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Abstract

With the advent of inexpensive multiprocessor PCs,
multithreading is poised to play an important role in
computationally intensive business and personal com-
puting applications, as well as in science and engineer-
ing. However, the difficulty of multithreaded program-
ming remains a major obstacle. Windows NT support
for threads is well suited to systems programming, but
is too unstructured when multithreading is used for the
purpose of speeding up program execution. In this pa-
per, we describe a system for structured multithreaded
programming. Thread creation operations are multi-
threaded variants of blocks and loops, and synchroniza-
tion objects are based on Boolean flags and integer
counters. With this system, most multithreaded program
development can be performed using traditional se-
quential methods and tools. The system is integrated
with Windows NT and Microsoft Developer Studio
Visual C++. We are developing a variety of applications
in collaboration with other researchers, to demonstrate
the power of structured multithreaded programming on
commodity multiprocessors running Windows NT.  In
one benchmark application (aircraft route optimization),
we achieved better performance on a quad-processor
Pentium Pro system than the best results reported on
expensive supercomputers.

1. Introduction

In the past, high-performance multithreading has been
synonymous with either scientific supercomputing, real-
time control, or achieving high throughput on multi-user
servers. The idea of dividing a computationally inten-
sive program into multiple concurrent threads to speed
up execution on multiprocessor computers is well es-
tablished. However, this kind of high-performance mul-
tithreading has made very little impact in mainstream
business and personal computing, or even in most areas
of science and engineering. Part of the reason has been
the rarity and high cost of multiprocessor computer

systems. Another part of the reason is the difficulty of
developing multithreaded programs, as compared to
equivalent sequential programs.

The recent advent of inexpensive multiprocessor
PCs and commodity OS support for lightweight threads
opens the door to an important role for high-
performance multithreading in all areas of computing.
Dual-processor and quad-processor PCs are now avail-
able for a few thousand dollars. Mass-produced multi-
processors with 8, 16, and more processors will soon
follow. Windows NT [2] can already support hundreds
of fine-grained threads with low overhead, even on sin-
gle-processor machines, and future releases will be even
more efficient. Examples of applications that could use
multithreading to improve performance include spread-
sheets, CAD/CAM, three-dimensional rendering,
photo/video editing, voice recognition, games, simula-
tion, and resource management.

The biggest obstacle that remains is the difficulty
of developing efficient multithreaded programs. Gen-
eral-purpose thread libraries, including the Win32 API
[1][8] supported by Windows NT, are well suited to
systems programming applications of threads, e.g.,
control systems, database systems, and distributed sys-
tems. However, the interface provided by general-
purpose thread libraries is less well suited to applica-
tions where threads are used for the purpose of speeding
up program execution. General-purpose thread man-
agement is unstructured and synchronization operations
are complex and error-prone. The unpredictable inter-
actions of multiple threads introduce many problems
(e.g., race conditions and deadlock) that do not occur in
sequential programming. In many regards, general-
purpose thread libraries are the assembly language of
high-performance multithreaded programming.

In this paper, we describe our ongoing research to
develop a system for structured high-performance mul-
tithreaded programming on top of the general-purpose
thread support provided by operating systems such as
Windows NT. The key attributes of our system are as
follows:



• Structured thread creation constructs are based on
sequential blocks and for loops.

• Structured synchronization constructs are based on
Boolean flags and integer counters.

• Subject to a few simple rules, multithreaded execu-
tion is deterministic and produces the same results
as sequential execution.

• Lock synchronization is provided for nondeter-
ministic algorithms.

• Barrier synchronization is provided for efficiency.
Our system is supported at two levels: (i) Sthreads, a
structured thread library, and (ii) Multithreaded C, a set
of pragmas transformed into Sthreads calls by a pre-
processor. Sthreads is easily implemented as a thin layer
on top of general-purpose thread libraries. The Multi-
threaded C preprocessor is a simple source-to-source
transformation tool that involves no complex program
analysis. Therefore, the entire system is highly portable.

One of the major strengths of our system is that
much of the development of a multithreaded application
can be performed using ordinary sequential methods
and tools. The Multithreaded C preprocessor is inte-
grated with Microsoft Developer Studio Visual C++ [7].
Applications can either be built either as multithreaded
applications (as indicated by the pragmas) or as sequen-
tial applications (by ignoring the pragmas). For deter-
ministic applications, most development, testing, and
debugging can be performed using the sequential ver-
sion of the application. Absence of race conditions and
deadlock can be verified in the context of sequential
execution. Nondeterministic applications can usually be
developed with large deterministic components.

