i

The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium
Seattle, Washington, August 3—4, 1998

Scalability of the Microsoft Cluster Service

Werner Vogels, Dan Dumitriu, Ashutosh Agrawal, Teck Chia, Katherine Guo
Cornell University

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Scalability of the Microsoft Cluster Service

Werner Vogels, Dan Dumitriu, Ashutosh Agrawal, Teck Chia, Katherine Guo
Department of Computer Science, Cornell University
vogels@cs.cornell.edu

Abstract which they agree upon which nodes have failed and
which are still available. The joining of a new member

. : in the system, does not require the nodes to run the
managed clusters is th_at of scale: By constructing th greemgnt protocol, but canqoften be handled through a
cluster out of commodity compute elements, one Cany e undate mechanism
by simply adding new elements, improve the reliability pie up '
of the overall system in terms of performance and imhe second fundamental component provides a special
availability. The limits to how far such a cluster can becommunication facility, with guarantees that exceed the
scaled seems to be dependent on the scalability of itgoperties provided by regular communication systems.
management software, which in its core has a collectio®ften in the process of managing a distributed system it
of distributed algorithms to guarantee the correcis necessary to provide the same information to a set of
operation of the cluster. The complexity of thesenodes in the system. We can simplify the software
algorithms makes them a vulnerable component of thdesign of many of the components on the receiving side
system in terms of their impact on the overallof this information if we can guarantee that if one node
scalability of the system. receives this information, that all nodes will receive it.

. : - his atomicity guarantee allows nodes to act
This paper examines two of the distributed component . . .
of the Microsoft Cluster Service [8] that are most IikelyI mediately upon reception of a message, without the

. . L "need for additional synchronization. Often this
g)m;]‘ixg g%gg‘lpﬁg;;z Ir;tqsar?ggleargl“?/He;[hf?rsrpzemc?i%rr?gl omicity guarantee is not sufficient for a system, as it
the paper will provide some geﬁeral background o oes not only need be assured that all nodes will receive
these distributed services and scalability issues Aftethe update, but th.at all nodes will see the updates in the
that the algorithms used to implement these serv.ice argme order.. Thistotal order property makes _the.
d :) : . o communication module a very powerful mechanism in

escribed in detail and an analysis of their impact o

scalability is given. The scalability analysis is based OI%he control of the distributed operation of the distributed

An important argument for the introduction of software

an off-line analysis of the algorithms as well as the ystem.
results of on-line experiments on a cluster with a, in . -
MSCS terms, large number of nodes. 2 Practical Scalability
This paper examines the membership and
1 Distributed Management communication services of the Microsoft Cluster

In distributed management software two component ervice (MSCS) with an emphasis on their impact on

are consic!ered basic building blocks: a consiste_nt vievgﬁei ciiﬁ?ligglg)rtgf zt?]?)dzftglr}:.in'vrlgglii} tﬁ: si)l}{\?v%erg,
about which nodes are on-line, and the ability 10, he"n'on a 16-node NT server cluster. At Cornell

?;Sn;irgﬁ?zﬁate with these nodes in an all-or-nothing " s,vare is extended to run on 32 nodes and a
‘ research project is underway to make the system scale
The first building block is captured in membership to larger numbers.

service: all nodes participate in a consensus alg-:’or'thpl(]/laking systems scale in practice centers around the use

to agree on the current set of nodes th_at are up _a?ﬁ mechanisms to reduce the dependency of the
running. The system makes use of a failure deteCt'oalgorithms on the number of nodes. In the past two

mechanism that monitors heartbeat signals or actlvel¥ploroaches have been successful in finding solutions to

polls other nodes in the system. The failure detectog:Oblems of scale: The first is to reduce the

will signal the membership service whenever it suspect . -
the fa%lure of a node in Ft)he system. The membe?shi ynchro_nous behavior of the system by d_eS|gn|ng

: - . . N . essaging systems and protocols that allow high levels
service will react to this by triggering the execution of a

distributed algorithm at all the nodes in the system, ir%)]c concurrent operation, for example by de-coupling the

" The reliable cluster computing research of the Reliable Distributed Computing Group at the department of Computer Scemel at C
University is supported by DARPA/ONR under contract NO014-96-1-10014 and by Intel Corporation and Microsoft Corporation.

sending of messages from the collecting offunctions correctly and will scale to numbers larger
acknowledgements. The second approach is to redutieen originally targeted by the cluster design team.

the overall complexity of the system. By building the

system out of smaller (semi-)Jautonomous units and Cluster Management

connecting these units through hierarchical method
growing the overall system has no impact on th
mechanism and protocols used to make the small
units function correctly.

