi-threaded programs on a
Windows/NT system and to resume execution from the
checkpointed state at a later time. Our Windows
implementation is the first such implementations that we
are aware of for this operating system. Our
implementation is portable, maintains good
performance, and is transparent.

The checkpoint facility is currently used in several major
internal projects at Intel.

1. Introduction
This paper describes a checkpoint facility for long-running
programs on Windows/NT. The checkpoint facility
permits users to save the state of a running process at
arbitrary points of execution and to resume execution
from the saved state at a later time. This facility is
important for long-running processes, so that users can
capture intermediate results of processes that do not run to

completion because of machine or application failure. If a
long-running processes is interrupted before completion
but after a checkpoint, the user can resume execution from
an intermediate state instead of having to re-run the
process from start. Checkpointing also gives developers
great leverage when debugging long-running processes;
they can debug from a point deep in the run or change
input data after run time, rather than having to restart
programs from the beginning. Finally, checkpointing is an
important milestone in the development of a facility for
process migration, whereby processes can be halted on
one machine, moved to another, and continue execution
transparently.

Our checkpoint facility is non-intrusive to user programs,
in that the programmer need not change any code to save
checkpoints during execution. Users can resume
execution from the point of the checkpoint and receive the
same results they would have received without
checkpointing, subject to changes in the run-time
environment that may have occurred before the program is
resumed. Of course, processes can continue to execute
after completing a checkpoint.

Process migration improves the overall utilization of
resources to achieve high performance, and enhance fault
tolerance by providing the capability to move work from a
failing machine.

The checkpoint system currently works on Windows/NT
and on UNIX (AIX and FreeBSD) systems for several
long-running simulation applications, but nothing
precludes use of the checkpoint facility in other
environments. This paper describes our NT
implementation.

2. Design Goals
To ensure application transparency of process
checkpointing, it is necessary to capture the process state

and restore it later. Thus, the problem we solve is how to
capture and reconstruct the process state efficiently
without affecting the correctness of the application. Our
implementation is portable, transparent to the user, and
provides good performance.

The following high level design goals for the process
checkpointing facility were followed:

• Transparency

• Our implementation does not require availability of
user source to run the checkpoint utility. User
applications need only link to the checkpoint library
DLL, which will automatically change the startup
routine and system call import table. Changing the
startup routine allows us to inject optional checkpoint
specific command line flags in the application and
initialize checkpointing. Changing the system call
import table allows us to wrap system API calls to
preserve state across a checkpoint.

• Correctness

• Process execution gives the same results whether or
not checkpoints are taken at runtime. Resuming a
process from a checkpoint provides the same result as
the original execution. We used a regression test suite
that contains real application linkage as well as
specific test cases to ensure that our checkpoint
library is correct.

• Minimal Performance Impact

• The checkpoint facility writes the various memory
segments of the application to a checkpoint file.
Elapsed time is therefore directly proportional to
process size. Figure 1 shows benchmark for a typical
application sizes:

 Process Size Checkpoint File Time to Checkpoint

 10 MB 10648 KB 4 sec

 20 MB 20888 KB 9 sec

 30 MB 31128 KB 15 sec

 50 MB 51608 KB 21 sec

 Figure 1 - Checkpoint Performance

•

• In our implementation, we wrap certain system and
library API calls so that we can save state
information. This adds a minimal overhead to the
application. Figure 2 shows the average overhead for
typical wrapped calls for 1 million consecutive calls
of each function:

 Library Call Overhead

 CreateFile,CloseHandle 6.8 x 10-5 sec

 WriteFile 1.5 x 10-5 sec

 malloc, free sequence 0 sec

 Figure 2 - Checkpoint Overhead

• Portability

 Our checkpoint facility runs on Windows/NT, AIX
and FreeBSD UNIX systems. We use a similar user-
level methodology on all OS implementations, which
has proved to be easily portable, but of course there
are some code differences over OS implementations.
Our NT implementation contains a few, small
assembly routines written on Intel architecture, which
are easy to port to other NT platforms. No
application modifications are required.

• Multiple Thread Support

Our solution supports checkpointing of multi-
threaded Windows applications.

