
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Montage - an ActiveX Container for Dynamic Interfaces

Gordon Woodhull and Stephen C. North
AT&T Laboratories

Montage - an ActiveX Container for Dynamic Interfaces
Gordon Woodhull

nodrog@ix.netcom.com
Stephen C. North

north@research.att.com
Information Visualization Research.

AT&T Laboratories
180 Park Ave.

Florham Park, NJ, USA

Abstract
Montage is a customizable, embeddable ActiveX con-
tainer. Its client objects may be positioned dynami-
cally by an external layout agent. Montage manages
toolbars and user interface modes, integrating dispa-
rate components into a single, consistent interface. An
important part of this task is supporting “group re-
positories” of related objects for data transfer opera-
tions such as cut-and-paste, drag-and-drop, save and
load. Montage does not rely on large external libraries
such as the Microsoft Foundation Classes, and thus is
relatively lightweight. The prototypical Montage ap-
plication is an embeddable display for dynamic net-
works (abstract graphs).

Introduction
An important trend in interactive computing is toward
better integration of tools and services. ActiveX1 is a
protocol or set of interfaces for tool interconnection,
enabling sharing of data and the user interface.
ActiveX makes it possible, for example, to embed a
live Excel spreadsheet in a WordPerfect document, or
to place a third-party display widget on a Visual Basic
canvas. ActiveX originated as an inter-client cut-and-
paste protocol, but has grown to include many ad-
vanced services, including object naming, in-place
editing, canvas event management (e.g. resize, drag-
and-drop), toolbar and menu sharing, and loading and
saving of persistent state. It employs the Component
Object Model (COM) for communication between
components. See Brockschmidt [2] for further back-
ground discussion on ActiveX and COM.

ActiveX is as difficult to program as it is feature-rich.
It has dozens of interfaces, with hundreds of methods
to call or implement. Although standard development
tools simplify the design of contained objects (con-
trols), we found insufficient support for designing new

1 Also known as Object Linking and Embedding or
OLE.

containers with a full complement of ActiveX fea-
tures. We wrote Montage to provide this support in the
form of a general container. We envisioned a small,
efficient container object that would integrate with
common desktop tools, having all aspects of its user
interface and canvas layout determined by the compo-
nents that run inside it.

The motivation for creating Montage arose from the
Microsoft Windows port of dotty [5], a graph editor.2

Dotty was written for Unix X Windows and is similar
to other well-known Unix/X graph editors, such as
GraphEd [7], Edge [9], and Graphlet [8]. Dotty was
converted to MS Windows by re-coding its file selec-
tor, text-entry and other widgets in win32 graphics.
This approach made dotty into an isolated island of X
among MS Windows programs. Functioning almost
identically to the Unix version, the port lacks even
basic MS Windows compatibility such as access to
native print drivers. Users would like a much higher
level of tool integration, such as the ability to embed
graph diagrams in text documents, or to incorporate
multimedia controls in diagrams. Additionally, we
encountered basic limitations in dotty’s architecture
when our research in algorithms moved into dynamic
on-line layouts – dotty assumes batch layout. All this
suggested a fresh architectural approach.

In this context, we were interested to learn how much
could be gained by wholesale adoption of ActiveX and
win32 in a graph editor well adapted to MS Windows.
As we developed a graph control, it became apparent
that the layout and containment mechanisms could be
cleanly separated. Our win32 graph editor became a
general-purpose container, Montage, automated by a
set of dynamic layout engines.

2 “Graph” always refers to an abstract graph or net-
work in this paper.

A General ActiveX Container
In 1996, Microsoft drafted a new specification for
what were then OLE Controls, OCX96, which among
other things allowed for non-rectangular and transpar-
ent controls. Central to OCX96 was the definition of a
windowless control. Before this time, all OLE objects
used windows, which are overlapped rectangular re-
gions that receive messages directly from the operating
system. Windows were essential to early OLE because
they meant that a visual region within one document
could be owned by an application in an entirely differ-
ent process. OCX96 defined new interfaces so that the
container could ask the contained object mouse hit-
testing and region opacity questions, and forward it the
messages it would receive had it a window. Also, the
contained object could ask the container for services,
such as drawing handles and mouse capture, that nor-
mally require a window.