The focus of our work is on commodity multiproc-
essors and operating systems, in particular multiproces-
sor PCs and Windows NT. However, our programming
system is portable across platforms ranging from low-
end PCs to high-end workstations and supercomputers.
For this reason, the value of our work is not restricted to
developers of applications for commodity systems. Our
portable system for high-performance multithreaded
programming also allows for high-end applications to
be developed, tested, and debugged on accessible low-
end platforms.

The remainder of this paper is organized as fol-
lows: in Section 2, we discuss the interface and per-
formance of Windows NT support for multithreading; in
Section 3, we describe our structured multithreaded
programming system; in Section 4, we report in some
detail on one particular application (aircraft route opti-
mization) that we have developed using our system; in
Section 5, we give a brief outline of several other appli-
cations that we are developing; in Section 6, we com-
pare our system with related work; and in Section 7, we
summarize and conclude.

2. Windows NT Multithreading

In this section, we describe the interface and perform-
ance of standard Windows NT thread support. Since our
emphasis is on commodity systems and applications,
Windows NT is the ideal platform on top of which to
build our system for structured multithreaded program-
ming. The following are particularly important to us: (i)
the Windows NT thread interface provides the function-
ality that we require for our system, and (ii) the Win-
dows NT thread implementation efficiently supports
large numbers of lightweight threads.

2.1. Windows NT Thread Interface

Windows NT implements the Win32 thread API. This
interface provides all the functionality that is needed for
high-performance multithreaded programming. How-
ever, because the scope of the Win32 thread API is gen-
eral-purpose, the interface is more complicated and less
structured than is desirable when threads are used for
the purpose of speeding up program execution. For this
reason, we have built a less general, less complicated,
and more structured layer on top of the functionality
provided by the Win32 thread API.

The Win32 thread API is typical of other general-
purpose thread libraries, e.g., Pthreads [6] and Solaris
threads [4]. It provides a set of function calls for creat-
ing and terminating threads, suspending and resuming
threads, synchronizing threads, and controlling the
scheduling of threads using priorities. The interface
contains a large number of constants and types, a large
number of functions, and many optional arguments.
Although all these operations have important uses in
general-purpose multithreading, only a structured subset
of this functionality is required for our purpose.

As with other general-purpose thread libraries,
Win32 thread creation is unstructured. A thread is cre-
ated by passing a function pointer and an argument
pointer to a CreateThread call. The new thread exe-
cutes the given function with the given argument. The
thread can be created either runnable or suspended. Af-
ter creation, there is no special relationship or synchro-
nization between the created thread and the creating
thread. For example, the created thread may outlive the
creating thread, causing problems if the created thread
references variables in the creating thread. Many un-
structured operations are permitted on threads. For ex-
ample, one thread can arbitrarily suspend, resume, or
terminate the execution of another thread.

The Win32 thread API provides a large range of
synchronization operations. A thread can synchronize
on the termination of another thread, or on the termina-
tion of one or all of a group of other threads. Critical



section, mutex, semaphore, and event objects, and in-
terlocked operations allow many other forms of syn-
chronization between threads. There are many options
associated with these synchronization operations, par-
ticularly with operations on event objects. All of these
synchronization operations almost inevitably introduce
nondeterminacy to a program. Nondeterminacy is an
implicit part of most systems programming applications
of threads, but is best avoided if possible in other appli-
cations, because of the difficulty it adds to testing, de-
bugging, and performance prediction.

To summarize, Windows NT supports a rich but
complex set of general-purpose thread management and
synchronization operations. We implement a simpler
layer for structured multithreaded programming on top
of the Windows NT thread interface.

2.2. Windows NT Thread Performance

Lightweight multithreading is an integral part of our
programming model. If multithreaded applications are
to make an impact in commodity software, they must be
able to execute efficiently on systems with differing
numbers of processors, and dynamically adapt to vary-
ing background load conditions. The best way to
achieve this is to build applications with large numbers
of dynamically created lightweight threads that can take
advantage of whatever processing resources become
available during execution. The traditional scientific
supercomputing model of one static thread per proces-
sor on an otherwise unloaded system is not sufficient in
the commodity software domain.

We have performed experiments that demonstrate
that Windows NT supports large numbers of lightweight
threads efficiently. Specifically, on single-processor,
dual-processor, and quad-processor Pentium Pro sys-
tems running Windows NT, we have demonstrated the
following:
• Thread creation and termination overheads are low.
• Synchronization overheads are low.
• Hundreds of threads can be supported without sig-

nificant performance degradation.
• On single-processor systems, multithreaded pro-

grams with many threads can run as fast as equiva-
lent sequential programs.