Zrhe algorithms used in MSCS for membership and total
dered messaging are a direct derivative of those
eveloped in the early eighties for Tandem as used in

the NonStop systems [3,4]. Nodes in a Tandem system

A third, more radical approach, which is undercommunicated via pairs of proprietary inter-processor

development at Cornell, makes use of gossip basedsusses, which, in 1985, provided a 100 Mbit/second

dissemination algorithms. These techniquegransfer rate. Parts of the messaging side of the
significantly reduce the number of messages and tha&lgorithms was implemented in interrupt handlers to
amount of processing needed to reach a similar level gfrovide minimal system overhead.

information sharing among the cluster nodes. Although MSCS has a kernel module that implements

Given that cluster systems such as MSCS are used feome of the messaging and failure detection, the
enterprise computing, any instability of the system camembership and global update algorithms are
have severe economic results. There is a continuoisiplemented in an NT service, th@luster Service
tradeoff between responsive failure handling and thevhich runs at user level. The Cluster Service holds in
cost of an erroneous suspicion. The system needs total 11 managers, each responsible for a different part
detect and respond to failures in a very timely matterof the cluster service functionality. Next to the
but designers may choose a more conservativeembership and communication managers, there are
approach given the significant cost of an unnecessatyanagers for resource and failover management, for
reconfiguration of the system, caused by an incorredbgging and checkpointing, and for configuration and
failure suspicion. In general cluster server systems runetwork management.

compute and memory intensive enterprise application
and these systems experience a significant load
times, reducing the overall responsiveness. Scalin
failure detection needs intelligent mechanisms for faul
investigation [6,11] and requires the failure detectors t
be able to learn and adapt to changes [7].

the following sections three of the components are
xamined in detail: first the kernel module which holds
e cluster communication and failure detection
unctionality. Secondly the join process and the failure
reconfiguration of the membership module are
analyzed. The last analysis is that of the global update
3 Scalability goals of MSCS communication module.
The Microsoft Cluster Service is designed to suppor Cluster Network
two nodes, with a potential to scale to more nodes, byt
in a very limited way. MSCS successfully addresses th

needs of these smaller clusters. The cluster managem 0 networks available for intra-cluster communication
tools are a significantly improvement over the curren '

practice and they are a major contribution to the lusNet supports bagsm datagram _communication 1o

o each of the nodes, using an addressing scheme based on
usability of clusters overall. ; g . . ;

simple node identifiers which are assigned to nodes

The research reported here is concerned with scalinghen they are first configured for use in the cluster. To
MSCS to larger numbers of nodes (16 - 64, or highersupport reliable communication ClusNet provides a
which is outside of the scope of the initial MSCStransport interface used by MS-RPC.
design. There are three areas of interest:

SCS provides a kernel based cluster network
lﬂt[erface,CIusNeI which presents a uniform interface

ClusNet is capable of managing a redundant
1. Can the currently used distributed algorithms be aetworking infrastructure, automatically adapting
solid foundation for scalable clusters? packet routing in case of network failure.

2. Are there any architectural bottlenecks that shoul ; :

be addressed if MSCS needs to be scalable? d‘:"l Node Failure Detection
)) MSCS implements its Failure Detection (FD)

3. If MSCS is extended with development support formechanism using heartbeats. Periodically every node
cluster aware applications are the currenisengs a sequenced message to every other node in the
distributed services a good basis for these t00ls? ¢jyster, over the networks that are marked for internal

This paper should not be seen as criticism of th&€ommunication. Whenever a node detects a number of

current MSCS design. Within the goals set for MSCS ifonsecutive missing heartbeats from another node it
sends an event to the cluster service which uses this

