
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Evaluating the Importance of User-Specific Profiling

Zheng Wang
Harvard University

Norm Rubin
Digital Equipment Corporation

Evaluating the Importance of User-Specific Profiling

Zheng Wang
zhwang@eecs.harvard.edu, Division of Engineering and Applied Sciences, Harvard University

Norm Rubin
rubin@ives.amt.tay1.dec.com, Digital Equipment Corporation

Abstract

This paper examines common assumptions about user-
specific profiling in profile-based optimization. We
study execution profiles of interactive applications on
Windows NT to understand how different users use the
same program. The profiles were generated by the
DIGITAL FX!32 emulator/binary translator system,
which automatically runs the x86 version of Windows
NT programs on NT/Alpha computers. We have found
that people use the benchmark programs in different
ways. These differences in program usage can have
impact on the performance of profile-based FX!32
program translation and optimization, up to 9%.

1. Introduction

1.1 Background

Profile-based optimization is predicated on the
assumption that profiles can be obtained that accurately
depict how users run the application. There has been
only limited research on the viability of this assumption
[FF92, GY96]. We address this problem by examining
different users’ usage patterns of interactive
applications on Windows NT. Here the term “usage
pattern” refers to the way a particular individual uses
the code in a particular program.

A common assumption in profile-based optimization is
that people use applications in similar ways. This
assumption is consistent with the behavior of batch-
style and computation-intensive programs, and has an
implication that user-specific profiling is unnecessary.
The alternative to this common assumption is that
people use applications in different ways. This is
consistent with our intuition for complex and feature-
rich programs such as GUI-based interactive
applications. It implies that user-specific profiling may
be necessary for effective optimization.

The assumption that users are similar or users are
different suggests two different models for applying
profile-based optimization. In the traditional model, an
application is profiled and optimized before its release.
Developers run the program with a fixed or arbitrary
training workload and use the profile to guide

optimizations. Based on the assumption that users are
similar, the training workload is considered to be
representative. Spike [CG97] is an example of this
approach. Some recent systems, such as Morph [ZW97]
and FX!32 [HH97], extend the optimization process
beyond an application’s release by profiling and
optimizing the application continuously while it is
used1. Based on the assumption that users are different,
the current versions of Morph and FX!32 operate on a
per-user basis. Another assumption in this model is that
a particular user’s usage pattern may change over time
but seldom changes abruptly.

In this study, we compare execution profiles from
different users of the same program module. We did not
tackle the question of how a particular user’s usage
pattern changes over time. Since the purpose of the
profiles was to guide optimizations, we investigate how
the differences in profiles affect optimization
performance. We also examine whether we can
combine profiles from a group of users to optimize
programs for those users and for other users.

Our study shows that users of interactive applications
have different usage patterns. For most programs, each
individual uses a set of procedures that no other users
do, although frequently executed procedures tend to be
used by most users. For some benchmarks, profiles
from another user or a group can be less effective for
optimization than a particular user’s own profile.

1.2 Related Work

Although the majority of today’s personal computers
run mostly interactive applications on Windows
systems, there has been little research on how people
use these programs. Several research projects
investigated Windows operating system performance
[CE96, EW96, PS96]. A recent paper [LC98] presented
measurements and simulation results of instruction set
and architectural characteristics during program
execution on x86 Windows NT. These projects focused
on the characteristics and comparison of the general
system performance, while this paper focuses on the
application usage patterns.

1 Usually, profiling is done continuously when the application
is running and optimization is delayed until off-line.

There has been some research on profile comparison for
the purpose of branch prediction. Fisher and
Freudenberger [FF92] examined the accuracy of
predicting conditional branch directions from previous
runs of a program. Their experiments focused on batch-
computation programs from SPEC benchmark suit, and
used subjectively selected datasets to generate profiles.
Gloy et al. [GY96] compared user-only traces and full-
system traces for dynamic branch prediction. They used
standard traces as well as traces from instrumented runs
of selected programs. Our profile analysis is aimed for
optimization in general, and our profiles were collected
from users’ unscripted usage of interactive applications.

The next section introduces our experimental
methodology, including the collection of the profiles
and the statistical analysis methods. Section 3 presents
the results, and Section 4 summarizes.