• On multiprocessor systems, multithreaded pro-
grams with many threads can achieve good speed-
ups over equivalent sequential programs.

We have developed many small and large programs
which demonstrate that multithreaded Windows NT
applications can execute efficiently on both single-
processor and multiprocessor systems, without any kind
of reconfiguration. We have found that good speedups

are maintained with much larger numbers of threads
than processors.

Figure 1: Speedup of multithreaded matrix multiplica-
tion over sequential matrix multiplication on one to
four processors of a quad-processor Pentium Pro sys-
tem.

As a simple example, Figure 1 shows the speedup of
multithreaded matrix multiplication over sequential
matrix multiplication for 1000-by-1000 element matri-
ces on a 200 MHz quad-processor Pentium Pro system
running Windows NT Server 4.0. A straightforward
three nested-loops algorithm is used. Sequential matrix
multiplication takes 50 seconds. In the multithreaded
version, the iterations in the outer loop are evenly parti-
tioned among the threads. (The intention of this exam-
ple is to demonstrate Windows NT multithreaded per-
formance characteristics, not optimal matrix multiplica-
tion algorithms.)  Near-perfect speedups are achieved
and are maintained with large numbers of threads.

To summarize, we have found that Windows NT
efficiently supports large numbers of lightweight
threads. Our structured multithreaded programming
system is implemented as a very thin layer on top of
Windows NT support for threads.

3. A System for Structured Multithreaded
Programming

In this section, we describe the features of our struc-
tured multithreaded programming system. Since it is
beyond the scope of this short paper to describe all the
details of our system, we aim to give an overview of the
fundamental constructs and development methods.

3.1. Overview

We are developing a two-level approach to structured
multithreaded programming in ANSI C [3]. The higher
level is a pragma-based notation (Multithreaded C), and
the lower level is a structured thread library (Sthreads).
In both Multithreaded C and Sthreads, thread creation
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constructs are multithreaded variants of sequential block
and for loop constructs. With Multithreaded C, the
constructs are supported as pragma annotations to a
sequential program. With Sthreads, exactly the same
constructs are supported as library calls. At both levels,
synchronization objects and operations are supported as
Sthreads library calls.

The Sthreads library is implemented as a very thin
layer on top of the Windows NT thread interface. Mul-
tithreaded C is implemented as a portable source-to-
source preprocessor that directly transforms annotated
blocks and for loops into equivalent calls to the
Sthreads library. The programmer has the option of ei-
ther using the pragmas and preprocessor or making
Sthreads calls directly. The Sthreads library and Multi-
threaded C preprocessor are integrated with Microsoft
Developer Studio Visual C++. Building a project auto-
matically invokes the preprocessor where necessary and
links with the Sthreads library.

3.2. Multithreadable Blocks and for
Loops

Multithreadable blocks and for loops are ordinary
blocks and for loops for which multithreaded execu-
tion is equivalent to sequential execution. In Multi-
threaded C, multithreadable blocks and for loops are
expressed using the multithreadable pragma. It is
obvious that the pragma can be applied blocks and for
loops in which the statements or iterations are inde-
pendent of each other. As a simple example, consider
the following program to sum the elements of a two-
dimensional array:

void SumElements(
    float A[N][N], float *sum, int numThreads)
{
    int i;
    float rowSum[N];

    #pragma multithreadable \
            mapping(blocked(numThreads))
    for (i = 0; i < N; i++) {
        int j;
        rowSum[i] = 0.0;
        for (j = 0; j < N; j++)
           rowSum[i] = rowSum[i] + A[i][j];
    }
    *sum = 0.0;
    for (i = 0; i < N; i++)
        *sum = *sum + rowSum[i];
}

Multithreaded execution of the for loop is equivalent
to sequential execution because the iterations all modify
different rowSum[i] and j variables. The arguments
following the pragma indicate that multithreaded exe-
cution should assign iterations to numThreads differ-
ent threads using a blocked mapping. There is a rich set

of options that control the mapping of iterations to
threads.