3000

event to activate the membership reconfiguratic

module. 2500 /\/\/\/
In the current MSCS configuration heartbeats are st 2000 a

every 1.2 seconds and the detection period for a nc 1500 A r/\/_/\/

suspicion is 7.2 seconds (6 missed heartbeats). - /\//J v

timing values are not adaptive. 1000
The cluster network module does not exploit ar 500
broadcast or multicast functionality, and thus ea«

heartbeat results imgmber_of nodes}Jpoint-to-point e L S e e e
datagrams. In our test setup of 32 nodes, the clus - s s
background traffic related to heartbeats is 800 messa

per second. With 32 nodes active and an otherwise i - - - —
network the mechanism works flawless and the pacl Figure 1. Join latency under ideal conditions

loss observed was minimal. Tests which replaced t
Fast-Ethernet switches with hubs showed that tu?

milliseconds

25
28 |
31

#nodes

ket trai " d sianificant Eth time-out or when a connection is established. As the
packet trains sometimes caused significan eMei5iner waits for all threads to terminate, the delay the

level collisions on the shared medium. .Aqd'ngijoining node experiences is based on the time-out
processing load to the systems resulted in variations I_geriod of an RPC connection to a single node that is not
the inter-transmission periods. False suspicions we 0. The timeout value for RPC out-of-the-box is
never seen. approximately 30 seconds, but it can be manipulated to
When adding processing load and additional load on thegduce the discovery phase to 10 seconds.

network frequently single heartbeat misses wher
observed, but the values for generating a failur
suspicion event so conservative that never any fal
suspicions were generated.

n all observed cases, the joining node always selected
%he holder of the cluster IP address to sponsor its join.
Sfhe cluster IP address is a single address that migrates
to a node that functions as the access point for
. administrative purposes: if the cluster is running there is
6 Node Membership alwaysa node that holds this IP address. By modifying
The MSCS membership manager is designed into twéhe startup phase to start by attempting to connect to
separate functional modules: the first handles théhis address first before probing all the other nodes, it is
joining of nodes and a secomdgroup implements the Possible to reduce this phase of the join process to

consensus algorithm that runs in case of a node failureunder a second. This approach also avoids starting a
number of threads that is equal to the number of nodes

6.1 Join in the cluster.

The join algorithm starts with a discovery phase inPhase 2iock. From the nodes that are up, the joiner
which the joining node attempts to find other nodes irselects one node teponsorits membership in the
the cluster. If this fails the node tries to form a clustercluster. The first action by the sponsor is to acquire a
by itself, the details of theluster-formoperation are distributed global lock to ensure that only a single join
outside of the scope of the paper. After the node hds in progress. Acquiring of the lock is performed using
discovered which cluster nodes are currently running i& global update (GUP) method.

selects one of the nodes and petitions for membershj . .
of the cluster. The selected node, dubbedstiensor LPhe use of GUP makes this phase is dependent on the

announces the new node to all active cluster member@,“mbe_r_ of active nodes. Details on the_performance and
transfers all the up-to-date cluster configuration to thetalability of GUP can be found in section 7.

new node, and waits for the node to become active. Thehase 3Enable Network: Using a sequence of 5 RPC

different phases of the join and their distributedcalls to the sponsor the joiner retrieves all information
complexity are described in detail in the following on current nodes, networks and network interfaces.
paragraphs Following this the joiner performs an RPC to each

Phase 1Discovery. When a cluster service starts is active node in the cluster for each interface a node is

attempts to connect to each of the other known nodes Ihs'[egilgcg: on, ahnd fch_e contactedbrllode in return perforn;(s
the cluster, using RPC over a regular UDP transporf" I to fAf? JO”;?r to enable s;r/]mmet::lic networ
This sponsor discovery mechanism has a high degree Gfannels. er this sequence the node security

concurrency: a thread is started for each connectiofPNiexts are established ‘which again requires the

probe. The joiner waits for all threads to terminate,JOining node to contact all other active nodes in the
which occurs after the RPC binding operation fails aftef'USter, in sequence.

This phase depends on the number of active nodes | |- 2 failures 1 failure
the cluster. An unloaded 31 nodes cluster, on avera
performs this sequence of RPC's in 2-4 seconds. O
moderately loaded cluster, frequently this phase tak 35000
longer then 60 seconds, causing the join operation 30000

time-out at the sponsor, resulting in an abort of the joi

40000

25000

Phase 4Petition for Membership: The joiner requests
the sponsor to insert the node into the membership. T
is a 5-step process directed by the sponsor.