3. Architecture
The following block diagram provides a high level
architecture of the checkpoint library.

 User Application

 Checkpoint Startup Code

 Save &
 Resume
 State

Checkpoint
API System & Library Call Stubs

Figure 3 - Architecture

The library is implemented with two components:

1. Loader - a program that loads the user program into
the operating system. We use this program because
NT’s virtual addresses allocations are affected by the
length of the command line arguments. We need to
ensure that the same virtual addressing is used at
process resume regardless of the command line.

2. Checkpoint DLL - the main program that sets up
wrappers to system and API calls in the user’s inary,
dumps the process state to a checkpoint file, and
resumes execution of a process from a checkpoint
file.

System and library API calls made by the application are
redirected to versions provided by the checkpoint library.
This allows system state held by the operating system on
behalf of the process (such as open file handles) to be
saved and recreated over a checkpoint. We use this
“wrapper” method of saving library and system call state
information, as it is portable between different operating
systems.

When the operating system completes initialization of a
user application, it loads the checkpoint DLL that
changes the entry point of the application, so that
checkpoint initialization routines will be called instead of
the user program. The checkpoint DLL checks whether a
process dump or resume is required. For a process dump,
the checkpoint DLL updates the process import table to
inject the API wrappers. Then the DLL creates a new
thread for the program, which will be responsible for
dumping the process and for timer notifications for
periodic checkpointing. When all initialization procedures
are completed, control is passed to the original user code
entry point. For a process resume, the checkpoint DLL
restores the state of the application when it was dumped,
including threads, memory and system objects. If further
checkpointing is required, the DLL proceeds as above;
otherwise control is simply given to the resumed user
code. Figure 4 shows a high level outline of the
implementation. The checkpoint-specific arguments
provide user run-time control over the checkpointing.

Figure 4 - Startup Code

Checkpoint API calls are also available to the application
programmer so that checkpoints can be requested at
critical points in the application code.

As described above, linking an application to the
checkpoint DLL library involves changing the application
entry point. There is no need to recompile the user
application or make any changes to the code.

4. Interface
The checkpoint facility provides a user-level interface and
an API to the checkpoint capabilities.

4.1 Users Interface
The build process replaces the application’s startup
function with the checkpoint DLL startup code. As we
have described, this startup code adds checkpoint specific
options to the application so the user can control
checkpoint behavior at run time. Regular application
options are added after the checkpoint options.

The following checkpoint command line options are
supported:.

• loader <progname> -chkpt_P <period>

 checkpoint the process every period seconds

• loader <progname> -chkpt_R <file>

 resumes process execution from the state previously
checkpointed in file

• loader <progname> -chkpt_D <dir>

 write checkpoint files to directory dir

• loader <progname> -chkpt_X <file>

extract header information from checkpoint file

4.2 Developer Interface
The checkpoint facility defines the following API call:

_chkpt_now (char *filename)

This function checkpoints process state to a file using the
given filename. If passed a NULL string a standard
sequential naming convention is used. In case of error, an
external variable _chkpt_errno is set to the corresponding
error number and may be used by the calling function.

5. Process State
Checkpointing and resuming a process should be
transparent so that, as far as the application code is
concerned, the checkpoint never happened.

To achieve transparency, the entire process state must be
captured at checkpoint time and fully restored when the

int
startup_algorithm ()
{
 process_chkpt_args();

 if (checkpointing) {
 if (chkpt_periodic)

 set_chkpt_periodic(period);
if (chkpt_on_signal)
 set_chkpt_on_signal(signum);

 }
 else if (resume)
 _chkpt_resume(dumpfile);

 return((int)
_chkpt_user_main(argc,argv,envp));

}

process is resumed. Figure 6 shows the components of
typical process state, which we explain from the bottom
up.