2. Methodology

2.1 FX!32 and FX!32 profiles

We used the DIGITAL FX!32 system to collect
execution profiles for Windows NT programs. FX!32
automatically runs x86 applications on Alpha NT, using
a combination of emulation and binary translation.
When an x86 image is executed under FX!32 for the
first time, the FX!32 emulator interprets the x86 code
and generates an execution profile. This profile is later
used by the FX!32 translator to generate translated and
optimized Alpha code. Subsequent executions of the
program use the translated code instead of the x86 code.
If a certain run of the program uses part of the x86 code
that has not been translated, new profile data are
generated and merged into the existing profile. The
merged profile can be used to re-translate the program.

The contents of the profile reflect program usage over
time by a particular user and the addition of new profile
data reflects new or changed usage. Therefore, we can
learn about the usage patterns of the x86 applications
by studying the users’ FX!32 profiles. FX!32 profiles
are generated during the emulation of x86 code, so they
are based on x86 traces, not Alpha traces.

Currently, FX!32 profiles contain information on
procedure calls, indirect control transfers, and
unaligned memory references. For our statistical
analysis of the profiles, we consider only the procedure
execution information. In the optimization results study,
however, the whole profile is used for the FX!32
program translation/optimization.

One side note is that FX!32’s view of program
procedures may differ from the set of procedures in the

source code. FX!32 works on the binary image and
discovers program procedures during emulation. It
combines two procedures into a single “FX!32
procedure" if one contains a jump into the other.
Therefore, an FX!32 procedure may be the combination
of several original procedures. This does not occur
frequently, nor does it fundamentally affect our profile
analysis. In the rest of the paper, we simply use the
term “procedure” to refer to an FX!32 procedure.

2.2 Profile collection

We chose a set of interactive desktop applications as
benchmarks for this study. Since FX!32 profiles are
generated separately for each program module, we
regard each module as a separate benchmark. Different
versions of the same program are treated as different
modules because they have different code images. For
each module, we collected multiple (four or more)
profiles, each from a different user.

Our benchmark selection includes executables and
DLLs from the Microsoft Office suite as well as other
commonly used applications. Table 1 lists the 14
benchmark modules used for this paper. The Office
executables and DLLs are noted with their version
numbers: 95 (Office Version 7.0 for Windows 95) and
97 (Office 97).

A group of computer system researchers and software
developers ran the x86 version of the benchmarks using
FX!32 on Alpha computers running Windows NT 4.0.
Profiles were generated from their spontaneous and
natural usage of the programs. For each module, we
collected individual profiles from a selected group of
users, each of whom had made significant use of the
module2. These individual profiles were generated from
copies of the module on different machines. Since the
machines had comparable hardware and software
configuration, differences in the profiles were mostly
artifacts of the users’ usage patterns and not the
execution environment3.

We calculate a combined profile from the individual
profiles using the same merging algorithm used by the
FX!32 Manager, which sums up the execution counts
for each entry. The combined profile represents the

2 This is evaluated by looking at the profile size, the run count
(number of times a module has been executed), and asking the
users themselves. The run count alone is not a good
indication, because one run of an interactive application may
involve a varying number of tasks. Typically, the run count is
larger than 10 for these profiles.
3 As verification, we compared the profiles generated from
running an automated script on two machines, and found them
virtually identical.

combined usage of the module by this group of users.
We use a series of statistical analyses to examine the
similarity between individual profiles and the change in
similarity when the profiles grow. We also use the
profiles to guide the FX!32 program translation/
optimization and compare the performance of translated
programs.

2.3 Statistical analysis

Here we introduce the key methods of our statistical
analysis and introduce some terminology that is used in
this paper.

An FX!32 profile contains execution counts (the
number of times a procedure is called) for all
procedures that were used during the profile generation.
When we compare a group of profiles, we focus on the
set of procedures included in each profile, regardless of
the procedures’ execution counts. This parameter is
important for the profile-guided code translation in
FX!32 as well as most code layout optimizations. By
considering only the set of procedures, we also simplify
the comparison and avoid unfair methods of weighing
the execution counts. We consider the procedure
execution counts only in the part of our analysis that
examines the correlation between the number of users
who use a procedure and the execution count of the
procedure.

We compare the sets of procedures used by individual
users by examining their combined profile. If a
procedure is included in the combined profile, it has
been used by at least one user. For such a procedure, we

define its usage count as the number of users who have
used it. We categorize the procedures in the combined
profile according to their usage counts. If a procedure is
used by only one user, we call it a unique procedure. If
it is used by all users, we call it a common procedure.
Any other procedure is called a subgroup procedure.