20000 s

#message

15000

10000

1. The sponsorbroadcasts to all current members th
identification the joining node. 5000

2. The sponsor sends the membership algorith [—
configuration data to the joiner

3. The sponsor waits for the first heartbeat from tf

— o wn ~ o —
— — — — — N
#nodes

®m oW~ O o
N d N N ™

new joiner. Figure 2. Number of messages in the system during regroup
4. The sponsor broadcasts to all current members t|
the node is alive placed on the nodes and the system has more then 10-

5. The sponsor notifies the joiner that it is inserted inl2 nodes.
the membership

The broadcasts are implemented as series of RPC cal@',2 Regroup

one to each active node in the cluster. On an unloadddpon the receipt of a node failure event generated by
cluster and network the serialized invocation of RPC t&ClusNet the Cluster Service starts the reconfiguration
30 nodes takes between 100 and 150 millisecondglgorithm, dubbedegroup The algorithm runs in 5
When loading the systems with compute and 10 taskghases, with the transition to each new phase
the RPC times vary widely from 3 millisecond to 3 determined after its is believed that all other nodes have
second per RPC. Broadcast rounds to all 30 nodes wefigished this phase, or when, in the first two phases,
observed taking more then 20 seconds to completémners expire.

(with exceptions up to 1 minute). As this phase is unde
control of the sponsor the join is not aborted because]
a time-out. It can abort on a communication failure with
any of the nodes.

uring regroup the nodes periodically (300ms)
roadcast their current state information to all other
nodes using unreliable datagrams. The state is a
collection of bitmasks, one for each phase, describing
In step 3 the detection of the new heartbeat is delegate#dhether a node has indicated it has passed a phase. It is
to ClusNet, which performs checks every 600not necessary for each node to have heard for each
millisecond, resulting in an average waiting periodother node in a phase; information about which other
between 0.6 and 1.2 seconds nodes a certain node has heard of is shared. For
) N - example if node 1 indicates that it has received a
Phase 5:Database synchronization. The joiner eoqroun message from node 2, node 3 uses this without

synchronizes its configuration database with thelhfat it actually needs to receive a message from node 2

sponsor. In the experimental setup this database was @f hat phase. Also included in the state is a

minimal size and never out-of-date. As the retrieving of,,nnectivity matrix in which nodes record whether they
the database updates is not depended on cluster size, Agle seen messages from the other nodes and what

further tests were performed in this phase. connectivity information has been recorded by the other

Phase 6Unlock. The newly joined node uses its accesgodes.

to the glob_al updz_;lte mechanljsm to broadcast to alf,e g phases of the regroup algorithm are the

nodes that it now is full operation and that the 9|0ba\‘ollowing:

lock should be released.

The ioi L h d h Phase 1Activate. Each node waits for a local clock
e join operation is very much dependent on thgjcy 14 occur so that it knows that its timeout system can

number of nodes in the system. Figure 1 show the imgs, rysted. After that it starts sending and collecting
for a join under optimal conditions. All RPC calls in the g4t .,5 messages. It advances to the next stage if
algorithms are serialized and at minimum there(afe '

+ 7 * number_of_nodesalls. Joining the 32node to 1. All current members have been detected to be

the cluster requires at least 227 sequential RPC's. This active (e.g. there was a false suspicion),

approach collapses under load, frequently it i If there is one single failure and a minimal time-out
impossible to join any nodes if only a moderate load is has passed or,

3. When the maximum waiting time has elapsed and
several members have not yet responded.

The minimum timeout for phase 1 is 2.4 second, if all
but one node have responded in this time period it is
assumed that there was a single failure and the
algorithm moves to the next phase. If multiple nodes dc
not respond, the algorithm waits for 9.6 seconds tc
move to the next phase. If for some reason the regroug
algorithm times out in a different phase or when there
are cascading starts of the regroup algorithm at severai
nodes, the algorithm executes ¢autious mode and
always waits for the maximum timeout to expire.