3.3. Synchronization Using Flags and
Counters

Flags and counters are provided to express deterministic
synchronization within multithreadable blocks and for
loops. Flags support Set and Check operations. Ini-
tially, a flag is not set. A Set operation on a flag
atomically sets the flag. A Check operation on a flag
suspends until the flag is set. Once a flag is set, it re-
mains set. Counters support Increment and Check
operations. A counter has an initial value of zero. An
Increment operation on a counter atomically incre-
ments the value of the counter. A Check operation on a
counter suspends until the value of the counter reaches a
given value. The value of a counter cannot be decre-
mented. The only way to test the value of a flag or
counter is with a Check operation. As a simple exam-
ple, consider the following program to sum the elements
of a two-dimensional array:

void SumElements(
    float A[N][N], float *sum, int numThreads)
{
    int i;
    SthreadCounter counter;

    SthreadCounterInitialize(&counter);
    #pragma multithreadable \
            mapping(blocked(numThreads))
    for (i = 0; i < N; i++) {
        int j;
        float rowSum;
        rowSum = 0.0;
        for (j = 0; j < N; j++)
           rowSum = rowSum + A[i][j];
        SthreadCounterCheck(&counter, i);
        *sum = *sum + rowSum;
        SthreadCounterIncrement(&counter, 1);
    }
    SthreadCounterFinalize(&counter);
}

Without the counter operations, multithreaded execution
of the for loop would not be equivalent to sequential
execution, because the iterations all modify the same
*sum variable. However, the counter operations ensure
that multithreaded execution is equivalent to sequential
execution. In sequential execution, the iterations are
executed in increasing order and the SthreadCoun-
terCheck operations succeed without suspending. In
multithreaded execution, the counter operations ensure
that the operations on *sum occur atomically and in the
same order as in sequential execution. Iteration i sus-
pends at the SthreadCounterCheck operation until
iteration i – 1 has executed the SthreadCounter-
Increment  operation.



3.4. Sequential Development Methods

The equivalence of multithreaded and sequential execu-
tion of multithreadable blocks and for loops allows
multithreaded programs to be developed using ordinary
sequential methods and tools. The multithread-
able pragma is an assertion by the programmer that
the block or for loop can be executed in a multi-
threaded manner without changing the results of the
program. It is not a directive that the block or for loop
must be executed in a multithreaded manner. The Mul-
tithreaded C preprocessor has two modes: sequential
mode in which the multithreadable pragma is
ignored and multithreaded mode in which the multi-
threadable pragma is transformed into Sthreads
calls. Programs can be developed, tested, and debugged
in sequential mode, then executed in multithreaded
mode for performance. In addition, performance analy-
sis and tuning can often be performed in sequential
mode.

The advantages of this approach to multithreaded
programming are clear. However, the programmer is
responsible for correct use of the multithreadable
pragma. Fortunately, the rules for correct use of the
pragma are straightforward and can be stated entirely in
terms of sequential execution. In sequential execution,
accesses to shared variables must be separated by Set
and Check operations or Increment and Check
operations, and the Check operations must not sus-
pend. In multithreaded execution, the synchronization
operations will ensure that accesses to shared variables
occur atomically and in the same order as in sequential
execution. Therefore, multithreaded execution will be
equivalent to sequential execution.

3.5. Determinacy

Determinacy of results is an important consequence of
the equivalence of multithreaded and sequential execu-
tion. If sequential execution is deterministic (which is
usually the case), multithreaded execution will also be
deterministic. Determinacy is usually desirable, since
program development and debugging can be difficult
when different runs produce different results. In many
other multithreaded programming systems, determinacy
is difficult to ensure. For example, locks, semaphores,
and many-to-one message passing almost always intro-
duce race conditions and hence nondeterminacy. How-
ever, nondeterminacy is important for efficiency in
some algorithms, e.g., branch-and-bound algorithms.

3.6. Multithreaded Blocks and for
Loops

Multithreaded blocks and for loops are blocks and
for loops that must be executed in a multithreaded
manner. Multithreaded execution is not necessarily
equivalent to sequential execution. In Multithreaded C,
multithreaded blocks and for loops are expressed using
the multithreaded pragma. Unlike the multi-
threadable pragma, the multithreaded pragma
is transformed into Sthreads calls by the Multi-
threaded C preprocessor in both sequential and multi-
threaded mode.

3.7. Synchronization Using Locks

Locks are provided to express nondeterministic syn-
chronization, usually mutual exclusion, within multi-
threaded blocks and for loops. Our locks support the
usual Acquire and Release operations. The order in
which concurrent Acquire operations succeed is non-
deterministic. Therefore, there is very little use for locks
within multithreadable blocks and for loops. As a sim-
ple example, consider the following program to sum the
elements of a two-dimensional array:

void SumElements(
    float A[N][N], float *sum, int numThreads)
{
    int i;
    SthreadLock lock;