Program Text
Data Regions

Threads Stacks

User Credentials

Process Accounting

CWD, etc.

alarm(), sleep(), …

CreateFile(), ReadFile()

OpenEvent()

Sockets, pipes

USER32 + GDI32calls

licenses

User Memory

System State

System Calls

State of System Objects

Threads Synchronization

GUI

External

Threads Contexts

Network Communications, RPC

Figure 6 - Process State

Program text is the application object code, which is
typically memory mapped from the executable file on
disk. Data regions include statically and dynamically
allocated data, for example calls to malloc or new.
Program stack and the value of registers, stack pointer and
program counter complete the memory components of the
process state.

System state is held by the operating system on behalf of
the process. It includes user credentials such as the
process ID and process owner, various accounting data
(for example cumulative CPU usage), and other
miscellaneous state such as the current working directory.

At runtime, the process may use system calls that maintain
state, for example Sleep suspends a thread for a
specified time interval. If in the meantime the process
checkpoints, the checkpoint DLL must capture this state.
An interesting problem with Sleep is whether resume
should honor the original request with respect to real time
or process run time at resume. Our implementation
assumes process run time, although the true definition of
this API call is real time.

A process may have open files and inter-process
communication channels with data in transit at checkpoint
time. Graphics applications will have additional state; for
example a graphic application may have called the Win32
API GetWindowDC() to obtain a device context.
Finally some processes such as those that may have

requested a floating license will have state held in some
external entity.

As we move up the layers of Figure 6, process state
becomes progressively harder to capture. A basic
checkpoint implementation can be built by capturing only
the lower user memory layers. However, a practical
checkpoint facility must capture at least parts of the
system state, system calls and open files.

6. Implementation
We now describe the implementation of the process
checkpoint facility.

6.1 Checkpoint Initialization
The checkpoint library first needs to assume control of the
program at execution time to check for any specific
command line arguments and to create a special
checkpoint control thread.

We use a self-modifying code technique to change the
executable’s entry point to gain control transparently at
program startup. When a program is executed in NT, the
system library calls each DLL’s initialization routine
(DllMain) before passing control to the program’s entry
point. The checkpoint DLL’s initialization routine locates
the program entry point, saves and then overwrites the
existing instructions with a jmp instruction to a
checkpoint specific startup function. The entry point is
easily extracted from the in-memory process image header
which can be located using the GetModuleHandle()
Win32 API.

The checkpoint startup function runs as the program entry
point and parses the command line using the global
__argc, __argv symbols. If checkpoint or resume
mode is requested a special checkpoint control thread is
created. When running in checkpoint mode, the saved
program entry point instructions are restored, checkpoint
command flags are stripped and another jmp instruction is
executed back to the original program entry point. Control
passes to the user code.

6.2 Checkpoint Control Thread
The special checkpoint thread is responsible for
controlling the process checkpoint (dump) and resume.
This thread continuously scans its APC (Asynchronous
Procedure Call) queue waiting for dump or resume
requests to arrive. APC queue scanning is implemented in
the OS core and does not take additional application
cycles.

The library supports two types of checkpointing: periodic
and on-demand (through a checkpoint library API call). In
periodic mode a waitable object is created and each time

the wait period elapses, the dump APC is placed on the
checkpoint thread’s APC queue. With on-demand mode,
the checkpoint API _chkpt_now() function call creates
a dump APC with 0 wait period.

6.3 Process Dump
On receipt of a dump APC call, the checkpoint thread
suspends all other program threads and saves their context
by calling GetThreadContext(), then opens a new
checkpoint file. A naming sequence is used to ensure that
filenames are unique, and that the checkpoint order can be
determined even when a checkpoint is taken in a process
that was itself resumed from a checkpoint.

A header is written to the file with global information
about the process such as the process name, current
working directory, time of checkpoint and the command
line arguments. Process state is saved to the file as
described below. The checkpoint thread then resumes all
suspended threads simultaneously before putting itself into
a blocking wait on the next APC queue event.

The following sections describe how we capture state of
the individual components of the process.

• Text Segment

We assume the original object file is available at resume,
and so the program text segment does not need to be
saved. We check time stamps on process resume to verify
that the original object file has not changed.

• Data Segments
The checkpoint routines write the contents of the process
data segments to the checkpoint file. The difficulty is to
identify the start and end virtual addresses for each
segment.