Update 6

Phase 2:Closing This stage determines whether
partitions exist and whether the current node is in a
partition that should survive. The rules for surviving
are:

Figure 3. Global Update Sequence

1. The current membership contains more than half i
the original membership. a coordinated two-phase cleanup. Once all members

have signaled the completion of this last cleanup phase

2. Or, the current membership has exactly half theoy move to the regular operational state and seize the
original members, and there are at least tw%ending of regroup state messages
members in the current membership and this '

membership contains the tie breaker node that wakhe regroup algorithm in its first two phases is timer
selected when the cluster was formed. driven and the algorithm makes progress independent
3. Or, the original membership contained exactly twoOf the number of nodes in the cluster. The transitions of

members and the new membership only has onthe next 3 phases are dependent on the number of nodes

member and this node has access to the quoruff the system, but the "“information sharing" mechanism
resource. makes the system robust in dealing with sporadic

.) message loss.
After this the new members select a tie breaker node to 9

use in the next regroup execution. This tiebreaker thefihe state information is broadcast by sending point-to-
checks the connectivity information to ensure that thgoint datagrams to each node in the cluster. With an
surviving group is fully connected. If not it prunes thoseinter-transmission period of 300 millisecond, and 31
members that do not have full connectivity. It recordsnodes in the cluster, this generates a background traffic
this pruning information in its regroup state, which isof over 3000 messages/second. A single failure
broadcast to all other nodes. All move to stage 3 uporeconfiguration has an average runtime of 3 seconds
receipt of this information. and thus generates around 10,000 messages. A two-
_ L . node failure, with a full running cluster is likely to

In case of incomplete connectivity information thegenerate between 30,000 and 40,000 messages. Figure

tiebreaker waits for an additional second to allow all2 details the observed messages in the system during
nodes to respond. regroup

Phase 3:Pruning. All nodes that have been pruned
because of lack of connectivity halt in this phase. All7 Global Update Protocol

others move forward to the first cleanup phase ONCf is essential for a distributed management system to
they_ have Qe_tected that all n_odes have received ﬂ}%ve access to a primitive that aIIOV\?s consist)ént state
pruning decision (e.g. they are in phase 3). updates at all nodes. MSCS uses the Global Update
Phase 4:Cleanup Phase One All surviving nodes Protocol (GUP) for this purpose. Although the protocol
install the new membership, mark the nodes that did nd$ described as providing atomicity, its implementation
survive the membership change as down, and inforfias the stronger property of providing total ordering to
the cluster network to filter out messages from thesés update messages.

nodes. Each node's Event Manger then invokes loc
callback handlers to notify other managers of the failur
of nodes.

%hen a node starts an global update operation, it first
%ompetes for a transmission lock managed by a node
that is assigned the functionality of thecker node.
Phase 5Phase Two Once all members have indicated Only one transmission can be in progress at a time. If
that the Cleanup Phase One has been successfull}e sender can not obtain the lock it is queued on the
executed, a second cleanup callback is invoked to allo@ck waiting list and blocks until it reaches the head of

»»»»»»» 2iByte —— S0bytes ‘»»»H».ZKbym—SObytes
20
140
20 120 \
0 © 100 \
Q
g o
O 150 Q \
= %]
E 10 ¢ 40
£
FH*
© 20
0 — B A
o= Hmmv\mHMﬂzg\—'mml\O’S
MO N~ A M N~N O A mMWw N~ O o o o o o o
4 H H H N NN N N®™ #nodes
#nodes
Figure 4. latency of GLUP under ideal conditions Figure 5. GLUP throughput under ideal conditions

the queue. With the lock request the sender als®he protocol is implemented as a series of RPC
transmits its update information to the locker nodeinvocations. If an RPC fails, the sender waits for the
which applies it locally, and stores the message for lateegroup algorithm to run and install a new membership.
replay under certain failure scenarios. While holdingGUP will then finish the update series based on the new
the lock the sender transmits its update to all othemembership.

active nodes in the cluster and terminates th
transmission with a final message to the locker nod
which releases the lock (see figure 3).

iven the strict serial execution of the protocol, its
performance is strongly dependent on the number of
nodes in the system. The implementation enforces no
To transmit the messages to all other nodes, the sendene bound on the execution of an RPC and any node
organizes the cluster nodes into a circular list, orderedan introduce unbounded delays as long as RPC keep-
by Nodeld. After it acquired the lock the sender send italives are being honored.