    SthreadLockInitialize(&lock);
    #pragma multithreaded \
            mapping(blocked(numThreads))
    for (i = 0; i < N; i++) {
        int j;
        float rowSum;
        rowSum = 0.0;
        for (j = 0; j < N; j++)
           rowSum = rowSum + A[i][j];
        SthreadLockAcquire(&lock);
        *sum = *sum + rowSum;
        SthreadLockRelease(&lock);
    }
    SthreadLockFinalize(&lock);
}

Like the flag operations in the program in Section 3.3,
the lock operations in this program ensure that the op-
erations on *sum occur atomically. However, unlike
the flag operations, the lock operations do not ensure
that the operations on *sum occur in the same order as
in sequential execution, or even in the same order each
time the program is executed. Therefore, since floating-
point addition is not associative, the program may pro-
duce different results each time it is executed. However,
because execution order is less restricted, this program
allows more concurrency than the program in Sec-



tion 3.3. This is an example of the commonly occurring
tradeoff between determinacy and efficiency.

3.8. Synchronization Using Barriers

Barriers are provided to express collective synchroniza-
tion of a group of threads in cases when thread termina-
tion and recreation is too expensive. Our barriers sup-
port the usual Pass operation. All the threads in a
group must enter the Pass operation before all the
threads in the group are allowed to leave the Pass op-
eration. In current systems, the cost of N threads exe-
cuting a Pass operation is less than the cost of creating
and terminating N threads. Therefore, a typical use of
barriers is to replace a sequence of multithreadable
loops with a single multithreaded loop containing a se-
quence of barrier Pass operations. However, with
modern lightweight thread systems such as Win-
dows NT, we are discovering that barriers are required
for efficiency in very few circumstances.

3.9. The Sthreads Interface

The examples that we have given so far are expressed
using the Multithreaded C pragma notation. As we de-
scribed previously, there is a direct correspondence
between the pragma notation for thread creation and the
Sthreads library functions that support thread creation.
As a simple example, the following is program from
Section 3.3 implemented using Sthreads:

typedef struct {
    float (*A)[N];
    float *sum;
    SthreadCounter *counter;
} LoopArgs;

void LoopBody(
    int i, int notused1, int notused2,
    LoopArgs *args)
{
    int j;
    float rowSum;
    rowSum = 0.0;
    for (j = 0; j < N; j++)
       rowSum = rowSum + (args->A)[i][j];
    SthreadCounterCheck(args->counter, i);
    *(args->sum) = *(args->sum) + rowSum;
    SthreadCounterIncrement(args->counter, 1);
}

void SumElements(
    float A[N][N], float *sum, int numThreads)
{
    int i;
    SthreadCounter counter;
    LoopArgs args;

    SthreadCounterInitialize(&counter);
    args.A = A;
    args.sum = sum;
    args.counter = &counter;
    SthreadRegularForLoop(

        (void (*)(int, int, int, void *))
        LoopBody,
        (void *) &LoopArgs,
        0, STHREAD_CONDITION_LT, N, 1,
        1, STHREAD_MAPPING_BLOCKED,
        numThreads,
        STHREAD_PRIORITY_PARENT,
        STHREAD_STACK_SIZE_DEFAULT);
    SthreadCounterFinalize(&counter);
}

Although this program is syntactically more compli-
cated than the Multithreaded C version, it is considera-
bly less complicated than the same program expressed
using Windows NT threads. The mechanics of creating
threads, assigning iterations to threads, and waiting for
thread termination is handled within the Sthreads library
call.

3.10. Performance Issues

In our multithreaded programming system, obtaining
good performance is under the control of the program-
mer. The following issues must be taken into account:
• Multithreading overheads: Threading and synchro-

nization operations are time consuming.
• Load balancing: Enough concurrency must be ex-

pressed to keep the processors busy.
• Memory contention: Locality in memory access

patterns prevents memory contention.
The key tradeoff is granularity. If multithreading is too
fine-grained, the overheads will swamp the useful com-
putation. If multithreading is too coarse grained, the
processors will spend too much time idle. Fortunately,
Windows NT supports lightweight threads with low
overheads.

3.11. Implementation and Performance on
Windows NT

Sthreads for Windows NT is implemented as a very thin
layer on top of the Win32 thread API. As a conse-
quence, there is essentially no performance overhead
associated with using Sthreads or Multithreadable C, as
compared to using Win32 threads directly.

Multithreadable blocks and for loops are imple-
mented as a sequence of CreateThread calls fol-
lowed by a WaitForSingleObject call on an
event. Terminating threads perform an Inter-
lockedDecrement call on a counter, and the last
thread to terminate performs a SetEvent call on the
event. Flags are implemented directly as Win32 events.
Counters are implemented as linked lists of Win32
events, with one event for every value on which some
thread is waiting. Locks are implemented directly as



Win32 critical sections. Barriers are implemented as a
pair of Win32 events and a Win32 critical section.