Static data regions are allocated when the process image is
loaded. The base address of the process image is located
using the GetModuleHandle() Win32 API. The
static data regions can be located from this base address
with sequential calls to the VirtualQuery() Win32
API. All writeable regions that have the same base
allocation address contain static data. We prefer this
technique over the simpler method of extracting location
information on static data regions from the image header,
because it is more reliable: A developer can add and
change static region names at link time, making them
impossible to identify.

We make an extra check, so that we do not include the
static import table data, as this has been modified by our
checkpoint DLL (see Section 6.4.2) The import table
address and size can be extracted from the in-memory
process image header.

Dynamic data segments are allocated in several ways.
Heap space is allocated with HeapAlloc(),
GlobalAlloc() and LocalAlloc() Win32 API
functions. Heap allocations can be located using the
GetProcessHeaps() Win32 API. For efficiency
and to avoid problems at resume, all heaps expect for that
used by the checkpoint DLL (allocated by the CRT
library) are saved. The checkpoint DLL heap can be
identified using the address of the global symbol
_crtheap.

Dynamic memory allocations through calls to the
VirtualAlloc() Win32 API are redirected to a
checkpoint wrapper stub, which saves all address
allocation information.

• Thread Execution Context and Stack Segment
 The execution context of each thread was saved at the
beginning of the dump sequence and is simply written to
the checkpoint file along with the contents of each thread’s
stack.

 The end address of each stack is located using the stack
pointer (ESP) contained in the thread execution context.
Appropriate calls to VirtualQuery() are used to
locate the start address and size of the stack.

• System State
Information needed to reconstruct system state changed by
Win32 API calls is written to the checkpoint file. This
information is captured through our technique of
redirecting Win32 API calls through wrapper functions
discussed in Section 6.5. For each wrapped API we save
the call parameters, thread ID and any call specific
information.

6.4 Process Resume
An application resumes by reconstructing its state, using a
previously created checkpoint file. At startup the
checkpoint DLL checks for the resume command line
parameter. If present, a resume APC is placed on the
checkpoint thread’s APC queue.

The checkpoint thread opens the file that contains the
process checkpoint data and examines the file header to
ensure the checkpoint was created by a prior invocation of
the currently running object code. It then reads data from
the checkpoint file and reinstates system state including
thread creation, execution context, stack and data
segments. After state has been restored, all threads are
simultaneously resumed and the process continues from
where it was checkpointed. We discuss these steps in more
detail below.

• Process and Thread Creation
Process creation is implemented by invoking the original
application with the -chkpt_R argument, which restores
the original text segment and transfers control to the
resume APC in the checkpoint thread.

The checkpoint thread reads saved Win32 API call state
information from the file and uses the information on calls
to the CreateThread() Win32 API routine to create a
new set of threads. New and old thread ID’s are saved in a
special association table, allowing for translation by
subsequent calls through Win32 API function wrappers.

Each newly created thread is put in a mode similar to the
checkpoint thread, continuously waiting for APC’s to
execute.

• System State

For each saved Win32 API call, we use the thread
association table to map the original calling threadID to a
new thread. The original parameters and name of the API
function to call are sent to the thread using
QueueUserAPC(). The thread executes the appropriate
Win32 API function. API calls are sent to the threads in
the same order they were originally called.

After all saved Win32 API calls have been re-invoked, a
special APC is sent to each thread, which respond by
executing WaitForSingleObject() on a common
event object. This object is used to wake all threads
simultaneously once all process state has been recovered.

• Data Segment and Thread Context Resume
The checkpoint thread now restores data and stack
segments. Data is read from the checkpoint file and
written directly to memory to the saved addresses of each
process region. When all memory related data is
recovered, thread contexts are restored using the
SetThreadContext() API.

• Process Control Resume

At this point all state has been restored. All threads are
waiting on a single event object and their contexts,
including their instruction pointer, are set to the
checkpointed values. The checkpoint thread sets the
common event object and all the threads simultaneously
resume from where they were suspended by the original
dump APC. Finally, the checkpoint thread puts itself to
sleep, and waits for further Dump APC calls.