updates starting with the node that is after the IOCkﬁ&epeated measurements show huge variations in

node in the list. The sender works through the list i esults. with the variations beina amolified as the
order, wrapping when it reaches the last node in thi ub ’ V‘;' d vanat PI1 9 pldl load i
cluster to the first node and stops when it once agaiﬂlum gr 0 tﬂo esdmcr_?%ses. When a mpbler?te 0‘3 IS
reaches the locker node. The transmission is finisheggglee r(e)zrs]ultse n'?’hzzel v§?§$ﬁ§ gﬁoszl anﬁipr?e duig
with an unlock message to the locker node. the RPC trains, which repeatedly transfer control to the
Acquiring the lock before performing the updatesoperating system while blocking for the reply. Upon
guarantees that only one update is in progress at a givarrival of the reply at the OS level, the Cluster Service
time, which gives the protocol the total orderingneeds to compete with other applications that are
property. Atomicity (if one surviving node applies the engaged in 10, to regain CPU control. The non-
update, all other surviving nodes will) is achieveddeterminism of the current load state of the system
through the implementation of a number of fault-introduces the variances.

handling scenarios. The latency of the protocol in an ideal setting is shown

1. The sender failsthe locker node takes over the in figure 4, the message throughput in figure 5. With 32
transmission and completes it. nodes the system can handle 6 small (50 bytes)

2. A receiver fails wait for the regroup to finish and UPdates/second or 4 larger (2 Kbytes) updates/second.

then finish the transmission. With systems under a load the protocol breaks down
3. The locker node failghe next node in the node list with more then 12 nodes in the cluster. With 10 nodes
is assigned locker functionality and the sendefrequently transmissions are observed that take 2-5
treats it as such. seconds to complete. With 32 nodes transmission times

4. The sender and locker faiif the node following UP to one minute were recorded.
the locker has received the update already, in its _ _
role as new locker it takes over the transmission. 8 Discussion

5. All nodes that received an update and the sendeWhen evaluating the scalability of the distributed
fail: pretend the update never happened. components of MSCS it is necessary to separate two

issues: the algorithms used and their particulabindings and security contexts with all other active

implementation. nodes. With 32 nodes this phase is close to a 100 RPC’s
_) and any load on the nodes causes significant variations
8.1 Failure Detection in these serialized executions.

MSCS is willing to tolerate a long period of silence (7There is no fundamental solution to the problem; if the
seconds) before a failure suspicion is raised. ThiRpC infrastructure needs to be maintained, the setup
allows for the implementation of mechanisms that camhase is needed and some tolerance is needed to allow
easily deal with large number of nodes. The importanthe mesh to be established. A possible solution would

scale factor is the number of messages that the nodgs the joiner to update the sponsor on its progress in
need to process both at the sending and the receiviRgis phase to avoid a join rejection.

side. Implementing the heartbeat broadcast using
repeated point-to-point datagrams does not introducg.3 Membership Regroup
any problems with 32 nodes, but there is a cleaﬁ_

processing penalty at the sender and it will limit the he membership reconfiguration algorithm works
growth to larger numbers. correct under all tested circumstances, independent of

the number of nodes used. There are two mechanisms
In an unstructured heartbeat scheme (every node sentth&it ensure that the operation performs well, even with
heartbeats to all other nodes), the load on the sendarlarger number of nodes: (1) The operation is fully
and on the network can be significantly reduced byistributed, the constant broadcasting of state allows
using a true multicast primitive for disseminating thenode to rely solely on local observation of global state.
heartbeats. It also removes the sender’s dependency () The sharing of [*have-heard-from-node-X

the number of nodes in the system. However, thénformation among nodes, makes that the nodes can
number of messages a receiver has to process remamsve to the next phase without having received status
proportional to the number of nodes in the system. messages from all nodes.