The usage count distribution of all procedures in the
combined profile reflects the similarity between
individual profiles. If all users use the same set of
procedures, all procedures in the combined profile will
be common procedures. If each user uses a different set
of procedures, all procedures in the combined profile
will be unique procedures. If the sets of procedures
used by the individuals are not all the same nor all
different, we will see a distribution of unique, subgroup
and common procedures in the combined profile. The
higher the percentage of common procedures and the
lower the percentage of unique procedures, the more
similar the individual profiles.

3. Results

In this section, we present a series of statistical analyses
of the collected profiles as well as optimization results

Benchmark Module Description Time/Date Stamp File Size (KB)

excel.exe (97) Office 97 Excel main executable 16:22:31 11/15/96 5469

mso95.dll (95) Office 95 (Version 7.0) DLL 01:48:53 07/08/95 918

MS mso97.dll (97) Office 97 DLL 01:02:35 11/07/96 3686

outllib.dll (97) Office 97 Microsoft Outlook DLL 20:33:23 11/13/96 4254

Office powerpnt.exe (97) Office 97 PowerPoint executable 05:08:38 11/17/96 3411

winword.exe (95) Office 95 Word executable 02:20:46 07/12/95 3755

winword.exe (97) Office 97 Word executable 12:33:37 11/15/96 5194

acrord32.exe Adobe Acrobat Reader 3.0 executable 16:59:11 06/16/97 2265

mfc40.dll Microsoft Visual C++ 4.0 DLL 01:53:24 02/28/96 901

netscape.exe Netscape Navigator Gold 3.01 executable 15:42:53 10/22/96 3093

photoshp.exe Adobe Photoshop 4.0 executable 09:23:00 10/29/96 3560

pnui3250.dll Support library for RealPlayer (32-bit) 5.0 22:54:00 11/22/97 590

winhlp32.exe Windows NT 4.0 help utility 14:17:01 07/17/96 303

winzip32.exe WinZip compression utility 6.2 17:25:35 10/12/96 846

Table 1. Summary of benchmark modules
Time/Date Stamp is taken from the PE file header.

user A

user B
user C

unique procedures
(usage count = 1)

subgroup procedures

 common procedures
(usage count = number of users)

Figure 1. An example of unique, subgroup
and common procedures

for two benchmark modules. In our statistical analyses,
we examine the similarity between individual profiles
and the change in similarity over time.

3.1 Summary of profiles

For every benchmark module, Table 2 lists the number
of procedures in the combined profile and the smallest,
largest and average number of procedures in an
individual profile4. Each individual profile reflects one
person’s usage of the benchmark module over multiple
runs, while the combined profile reflects the combined
usage by all users of the module. Therefore, each
individual profile includes a percentage of the
procedures in the combined profile. In Table 2, the
lowest Smallest% is 49.3% for mfc40.dll, which
means that one user of mfc40.dll has used only
49.3% of all procedures used by the seven users. The
highest Largest% occurs for winhlp32.exe, where
one user has used 95.4% of all procedures used by the
12 users. For any module, Largest% is 100% if and
only if one user has used all procedures used by other

4 As mentioned in Section 2.1, the term “procedure” refers to
an “FX!32 procedure” which may be the combination of
several original procedures. The total number of FX!32
procedures in a module is difficult to determine.

users. This does not occur in Table 2, implying that
people user the programs in different ways. The
average percentage of procedures in the combined
profile used by each individual is about 73%.

3.2 Similarity between individual profiles

As discussed in Section 2.3, the usage count
distribution of all procedures in the combined profile
reflects the similarity between individual profiles.
Figure 2 shows the percentage distribution of unique,
subgroup and common procedures in the combined
profiles for all benchmark modules.

For these benchmark modules, the percentage of
common procedures in the combined profile ranges
between 38.1% and 76.9%, with an average of 52.1%.
The percentage of unique procedures ranges between
7.0% and 23.6%, with an average of 16.4%. In other
words, typically about half of the procedures ever used
are used by all users, while a small yet significant
percentage is used by only one of the users.