On a single-processor 200 MHz Intel Pentium Pro
system running Windows NT Server 4.0, the time to
create and terminate each thread in a multithreadable
block or for loop is approximately 500 microseconds.
The time to initialize and finalize a flag, counter, lock,
or barrier is between 5 and 20 microseconds. The time
to perform a synchronization operation on a flag, coun-
ter, lock, or barrier is less than 10 microseconds.

3.12. Current Status

The Sthreads implementation for Windows NT is com-
plete and robust. Over the last year, we have developed
many different multithreaded applications using
Sthreads on quad-processor Pentium Pro systems run-
ning Windows NT. This academic year, we taught an
undergraduate class at Caltech on multithreaded pro-
gramming, with Sthreads used for all the homework
assignments. We are in the process of implementing
Sthreads on top of Pthreads for a variety of Unix plat-
forms, including Sun UltraSPARC, SGI Origin, and HP
Exemplar. We have developed a comprehensive, plat-
form-independent test suite for Sthreads and a timing
suite to compare the performance of different Sthreads
implementations.

At the time of writing, the Multithreaded C pre-
processor is still under development. We hope to make
a prototype preprocessor available by the fourth quarter
of 1998. In the meanwhile, we are developing multi-
threaded applications by making Sthreads calls directly.
Because of the direct correspondence between the
pragma annotations and Sthreads calls, the design and
development of algorithms and programs is the same in
Sthreads and Multithreaded C. The only difference is in
the syntax.

4. An Example Application: Aircraft
Route Optimization

In this section, we report on one example application
that we have developed. The Aircraft Route Optimiza-
tion Problem is part of the U.S. Air Force Rome Labo-
ratory C3I Parallel Benchmark Suite [5]. For this appli-
cation, we achieved better performance using Sthreads
on a quad-processor Pentium Pro system running Win-
dows NT than the best reported results for message-
passing programs running on expensive Cray and SGI
supercomputers with up to 64 processors. The flexibility
of shared-memory, lightweight multithreading, and se-
quential development methods allowed us to develop a
much more sophisticated and efficient algorithm than
would be possible on a message-passing supercomputer.

4.1. The C3I Parallel Benchmark Suite

The U.S. Air Force Rome Laboratory C3I Parallel
Benchmark Suite consists of eight problems chosen to
represent the essential elements of real C3I (Command,
Control, Communication, and Intelligence) applications.
Each problem consists of the following:
• A problem description giving the inputs and re-

quired outputs.
• An efficient sequential program (written in C) to

solve the problem.
• The benchmark input data.
• A correctness test for the benchmark output data.
For some of the problems, a parallel message-passing
program is also provided. Rome Laboratory maintains a
publicly accessible database of reported performance
results.

The C3I Parallel Benchmark Suite provides a good
framework for evaluating our structured multithreaded
programming system. The problems are computation-
ally intensive and involve a variety of complex algo-
rithms and data structures. The sequential program pro-
vides us with a good starting point and a fair basis for
performance comparison. The performance database
allows us to compare our results with those of other
researchers. For these reasons, we are developing mul-
tithreaded solutions to several of the C3I Parallel
Benchmark Suite problems.

4.2. The Aircraft Route Optimization
Problem

The task in the Aircraft Route Optimization Problem is
to find the lowest-risk path for an aircraft from an origin
point to a set of destination points in the airspace over
an uneven terrain. The risk associated with each transi-
tion in the airspace is determined by its proximity to a
set of threats. The problem involves realistic constraints
on aircraft speed and maneuverability. The aircraft is
also constrained to fly above the underlying terrain and
beneath a given ceiling altitude.

The problem is essentially the single-source, multi-
ple-destination shortest path problem with a large,
sparsely connected graph. The airspace for the bench-
mark is 100 km by 100 km in area and 10 km in alti-
tude, discretized at 1 km intervals. The 100,000 posi-
tions in space correspond to 2,600,000 nodes in the
graph, since each position can be reached from 26 dif-
ferent directions. Because of aircraft speed and maneu-
verability constraints, each node is connected to only
nine or ten geographically adjacent nodes. Therefore,
the graph consists of approximately 2.6 million nodes
and 26 million edges.