More structured approaches have been proposed iven that a node failure suspicion is not raised until 7
reduce the overall complexity of failure detection byseconds of silence by a node and the first phase of
imposing a certain structure on the cluster, andegroup waits for an additional 3 seconds, a problematic
localizing failure detection within that structure. A node has 10 seconds to recover from some transient
popular approach is to organize the cluster nodes in failure state. As no false suspicions were ever
logical ring [1,5] where nodes only monitor neighborobserved, the timeouts in the first two phases of regroup
nodes in the ring and a token rotates through the ring wan be considered to be very conservative. In all
disseminate status information. In this scheme howeveobserved cases the current membership state was
the token rotation time is dependent on the number dalready established well within a second, the remaining
nodes, and the scheme thus has clear scalability limitstime (2-9 seconds) was spent waiting for the failed
_ : . . nodes to respond. As the first phase is dominant in the
Another aspect of scaling failure detection is the.execution tirir)1e of the wholep regroup operation, a

increased chance of multiple concurrent node failures IMduction in time can be achieved by combining the

the cluster. The MSCS mechanism handles multiple_. L ; -
failures just as efficient as single failures, while most o%:gltjere detection information with the observed regroup

the structured failure detection schemes have problems

with timely detection of multiple failures and fast A major concern in scaling the regroup operation is the

reconfiguration of the imposed structure. number of messages exchanged. A typical run with 32

. . . nodes generates between 10,000 and 40,000 messages.

fC(I)LrJrrlzr:tI)e/rthse Qgrﬁsprizmt'ﬁg]guvs\/g”;?n gas'!s'”i're gre]gecgt?]neThe status message broadcasts are implemented as
9 y gossip eries of point-to-point datagrams, which has two major

epidemic techniques to disseminate ava"al?i“t%effects: (1) the number of messages generated for the
information [6]. These detectors monitor hundred’s ofy -, oheration grows exponential with the number
nodes while still providing timely detection, without

. . LN . f nodes and (2) the transmission of 32 identical
%ngi)v(\zglrrl](g any significant increased load on nodes anfosa0es every 300 miliseconds introduces a

significant processing overhead at the sender. The
: : regroup algorithm is run at the cluster service, which

8.2 Memb.ershlp ‘?Oln _ _ introduces a user-space/kernel transition for each

The observation that it frequently was impossible tonessage, with associated overhead. Introduction of a

join the 15 or higher node into the cluster is an artifactmulticast primitive will allow the implementation to

of the fact that MSCS was not implemented with a largecale at least linearly with the number of nodes and

number of nodes in mind. The join reject happens ifvould remove the processing over from the sender of
the phase that is not under control of the sponsor nodgatus messages.
and where the new node is setting up a mesh of RPC

8.4 Global Update Protocol If MSCS is extended with development support for
cluster aware applications are the current distributed

The absence of any concurrency in the messa rvices a good basis for these tools?

transmission in GUP causes a strict linear increase in
latency and decrease in throughput when the number &upport for cluster aware applications has strong
nodes in the cluster grows. requirements in the area of application and component
anagement and failure handling, and requires efficient
ommunication and coordination services. These

The brotocol was originally developed for undatin services would need to be implemented using GUP,
P ginally developed for updating, e js, in its current form, unsuitable to provide such
shared OS data-structures, with the update rommea?service

running in device interrupt handlers. In MSCS the

protocol is implemented uses a series of RPC calls tbo support cluster aware applications a better
user-level services. This change in executiorintegration of membership and communication is
environment exposes the vulnerability of the strictneeded. This will allow for the implementation of a
serialized operation. very efficient communication service with properties

There is no quick solution for the problems that thisS'm"ar to GUP. Such a service is capable of providing a

. . ' solid basis for lication and compon
GUP implementation presents us with. To emulate th Oanagezrinesnt andaﬁ‘gilu?eo handl?ng Oanp(;) \?vr:ltl Lef;/::rl
0“9"_‘6" Tandem execution environment the Cluster fficient communication and coordina'tion services
Service would need to be implemented as a kern§ '

service, which at this point seems impractical.
P P 10 Future Work

Replacing GUP with a protocol that provides the SAMEs ocoarch s underway at the Cornells Reliable

properties but exhibits a more scalable execution stylg.”" ~ : . .
seems preferable. This introduces a number of othe@'smbmed Systems group to investigate and implement

complexities, for example many of the currentlyﬁgfvzl%?ﬂi\aes m?dul?se indﬁg'glge%ogﬁga%ergﬁg\}v tﬁgd
popular total ordering protocols rely on a tight 9 .

integration of membership and communication tosystem to perform well under the scenarios tested for

ensure correct failure handling. This would result inthlz analysis and to scalle to larger numbers (256 nodes

replacingregroupas well as GUP. and above) at_reasonabe cost. Recent resul_tsf such as
the scalable failure detection [6] are very promising and

show that managing these numbers of nodes is feasible.