6.5 System Calls
Some Win32 API calls such as CreateThread(),
CreateFile(), and CreateSemaphore() change
system state for a process. These API calls present a
problem for checkpointing, since they represent state that

is held within the operating system on behalf of a process.
Without privileged access to kernel data space, this state
is difficult to capture and restore.

To remove the need for privileged kernel access, we adopt
a technique of redirecting certain Win32 API calls through
function wrappers. The wrappers save enough call
information that we can recreate state upon resume. For
example knowing the name of an open file and the current
offset, we can reopen the file during resume, seek to the
saved offset, and craft the original file handle to correctly
access the reopened file in all subsequent Win32 API
calls.

It is important to do this at the Win32 API interface
(KERNEL32.DLL) boundary so that we do not need to
deal individually with the thousands of library functions
provided by the NT programming environment. For
example by wrapping the VirtualAlloc() Win32
API call we do not need to deal with the malloc family
of library functions.

6.5.1 Redirecting Win32 API Calls
In Windows NT, each API call is redirected by the linker
to the IAT (Import Address Table), from where another
jump is taken to reach the real API function handler. The
basic technique of wrapping Win32 API calls is to change
the addresses in the IAT, so the second jump will lead to
the appropriate checkpoint wrapper, which will collect
necessary information about the call before the real API is
executed.

One method to do this would be to simply redirect the call
to our routine by changing the symbol. Our routine could
then call the Win32 API directly. However this method
does not work because the checkpoint routine adds a
frame to the stack, and the real API will get an incorrect
stack pointer. Registers may also be changed by the
checkpoint wrapper routine. To avoid this problem, we
again used a self-modifying code technique. For each
wrapped Win32 API, a small code fragment is created at
run-time, where we save the registers and execute the
corresponding checkpoint wrapper function. After the
wrapper returns, the registers are restored, and control is
passed to the real API handler through a jmp.

Since the real Win32 API function is now called from the
same stack frame as if it was called directly, the
checkpoint wrapper redirect is transparent to the user code
and the Win32 API function.

6.5.2 Supported System Calls
We support the following important Win32 API functions
in the current version of the checkpoint library:

Figure 7 – Checkpointed Win32 API Functions

Another 26 functions are tested, and could be used with
the checkpoint facility.

7. Comparison to Similar Work
There are several existing solutions to the checkpoint and
process migration problems on UNIX, and we choose to
discuss a few of them. We could not find any similar work
on NT.

7.1 MPVM
MPVM, an extension of PVM, is a research project at Oak
Ridge National Laboratory that allows parts of a parallel
computation to be suspended and subsequently resumed
on other workstations by migrating process state from one
machine to another. Migration transparency is addressed
by modifying PVM libraries and daemons and by
providing wrapper functions to certain system calls so that
the migration occurs without modifying the application
code. The migration mechanism is implemented at user
level. MPVM has the following limitations:

• The developer must explicitly create executable files
that are statically linked to support shared libraries.

• MPVM assumes use of a global file system.

 7.2 Condor
 Condor is a batch facility running on UNIX systems that
allocates processes to idle work stations. It performs
process migration by checkpointing a process to a file,
transferring the file, and then restoring the process from
the checkpoint file. No special programming is required,
but user applications need to be re-linked with Condor
libraries.

 Condor has several limitations:

• Condor does not support all system calls and library
calls. Signals and signal handlers are not supported,
and popen is not supported..

• All file operations must be idempotent - read only and
write only file accesses work correctly, but programs
which read and write a same file may not checkpoint
transparently.

 7.3 Libchkpt
 Libckpt shares many goals of our checkpoint facility, but
they do not support a complete set of system wrappers.
They support file system calls such as open, close, read
and write, but they do not support popen, or signals. Our
UNIX version of the checkpoint facility does support
popen and signals.