4.3. Sequential Algorithm

The sequential algorithm to solve the Aircraft Route
Optimization Problem is based on a queue of nodes.
Initially the queue is empty except for the origin node.
At each step, one node is removed from the queue.
Valid transitions from this source node to all adjacent
destination nodes are considered. For each destination
node, if the path to the node via the source node is
shorter than the current shortest path to the node, the
path to the node is updated and the node added to the
queue. The algorithm continues until the queue is
empty, at which stage the shortest paths to all reachable
nodes have been computed.

The queue is ordered on path length so that shorter
paths are expanded before longer paths. This has a sig-
nificant effect on performance. Without ordering, longer
paths are expanded, then discarded when shorter paths
to the same points are expanded later in the computa-
tion. However, whether the queue is ordered, partially
ordered, or unordered does not affect the results of the
algorithm. 

4.4. Multithreaded Algorithm

The most straightforward approach to obtaining paral-
lelism in the Aircraft Route Optimization Problem is to
geographically partition the airspace into blocks, with
one thread (or process) responsible for each block. Each
thread runs the sequential algorithm on its own block
using its own local queue and periodically exchanges
boundary values with neighboring blocks. This ap-
proach is particularly appealing on distributed-memory,
message-passing platforms, because memory can be
permanently distributed according to the blocking pat-
tern. If the threads execute a reasonably large number of
iterations between boundary exchanges, good load bal-
ance can be achieved.

The problem with this algorithm is that, as the
number of blocks/threads is increased the total amount
of computation also increases. Therefore, any speedup
is based on an increasingly inefficient underlying algo-
rithm. At any time, the local queues in most blocks
contain paths that are too long and are irrelevant to the
actual shortest paths. The processors are kept busy per-
forming computation that is later discarded. At any
given time, it is only productive to work on an irregular
and unpredictable subset of the graph. However, ir-
regular and adaptive blocking schemes do not solve the
problem, since there is usually equal work available in
all blocks. The issue is the distinction between produc-
tive and unproductive work.

Our solution is to statically partition the airspace
into a large number of blocks and to use a much smaller

number of threads. A measure of the average path
length is maintained with each local queue. At each
step, the blocks with local queues containing the short-
est paths are assigned to the threads. Therefore, the sub-
set of blocks that are active and the assignment of
blocks to threads change dynamically throughout pro-
gram execution. This algorithm takes advantage of the
symmetric multiprocessing model, in which all threads
can access the entire memory space with uniform cost.
It also takes advantage of the lightweight multithreading
model to achieve good load balance, since the workload
within each thread at each step is highly variable.

The ability to develop, test, and debug using se-
quential methods was crucial in the development of this
sophisticated multithreaded algorithm. The entire pro-
gram was tested and debugged in sequential mode be-
fore multithreaded execution was attempted. In par-
ticular, development of the complex boundary exchange
and queue update algorithms would have been consid-
erably more difficult in multithreaded mode.

The ability to analyze and tune performance using
sequential methods was also very important. Good per-
formance depended on exposing enough parallelism
without significantly increasing the total amount of
computation. We determined efficient values for the
number of blocks, the number of threads, and the num-
ber of iterations between boundary exchanges by meas-
uring computation times and operation counts of the
multithreaded program in running in sequential mode.
This detailed analysis would have been very difficult to
perform in multithreaded mode. We avoided memory
contention in multithreaded mode by avoiding cache
misses in sequential mode. The analysis of memory
access patterns in sequential mode is much simpler than
in multithreaded mode.

4.5. Performance

Other researchers have developed and reported results
for message-passing solutions to the Aircraft Route Op-
timization Problem running on Cray T3D and SGI
Power Challenge supercomputers with 16 and 64 proc-
essors. We developed our program using Sthreads on a
quad-processor 200 MHz Pentium Pro system running
Windows NT Server 4.0. (One Pentium Pro processor is
approximately the same speed as one SGI Power Chal-
lenge processor and twice the speed of one Cray T3D
processor.) As shown in Figure 2, our results are better
than the results reported on the expensive
supercomputers. The reason is the combination of the
shared-memory model supported by the Pentium Pro,
the lightweight multithreading model supported by
Windows NT, and the structured multithreaded pro-



gramming system with sequential development methods
supported by Sthreads.

Figure 2: Sthreads on a quad-processor Pentium Pro
outperforms message-passing on supercomputers for the
Aircraft Route Optimization Problem.

These results should not be misinterpreted as
meaning that commodity multiprocessors are now as
powerful as supercomputers, or that structured multi-
threading can obtain super-linear speedups from a small
number of processors.  For the Aircraft Route Optimi-
zation Problem, we obtain approximately three-fold
speedup over sequential execution on four processors.
However, unlike the message-passing approach, the
speedups are obtained from a multithreaded algorithm
that adds no significant overheads to the sequential al-
gorithm.