Among 14 benchmark modules, acrord32.exe,
pnui3250.dll and winhlp32.exe have the
highest percentage of common procedures in their

Benchmark Number Number of Procedures in Profile Smallest Largest Average

Module of Users Combined Smallest Largest Average % % %

acrord32.exe 4 5050 4012 4790 4435 79.4% 94.9% 87.8%

excel.exe (97) 4 8514 5885 6821 6351 69.1% 80.1% 74.6%

mfc40.dll 7 2558 1260 1932 1539 49.3% 75.5% 60.2%

mso95.dll (95) 6 2630 1693 2115 1927 64.4% 80.4% 73.3%

mso97.dll (97) 8 9994 5631 8298 6870 56.3% 83.0% 68.7%

netscape.exe 4 7938 4849 7004 5852 61.1% 88.2% 73.7%

outllib.dll (97) 5 16330 10541 13113 11904 64.6% 80.3% 72.9%

photoshp.exe 5 10502 6981 8845 7807 66.5% 84.2% 74.3%

pnui3250.dll 4 1443 1055 1299 1181 73.1% 90.0% 81.8%

powerpnt.exe (97) 5 15014 8905 12895 10504 59.3% 85.9% 70.0%

winhlp32.exe 12 762 543 727 602 71.3% 95.4% 79.0%

winword.exe (95) 5 7317 4600 6222 5398 62.9% 85.0% 73.8%

winword.exe (97) 6 10113 6226 7988 6972 61.6% 79.0% 68.9%

winzip32.exe 5 1125 597 893 737 53.1% 79.4% 65.5%

Average 63.7% 84.4% 73.2%

Table 2. Summary of profiles

Combined The number of procedures in the combined profile
Smallest, Largest, Average The smallest, largest and average number of procedures in an individual profile
Smallest%, Largest%, Average% “Smallest”, “Largest” and “Average” each divided by “Combined”

For every module, each user has used a percentage of the procedures in the combined profile, and Smallest%, Largest%
and Average% are the minimum, maximum and average value of this percentage among the group of users.

combined profiles, and acrord32.exe and
winhlp32.exe also have the lowest percentage of
unique procedures. This indicates that each of these
three modules shows relatively consistent usage pattern
across its users. We notice that these three modules
provide less variety of functionality than most other
benchmark modules. For example, acrord32.exe
was mostly used to simply view and print documents
downloaded from the Internet. We may also see from
Table 1 and Table 2 that pnui3250.dll and
winhlp32.exe are two of the smallest benchmark
modules in terms of the file size and the number of
procedures. The above two factors may explain the
relatively high similarity among each of these three
modules’ group of individual profiles.

For a more detailed examination, we calculate the
distribution of procedure usage counts within each
individual profile. Table 3 shows the results for
winword.exe (95).

We see that every individual profile has its share of
unique procedures and subgroup procedures. The
common procedures constitute between 61.4% and
83.1% of the procedures in an individual profile, while
the percentage of unique procedures in an individual
profile ranges from 1.2% to 9.0%. In terms of the
procedures included, none of the profiles is a subset or
superset of another profile. We have observed similar
phenomena for other benchmark modules. For several
benchmark modules, one or more relatively small
individual profiles have no unique procedures, but they
still contain subgroup procedures. winhlp32.exe
and netscape301.exe are the only two benchmark

modules where one person uses a subset of the
procedures another person uses.

We also examine whether there are highly similar usage
patterns among small groups of users. To evaluate this,
we use pair-wise comparison between all individual
profiles for a module to see whether some of them have
significantly higher similarity among themselves than
with other profiles. For each pair of profiles, we
calculate the percentage of procedures included in both
among all procedures included in either of them. This
percentage measures the similarity between two
profiles. Table 4 lists the results for winword.exe
(95). All numbers in the table fall between 66.6% and
77.2%, indicating that similarity between each pair of
users is on a close level. In the analysis for other

0%

10%
20%

30%

40%
50%

60%

70%

80%
90%

100%

ac
ro

rd
32

.e
xe

ex
ce

l.e
xe

 (9
7)

m
fc4

0.
dll

m
so

95
.d

ll (
95

)

m
so

97
.d

ll (
97

)

ne
tsc

ap
e.

ex
e

ou
tlli

b.
dll

ph
ot

os
hp

.e
xe

pn
ui3

25
0.

dll

po
wer

pn
t.e

xe
 (9

7)

winh
lp3

2.
ex

e

winw
or

d.
ex

e
(9

5)

winw
or

d.
ex

e
(9

7)

winz
ip3

2.
ex

e

P
er

ce
n

ta
g

e
o

f
P

ro
ce

d
u

re
s unique procedures (used by only one user)

subgroup procedures (used by more than one but not all users)
common procedures (used by all users)

Figure 2. Usage count distribution for all benchmark modules

The Y-axis is the percentage of procedures in the combined profile that fit into a given category.
The number of users and the total number of procedures in the combined profile for each benchmark module
can be found in Table 2.