This serialized and synchronous nature of the protoc
is amplified in the particular MSCS implementation.

9 Conclusions I lated ject, dubbed Quintet [9,10] tool
. . n a related project, dubbed Quintet [9,10], new tools

miggzo?tapglruss'[zrrnesg];vrgg Sx::gb”gaﬁsigggts v(vhéz%re developed_to construct hig_hly available, cluster

revisiting the three questions from sectioﬁ 3 the are application servers. Quintet exploits MSCS

following is concluded: Seatures Where_p055|ble, but at thls point provides its

' own membership and communication modules.
Can the currently used distributed algorithms be a solid
foundation for scalable clusters? Acknowledgements

Both failure detection andegroup scale well to the Discussions with Jim Gray, Catharine van Ingen, Rod
numbers that were tested in this paper. When scaling 8amache and Mike Massa have helped to shape the
larger numbers the state processing at receivers witesearch reported in this paper. The advice of shepherd
become an issue. The serialized nature of GUP limits ited Lazowska was very much appreciated. Thorsten von
scalability to 10-16 nodes in the current MSCS setup. Eicken, S. Keshav and Brian Smith graciously

Are there any architectural bottlenecks that should be ontributed hardware to the world’s largesblipack

addressed if MSCS needs to be scalable? Cluster.

The major issue in both failure detection aedroupis References

the implementation of a broadcast facility using .

repeated point-to-point messages. This introduces %] ?adovmatz, DP.,K_%han_(lzira,K ThD Gopgl, A'a

significant overhead on the sender and on the network, Plgr%i?:en' 3 ."‘Gr:)ruy’Ser;}ices”'s iz?rg]sut:hctﬁ,rea?or

ar!d__needs to be replaced by a simple multicast hiahl 9, ".I bl P | .d -

primitive. The RPC trains in the membership join ighly ~ available, clustere computing’,

operation and in GUP, create a major obstacle for UnPublished documentdembel997

scalability, especially when the systems operate under[g] Birman, K.P., Building Secure and Reliable

significant load. Network Applications Manning Publishing
Company, and Prentice Hall, 1997

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Carr, R."Tandem Global Update Protogol"
Tandem Systems Revjexi.2 1985.

Katzman., J.A., etal, "A Fault-tolerant
multiprocessor system", United States Patent
4,817,091, March 28, 1989.

Moser, L., Melliar-Smith, M., D. A. Agarwal, D.,
Budhia, R., and Lingley-Papadopoulos, C., “Totem
A Fault-Tolerant Multicast Group Communication
System”,Communications of the AGMpril 1996.

Renesse, R. van, Yaron Minsky, Y., and Hayden,
M., “A Gossip-Based Failure Detection Service”,
in Proceedings. of Middleware '98Lancaster,
England, September 1998.

Renesse, R. van, Birman, K., Hayden, M.,
Vaysburd, A., and Karr, D., “Building Adaptive
Systems Using EnsembleSoftware--Practice and
Experience August 1998.

Vogels, W., Dumitriu, D., Birman, K. Gamache,
R., Short, R., Vert, J., Massa, M., Barrera, J., and
Gray, J., "The Design and Architecture of the
Microsoft Cluster Service -- A Practical Approach
to High-Availability and Scalability" Proceedings

of the 28 symposium on Fault-Tolerant
Computing Munich, Germany, June 1998.

Vogels, W., Dumitriu, D., Panitz, M,
Chipalowsky, K., Pettis, J., "Quintet, Tools for
Reliable Enterprise Computing”, submitted for
publication, June 1998.

[10]Vogels, W., van Renesse, R., and Birman, K., "Six

Misconceptions about Reliable Distributed
Computing",Proceedings of the"™BACM SIGOPS
European WorkshqpSintra, Portugal, September
1998

[11]Vogels, W, "World Wide Failures'RProceeding of

the 1996 ACM SIGOPS Workshdeland 1996.