 7.4 MOSIX
 MOSIX is a multi-computer operating system that
supports transparent, preemptive process migration and
load balancing for efficient utilization of overall resources
and to balance work distribution. The MOSIX
enhancements are implemented at the operating system
kernel level without changing the UNIX interface, and
therefore it is completely transparent to the application
level. It uses PVM as the distribution engine. The process
migration in MOSIX is dynamic and preemptive, that is it
responds to variations in workstation load by migrating
processes from one node to another at any stage of the life
cycle of a process. The granularity of the work
distribution in MOSIX is the UNIX process. The
processors must be homogeneous (from the same family)
to allow process migration. MOSIX has the following
limitations:

• It is implemented at the kernel level and therefore it is
more complex and requires source code availability.

• It is a preemptive system that does not provide the
capability to dump/resume user processes at arbitrary
times.

8. User Experience
Many internal Intel simulators and program environments
use the checkpoint facility on Windows NT and UNIX
(AIX and FreeBSD) systems. Developers typically
checkpoint their work every hour, permitting them to
focus on a problem area that is discovered deep into a
run. When a bug is discovered, they resume execution
from the nearest checkpoint, sometimes set up finer-
grained checkpoints, and have been able to debug their
programs with greater ease than was the case before use of
the checkpoint facility.

9. Limitations
The following limitations exist in our current checkpoint
implementation.

9.1 External File Persistence
Where the runtime environment of a program depends on
some external data such as a file or network connection,
the checkpoint facility cannot correctly restore state if the
corresponding media is unavailable or modified at process

EnterCriticalSection, InitializeCriticalSection,
LeaveCriticalSection

CreateThread, GetStdHandle

HeapCreate, HeapAlloc, VirtualAlloc

CreateFile, ReadFile, WriteFile, CloseHandle

resume. For example if some input file is deleted after a
checkpoint is taken, the resume process will be unable to
reopen the file and recreate the file handle that may be
necessary at a later stage in the process execution.

9.2 Direct System Object Access
The current design of the checkpoint utility cannot save
the state of system objects that were changed in a way
other than calling Win32 system APIs (provided by
KERNEL32.DLL). For example:

• The checkpoint utility can’t set API wrappers on
dynamically loaded system APIs that are called using
the pointer returned by GetProcAddress().
Those calls don’t go through the import table, and so
our current method of wrapping calls will not work.

• Checkpoints may fail if a user program calls
undocumented NTDLL.DLL services or calls "int
2Eh" to get system services.

• We cannot checkpoint kernel mode drivers or
programs that dynamically modify kernel drivers.

9.3 Direct System Data Access
The checkpoint facility assumes that user programs do not
manually modify system data that is maintained in virtual
space of the program by system DLLs and the operating
system. For example: the data segment of KERNEL.32
DLL. Such modified data will not be restored.

10. Future Development Plans

10.1 Optimization
The current version of the checkpoint system dumps the
entire process state for each checkpoint call. This requires
time proportional to the size of the process, and can
clearly be an expensive operation for large processes. The
developers of the Libchkpt checkpoint system [4] note
that it is possible to speed up checkpointing procedures by
dumping only those pages whose data has changed since
the previous checkpoint call. We may optimize our
checkpoint facility to dump incremental changes to the
process state by using the VirtualProtect API to
write-protecting pages using the GUARD_PAGE facility
to mark the page as accessed, then writing only marked
pages at the next checkpoint call.

10.2 Multithreaded API Call Support
As discussed in section 6.5, we support checkpoint of
applications that use system API calls by call redirection
through our code, which captures calling thread ID, call
parameters and return values. We then use this data to
reconstruct system state by re-calling the system API

functions from the context of the original thread at process
resume. At checkpoint, all threads are suspended
regardless of whether or not they are in the middle of a
system API call.

This technique can be problematic as demonstrated in the
following example. Suppose a program thread calls the
HeapAlloc()API to allocate heap memory. This API
will reserve a memory segment for the user data and write
some meta-data structures to memory for managing the
allocation. If we suspend the thread in the middle of this
API, the checkpoint thread will have recorded that there
was a call to HeapAlloc() and the checkpoint routine
that saves memory segments may write the allocated
segments to the checkpoint file before the
HeapAlloc() API has finished writing the meta-data.

Upon resume, we will restart all the API calls, and
HeapAlloc() will be called and setup the correct
memory segment and meta-data structures. However the
checkpoint code will then restore memory segments,
which will overwrite the good meta-data structures with
the in-complete saved structures.