Profiled # of Number of Proc. by Usage Count
User Proc. 1

(unique)
2-4

(subgroup)
5

(common)
Bashful 4600 55 722 3823
Doc 4990 69 1098 3823
Grumpy 5332 210 1299 3823
Sneezy 5846 312 1711 3823
Happy 6222 562 1837 3823
Combined 7317 1208 2286 3823

Table 3. Procedure distribution among five users of
winword.exe (95)

of Proc.: number of procedures in the profile

We have replaced all user names with pseudonyms. For
each user, unique procedures are those used by this user
but none of the other four. Common procedures are those
used by all five users.

benchmark modules, we have seen a few cases of
relatively higher similarity between two or three
individuals, but we do not think they are sufficient to
conclude that there is particularly high similarity among
small groups of users.

Results in this subsection imply that users use
applications in different ways, supporting the theory
that user-specific profiling is important for effective
optimization.

3.3 Correlation between procedure usage count
and execution count

In this subsection, we examine whether there is
correlation between a procedure’s usage count and its
execution count. In many profile-based optimizations,
priority is given to the most frequently executed code.
In this case, procedures with higher execution counts
are more important to the optimization than those with
lower counts.

The procedure execution counts in FX!32 profiles do
not always match the traditional definition of procedure
execution count. In FX!32, control transfers within the
translated Alpha code are not captured in the profile.
Since a user may perform program translation from

time to time, a procedure’s execution count in the
profile may be less than the number of times it has been
called. However, experience shows that usually only up
to a few percents of the counts will differ by more than
one order of magnitude. For Figure 3, we divide
execution counts into levels that each covers at least
two orders of magnitude. This figure shows the usage
count distribution of all procedures in the combined
profile for winword.exe (95), broken down by their
average execution counts.

Among 3842 procedures with average execution counts
below 100, about 30% are unique procedures and
another 30% are common procedures. Among 724
procedures with average execution counts above 10000,
over 90% are used by all or all but one users. These
numbers show that frequently executed procedures are
more likely to appear in all or most individual profiles
than those executed less frequently. In other words, the
part of code that users execute the most is similar,
despite the differences in their overall profiles. The
statistics for other benchmark modules also support this
conclusion.

For optimizations that give priority to frequently
executed code, this conclusion on similarity suggests
that despite the differences among users, we may find a
representative training workload that exercises the
procedures frequently used by most users. On the other
hand, such a workload may not cover enough
procedures for any one user. For winword.exe (95),
2535 procedures have been used by four or five users
with average execution counts above 100, while the
smallest individual profile includes 4600 procedures
and the combined profile includes 7317 procedures.
Further analysis in the context of a specific
optimization will determine the tradeoff between using
such a user-independent training workload and using
user-specific profiling.

0%

20%

40%

60%

80%

100%

[1, 100) [100, 10000) [10000, 1E6) [1E6, 1E9)

Average Execution Count Range

P
ro

ce
d

u
re

 D
is

tr
ib

u
ti

o
n

common procedure

usage count 4

usage count 3

usage count 2

unique procedure

3842 2625 675 49

Figure 3. Procedure distribution: usage count vs. execution count: winword.exe (95), five users
Average Execution Count: procedure execution count averaged over users who have use this procedure
(Average Execution Count = execution count in combined profile / usage count)
number at the top of each bar: the total number of procedures in this range

Bashful Doc Grumpy Sneezy Happy
Bashful -- 77.2% 69.6% 69.1% 66.6%
Doc 77.2% -- 73.5% 69.7% 72.5%
Grumpy 69.6% 73.5% -- 76.4% 71.6%
Sneezy 69.1% 69.7% 76.4% -- 76.0%
Happy 66.6% 72.5% 71.6% 76.0% --

Table 4. Pair-wise comparison between five users of
winword.exe (95)

The number for each pair of users is the percentage of
procedures included in both users’ profiles among all
procedures included in either of them.

3.4 Change in similarity when profiles grow

When the individual profiles grow larger with more use
of the program, one might speculate that their similarity
increases as they all approach one common limit, the
set of all procedures in the program. Table 5 examines
the change in similarity between five winword.exe
(95) profiles when some of them grow larger.