This example is intended as an interesting case
study that highlights the strengths of shared-memory,
lightweight threads, and structured multithreaded pro-
gramming. Clearly, there are many other applications
for which message-passing supercomputers would out-
perform a quad-processor Pentium Pro system. None-
theless, it is significant that inexpensive commodity
multiprocessors are now a practical consideration in
many areas that were previously the sole domain of
supercomputers.

5. Additional Applications under Devel-
opment

We are in the process of developing a number of other
multithreaded applications to demonstrate the power of
structured multithreaded programming on commodity
multiprocessors running Windows NT. These applica-
tions include the following:
• Volume Rendering: Volume rendering computes

an image of a three-dimensional data volume. The
image may or may not be realistic, depending on
the nature of the data.  We obtain better than 3.5-

fold speedups on quad-processor Pentium Pro sys-
tems.

• Terrain Masking: Terrain masking computes the
altitudes at which an aircraft will be visible to
ground-based radar systems in an uneven terrain.
This problem has obvious applications in military
and civil aviation. Terrain masking is part of the
C3I Parallel Benchmark Suite.  We obtain 3-fold
speedups on quad-processor Pentium Pro systems.

• Threat Analysis: Threat analysis is a military ap-
plication that performs a time-stepped simulation of
the trajectories of incoming threats and analyses
options for intercepting the threats. Threat analysis
is part of the C3I Parallel Benchmark Suite. We
obtain almost 4-fold speedups on quad-processor
Pentium Pro systems.

• Protein Folding: Protein folding takes a known
protein chain and computes the most likely three-
dimensional structures for the molecule. This
problem is of vital interest to biochemists involved
in drug design. We obtain 3-fold speedups on quad-
processor Pentium Pro systems.

• Molecular Dynamics Simulation: We are devel-
oping a multithreaded implementation of an exist-
ing molecular dynamics simulation program
(MPSim) that uses the cell multipole method.
MPSim consists of more than 100 source files and
over 100,000 lines of code. We obtain better than
3.5-fold speedups on quad-processor Pentium Pro
systems for simulations involving up to half a mil-
lion atoms.

All of these applications are extremely computationally
intensive. Depending on the input data, the problems
may require many hours or days to solve on fast single-
processor machines. For this reason, much of the previ-
ous work on these problems has been with expensive
supercomputers. The computational challenge associ-
ated with these problems is not about to disappear with
the next generation of fast processors.

6. Comparison with Related Work

Over the years, hundreds of different systems for mul-
tithreaded programming have been proposed and im-
plemented. These systems include thread libraries, con-
current languages, sequential languages with pragmas,
data parallel languages, automatic parallelizing compil-
ers, and parallel dataflow languages. We have attempted
to combine the best attributes of these other approaches
into one simple, timely, and highly accessible multi-
threaded programming system.

The contribution of our system is not in the indi-
vidual constructs, but in their combination and context.
Multithreaded block and for loop constructs date back
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to the 1960s and have been incorporated in many forms
in concurrent languages, pragma-based systems, and
data parallel languages. Synchronization flags and
counters are derived from concepts originally explored
in the context of parallel dataflow languages. Locks and
barriers are standard synchronization constructs in many
thread libraries and concurrent languages.

An important difference between our system and
others is the combination of the following: (i) the em-
phasis on practical development of sophisticated multi-
threaded programs using sequential methods, (ii) the
ability to ensure deterministic execution, but express
nondeterminacy where necessary, and (iii) the mini-
malist integration of these ideas with popular languages,
operating systems, and tools. We believe that this is the
right approach to making multithreading practical for a
wide range of applications running on modern multi-
processor platforms.

7. Conclusion

We are developing a system for structured high-
performance multithreaded programming on top of the
support that Windows NT provides for lightweight
multithreading. Our system consists of a structured
thread library and a preprocessor integrated with Micro-
soft Developer Studio Visual C++. An important attrib-
ute of our system is the ability to develop multithreaded
programs using traditional sequential methods and tools.
We have developed multithreaded applications in a
wide range of areas such as optimization, graphics,
simulation, and applied science. The performance of
these applications on multiprocessor Pentium Pro sys-
tems has been excellent. Our experience developing
these applications has convinced us that high-
performance multithreading is ready to enter the main-
stream of computing.

Availability

Information on obtaining the multithreaded program-
ming system described in this paper can be found at
http://threads.cs.caltech.edu/ or can be
requested from threads@cs.caltech.edu.
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