We need to get a better solution to restore threads that
were check-pointed part way through system API calls.
One possible direction is to write an NT kernel driver
which would be able to save the exact instruction at the
time of checkpoint and at resume place a breakpoint at the
same instruction. When all state has been restored and the
program threads are resumed, they would continue at the
exact point where they were check-pointed.

10.3 Enhanced System Calls Support
The type of applications the checkpoint library supports
are heavily dependent upon the range of system API calls
that can be supported over a checkpoint resume operation.
In our work we support system calls used by a number of
internal applications.

Of particular interest, but highly difficult to implement, is
support for system API calls that involve multiple
processes such as those used for named pipes, Windows
sockets, RPC, and COM Interfaces. It is difficult to
checkpoint several processes simultaneously and to
capture data that may be in transit between processes
(such as on a network), and later restore state
transparently. Some distributed process checkpoint
research has been done, but is generally application
specific.

11. Conclusion
Intel engineers run many simulators for research,
specification and validation of new chips. Simulators

typically run a long time, sometimes for weeks, to produce
results. It is not uncommon for simulations to fail to
complete because of system crashes, environmental
failures such as electricity outages or, last but not least,
programmer bugs. Employment of checkpoint procedures
minimizes the costs of these failures by retaining results of
a run until the last good state before failure, by permitting
execution to restart from an advanced point of execution
rather than from the beginning of the run, and by
providing an advanced state for debugging that permits
programmers to correct their programs more easily for
future long-run use.

This paper described the implementation of a checkpoint
facility that is being used in applications that run on NT
systems. The checkpoint facility is a general purpose
library that can be linked and used with many
applications, saving developers the need to develop ad
hoc solutions to checkpoint their programs. The
checkpoint facility runs transparently to the application,
and programmers do not have to change source code to
obtain process checkpoints. Users have great flexibility in
choosing the names and locations of checkpoint files and
the frequency and circumstances under which checkpoints
are created.

Our users have reported great success with our checkpoint
facility, primarily in debugging long-running processes.

Acknowledgment
We would like to thank those who supported and used our
development of checkpoint facility: Avi Giora, Shalom
Goldenberg, Ariel Berkovits, Yosi Mor, Amit Dagan,
Yaron Sheffer and Eric Koldinger.

References
 [1] Jeremy Casas, et al. MPVM - A Migration Transparent

Version of PVM. Computing Systems, vol. 8, no. 2, pp.
171-216, Spring 1995.

[2] Allan Bricker, Michael Litzkow, and Miron Livny: Condor
Technical Summary, Version 4.1b, University of Wisconsin -
Madison, 1991.

[3] Barak A., Braverman A., Gilderman I. and La’adan O.,
Performance of PVM with the MOSIX Preemptive Process
Migration, Proc. 7th Israeli Conf. on Computer Systems and
Software Engineering, Herzliya, pp. 38-45, June 1996.

[4] J.S. Plank, M. Beck, and G. Kingsley, Libckpt: Transparent
Checkpointing Under Unix, 1995 Usenix Conferencee.

[5] M.J. Litzkow. Remote UNIX: Turning Idle Workstations
into Cycle Servers. In Proc. USENIX summer ’87, Phoenix,
Arizona, June 1987.

[6] K.I. Mandelberg and E. Sunderam. Process Migration in
UNIX Networks. In Proc. USENIX Winter ’88, Dallas,
Texas, February 1988.

[7] R. Alonso and K. Kyrimis. A Process Migration
Implementation for a UNIX System. In Proc. USENIX
Winter ’88, Dallas, Texas, February 1988.

[8] M.J. Litzkow, M. Livny, and M.W. Mutka. Condor - A
Hunter of Idle Workstations. In Proc. 8th Int. Conf. On
Distributed Computing Systems, San Jose, California, June
1988.

[9] James S. Plank, Micah Beck, and Gerry Kingsley. Libckpt:
Transparent Checkpointing under UNIX. In Proc. USENIX
Winter 1995, New Orleans, Louisiana, January 1995.