We took snapshots of the five individual profiles at six
different times during a month. Each time at least one
profile had grown since the last time. During the first
five snapshots, the percentage of common procedures in
the combined profile increased and the percentage of
unique procedures decreased. In these cases, the
similarity between individual profiles increased when
some of them grew larger. However, the slow change in
the similarity suggests that the individual profiles might
never “converge”; that is, profiles from different users
may never reach a certain high level of similarity,
reflecting their different usage patterns. In fact, in the
last snapshot where Sneezy’s profile grew, the similarity
between individual profiles slightly decreased due to
the new procedures Sneezy had started to use. In
summary, the users’ accumulated usage patterns may
become more similar with more use of the program, but
some differences persist.

3.5 Optimization performance

This subsection examines the impact of differences in
profiles on the performance of programs optimized
using the profiles. This impact is dependent on how the
profile information is used during the optimization.
Different optimizations may have varying sensitivity to
differences in profiles. Even with the same
optimization, the performance impact may vary for
different programs and different workloads.

In our experiments, the FX!32 translator/optimizer uses
the profile to determine the set of code to translate and
to guide common compiler optimizations, such as
procedure layout, procedure inlining and dead code
elimination, on the translated code. We used different

training profiles, both individual and combined, to
translate/optimize the same module. For each profile,
we measured the performance of the application using
the translated code. Based on the results we discuss the
effectiveness of using profiles from another user or a
group of users to translate/optimize a program.

One difficulty in our experiments was measuring the
performance of an interactive application. To achieve
repeatability, we chose to measure the execution time
of a standard, script-driven workload. We consequently
assumed that our “test user” performed this same
workload for both training and testing. In reality, a
user’s usage pattern of a program may change over
time, causing the testing workload to be different from
the training workload. The impact of this factor on
program optimization is not investigated in this paper.

We conducted our experiments on benchmark modules
winword.exe (95) and powerpnt.exe (97).

3.5.1 Microsoft Word benchmark

For testing on winword.exe (95) from Microsoft
Word 7.0 for Windows 95, we used the workload from
SYSmark32 for Windows NT version 1.0 distributed by
BAPCo [BAPCo]. We included two individual profiles
used in the statistical analysis from users Grumpy and
Happy, plus two relatively small individual profiles
Dopey and Sleepy to examine the issue of “under-
training”. Figure 4 shows the results for these four
individual profiles and various combined profiles. All
performance measurements were done on a 500MHz
Alpha computer with 64MB of main memory. Word 7.0
was the only application running on the system.

Without any translation/optimization, the program is
executed entirely through emulation, which is slow
(459 seconds). The Minimal profile, generated by
starting up winword.exe and exiting immediately, is
practically the smallest user profile possible and a
subset of any real user profile. Its test result (292
seconds) indicates a lower bound of optimization
benefit one should expect from using any profile.

Number of Procedures Used By Procedure Distribution by Usage Count
Date Bashful Doc Grumpy Sneezy HappyCombined 1 (unique) 2-4 (subgroup) 5 (common)
10/10/97 4600 4091 4691 5648 6222 7191 20.4% 33.5% 46.2%
10/15/97 4600 *4465 4691 5648 6222 7213 19.5% 33.2% 47.3%
10/22/97 4600 4465 *4947 5648 6222 7239 18.2% 34.0% 47.8%
10/29/97 4600 *4834 *5332 5648 6222 7283 17.0% 31.6% 51.8%
11/03/97 4600 *4990 5332 5648 6222 7288 16.3% 31.5% 52.3%
11/10/97 4600 4990 5332 *5846 6222 7317 16.5% 31.2% 52.2%

* A profile that grew

Table 5. Change in similarity when individual profiles grow larger: winword.exe (95), five users

We draw several conclusions from Figure 4:

1. We achieve the best performance (242 seconds)
when we translate the program by using the test user
profile. When using a profile from another user or a
group, we see performance that is 1–9% worse (245-
264 seconds) but still much better than using the
Minimal profile.

2. The optimization benefit has a rough trend of
increasing with the similarity between the training
profile and the testing profile. However, this relation is
not monotonic.

3. In the graph, the black bars correspond to profiles
from groups that include the test user, while the gray
bars correspond to profiles from other users and groups
that do not include the test user. With the exception of
BAPCO+Dopey+Sleepy+Grumpy+Happy, “black bar

profiles” provide more effective optimization than
“gray bar profiles.” This suggests that a group’s
combined profile is more effective for optimization if
the group includes the test user than if not.

4. Among combined profiles that include the test user
profile (the black bars), the larger the profile, the less
the optimization benefit. This suggests that a combined
profile may become less effective for a user in the
group when the group is large. A possible explanation
is that extra procedures in the translated code increase
memory system load and cause sub-optimal code
layout. This may also explain why BAPCO+Dopey+
Sleepy+Grumpy+Happy provides less effective
optimization than Dopey+Sleepy+Grumpy+Happy.

For this benchmark, user-specific profiling has
measurable impact on optimization performance.

253

250

249

248

257

264

292

459

242

245

250

256

252

200 210 220 230 240 250 260 270 280 290 300

BAPCo + D + S + G + H (7091, 60.1%)

BAPCo + Happy (6531, 65.8%)

BAPCo + Grumpy (5904, 72.7%)

BAPCo + Sleepy (5085, 84.5%)

BAPCo + Dopey (4750, 90.4%)

D + S + G + H (6834, 56.9%)

Happy (6222, 61.0%)

Grumpy (5332, 63.1%)

Sleepy (4043, 64.0%)

Dopey (3176, 57.3%)

BAPCo (4295, 100.0%)

Minimal (1959, 45.5%)

None
T

ra
in

in
g

 P
ro

fil
e

Execution Time (second)

*

Figure 4. Optimization results for winword.exe (95)

Training Profile The profile used to translate/optimize the program
Execution Time The execution time of the BAPCo workload using the translated code. Average of three warm runs.

Standard deviation is within 2 seconds for all numbers except 6 seconds for “None”
(number, %) The number of procedures in the training profile, the similarity between the training profile and the

BAPCo profile (calculated as the percentage of procedures included in both profiles among all
procedures included in either of them)

None No profile, and therefore no translation/optimization
Minimal profile The profile generated by starting up winword.exe and then exiting immediately
BAPCo profile The profile generated from one run of the testing workload from BAPCo
+ The combining of profiles
D, S, G, H Dopey, Sleepy, Grumpy, Happy

3.5.2 Microsoft PowerPoint benchmark

For powerpnt.exe (97) from Microsoft PowerPoint
97, we used an automated testing script designed at
Digital Equipment Corporation. Similar with BAPCo
workloads, it uses Microsoft Visual Test to drive the
application. This script was originally designed to test
the functionality of PowerPoint. It included some wait
time in between tasks. In this sense, it may be closer to
a real user than BAPCo workloads, which mostly
consist of continuously executed CPU-intensive tasks.
On the other hand, some application response time and
background activity may be hidden by the wait time,

making the throughput measurement of execution time
less sensitive to the code quality. Figure 5 shows the
results. All performance measurements were done on a
500MHz Alpha computer with 128MB of main
memory. PowerPoint 97 was the only application
running on the system.

The results show that all the individual and combined
profiles are almost equally effective for optimization,
with differences on the level of 1%. This implies that
for this program and this workload, user-specific
profiling does not have significant impact on the
performance of FX!32 translation/optimization.

426

424

423

424

423

423

424

423

423

425

422

453

473

420

421

423

423

400 410 420 430 440 450 460 470 480

Tester + D + M + P (14029, 82.3%)

Tester + M + P (13805, 83.6%)

Tester + D + P (13885, 83.1%)

Tester + D + M (13227, 87.2%)

Tester + Pluto (13650, 84.5%)

Tester + Mickey (12915, 89.4%)

Tester + Donald (12031, 95.9%)

D + M + P (12600, 72.1%)

M + P (11686, 68.2%)

D + P (11874, 68.6%)

D + M (11243, 72.2%)

Pluto (10903, 64.4%)

Mickey (9956, 66.4%)

Donald (7991, 62.3%)

Tester (11540, 100.0%)

Minimal (2550, 22.1%)

None

T
ra

in
in

g
 P

ro
fi

le

Execution Time (second)

Figure 5. Optimization results for powerpnt.exe (97)

Training Profile The profile used to translate/optimize the program
Execution Time The execution time of the testing workload using the translated code. Average of three warm runs.

Standard deviation is within 2 seconds for all numbers
(number, %) The number of procedures in the training profile, the similarity between the training profile and the

Tester profile (calculated as the percentage of procedures included in both profiles among all
procedures included in either of them)

None No profile, and therefore no translation/optimization
Minimal profile The profile generated by starting up powerpnt.exe and then exiting immediately
Tester profile The profile generated from one run of the testing script
+ The combining of profiles
D, M, P Donald, Mickey, Pluto

Results for these two benchmarks indicate that
depending on the program and the workload,
differences in profiles can have measurable or
insignificant impact on optimization performance.

4. Summary

This paper has compared and analyzed FX!32 profiles
from different users for a set of Windows NT programs.
We discovered that the sets of procedures used by
individuals are fairly different. Among all procedures
used by a group of users, typically around 50% are used
by all users, while 7-24% are used by only one of the
users. In most cases, the users have usage patterns
different from each other, without anyone using a
subset or superset of the procedures another person
uses. Frequently executed procedures tend to be used
by most individuals. With more use of the program over
time, different people’s usage patterns may become
increasingly similar, but our results suggested that they
will never converge. For the FX!32 program
translation/optimization, differences in profiles can
have impact on optimization performance for some
benchmarks. Using profiles from another user or a
group may be less effective than using the test user’s
own profile, but is always effective compared to using
no profile or a minimal profile. Overall, we conclude
that user-specific profiling is an important factor to
consider in profile-based optimization.

Acknowledgement

Many members of the AMT group at Digital Equipment
Corporation provided enormous support and important
feedback for this project. Special thanks to my advisor
at Harvard University, Prof. J. Bradley Chen, for his
generous help on improving this paper. Also, thanks to
members of the program committee as well as many
people at Harvard for their valuable comments.

Availability

The complete set of results for all benchmarks is
available in a technical report [WR98] and through the
URL http://www.eecs.harvard.edu/~zhwang/NT98/

References

[BAPCo] Business Applications Performance
Corporation, http://www.bapco.com/

[CE96] J. B. Chen, Y. Endo, K. Chan, D. Mazieres, A.
Dias, M. Seltzer, and M. D. Smith, “The Measured
Performance of Personal Computer Operating
Systems.” In ACM Transactions on Computer
Systems 14:1, pages 3-40, February 1996.

[CG97] R. Cohn, D. Goodwin, P. G. Lowney, and N.
Rubin, “Spike: An Optimizer for Alpha/NT
Executables.” In Proceedings of the USENIX
Windows NT Workshop, USENIX Association,
pages 17-24, August 1997.

[EW96] Y. Endo, Z. Wang, J. B. Chen, and M. I.
Seltzer, “Using Latency to Evaluate Interactive
System Performance.” In Proceedings of the Second
Symposium on Operating Systems Design and
Implementation, USENIX Association, pages 185-
199, October 1996.

[FF92] J. Fisher and S. Freudenberger, “Predicting
Conditional Branches from Previous Runs of a
Program.” In Proceedings of the Fifth International
Conference on Architectural Support for
Programming Languages and Operating Systems,
ACM, pages 85-95, October 1992.

[GY96] N. Gloy, C. Young, J. B. Chen, and M. D.
Smith, “An Analysis of Dynamic Branch Prediction
Schemes on System Workloads.” In Proceedings of
the 23rd Annual International Symposium on
Computer Architecture, ACM, pages 12-21, May
1996.

[HH97] R. J. Hookway and M. A. Herdeg, “DIGITAL
FX!32: Combining Emulation and Binary
Translation.” In Digital Technical Journal, Volume
9, Number 1, Digital Equipment Corporation, pages
3-12, 1997.

[LC98] D. Lee, P. Crowley, J. Baer, T. Anderson, and
B. Bershad, “Execution Characteristics of Desktop
Applications on Windows NT.” To appear in
Proceedings of the 25th International Symposium on
Computer Architecture, IEEE, June 1998.

[PS96] S. Perl and R. Sites, “Studies of Windows NT
Performance Using Dynamic Execution Traces.” In
Proceedings of the Second Symposium on Operating
Systems Design and Implementation, USENIX
Association, pages 169-183, October 1996.

[WR98] Z. Wang and N. Rubin, “A Statistical Analysis
of User-Specific Profiles.” Technical Report TR-09-
98, Computer Science Group, Harvard University,
July 1998.

[ZW97] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and
M. D. Smith, “System Support for Automated
Profiling and Optimization.” In Proceedings of the
16th ACM Symposium of Operating Systems
Principles, ACM, pages 15-26, October 1997.