The facts of graph layout made OCX96 very appealing
to us: nodes are usually non-rectangular, and it would
be impractical to put opaque rectangles around edges.
If Dynagraph were a windowless control container,
both nodes and edges could be represented by ActiveX
controls. But the first two versions of the Windows
Dynagraph were written with the Microsoft Founda-
tion Classes (MFC), which do not support containment
of windowless controls. The Active Template Library
(ATL) added efficient support for writing windowless
controls in early 1997, but still there was no library
support for containers.

Since it was clear that we would have to write any
support for windowless controls from scratch, it
seemed like an opportunity to abandon the cumber-
some MFC entirely. Another aspect of OCX96 made
this especially appealing: the facility for transparent
controls would make it possible to extract all Dyna-
graph-specific behavior out of the containment func-
tionality, leaving a general ActiveX container and a
fairly simple graph application. The main design
question became, “If ActiveX defines a containment
relation, what is the abstract data type for that rela-
tion?” The Montage answer is to factor out all inter-
action, layout, coordinate transformation (zoom, etc.),
and persistence, as for example a function for ordering
objects is factored out of an ADT for dictionaries.
What is left is a z-ordered list of positioned content
objects at various levels of activation.

Montage is not the only solution to this problem. Dy-
namic HTML (which was developed concurrently)
also moves layout policy out of the core container and
into client programs. Yet browsers do not have persis-

tence models: they are presentation oriented, not
document oriented. Visual Basic and almost all other
OLE applications with scripting languages also func-
tion as general containers, but developers may find
themselves fighting with the layout and other peculi-
arities of the document data type. In contrast, the
Montage document type is simply an ordered list of
controls; we model the familiar OLE GUI in auxiliary
controls and other components.

Automation
ActiveX Automation is the name for the invoking
program functionality through public COM interfaces.
An automation object implements and publishes in-
terfaces; an automator (or “automation controller” or
“client”) calls methods in these interfaces. Wherever
possible, Montage has been factored into components
that communicate over such public interfaces. The
layout engines, modes, and storage system are consid-
ered external clients, with no privileged access to
Montage data. This design allows the easy replace-
ment of most non-core parts of Montage, and also al-
lows fine control over its functionality from any
Automation-compatible language, including C++,
Java, and in the future, Visual Basic and Web scripting
languages such as JScript and VBScript. Through
Automation, a Montage diagram can be connected to a
dynamic process, for instance to show diagrams of a
computer network. If the system can then react to dia-
gram events, Montage becomes a “transparent” user
interface to manipulate external objects.

Dynamic Layout Engines
A key requirement for Montage is to support dynamic
network diagrams. The elements of network diagrams
are nodes and edges. These are represented in Montage
by ActiveX controls. For convenience we supply a
“shape node” control specifically for graph diagrams,
but other ActiveX documents or controls have equal
status. Similarly, edges are ActiveX controls that draw
generalized curves; we supply a simple non-interactive
control to draw polylines and Bezier splines, but the
component architecture leaves the door open for inter-
active edges, varying edge styles, etc. Montage sup-
ports both windowed and windowless controls. We use
windowless controls for both edges and shape nodes;
nodes having a naturally rectangular aspect, as do most
ActiveX documents, may be either type.

Layout in Montage (and in all of ActiveX) centers on
the site object, which represents the relationship be-
tween the container and contained object. The site’s
properties include position, a reference to the con-
tained object/control, and ambient properties such as

default colors and fonts. However, standard ActiveX
does not define any interfaces to change these proper-
ties. In other words, container functionality can be
divided into fetches, requests, and commands, but
ActiveX only defines interfaces for the first two. Stan-
dard ActiveX does offer ways to give hints to contain-
ers, but policies about layout and activation are gener-
ally hidden.

In contrast, Montage pushes policy decisions out of the
container. It defines interfaces for clients to directly
change site properties. In this model, clients make
hints or issue requests by treating them as events sent
to sites. In the case of Dynagraph, to support layout
control by a central server, the Montage architecture
specifies that automators such as modes (described
below) that need to change a diagram do this by gen-
erating events on the affected objects’ sites rather than
making changes directly. If a sink picks up an event, it
changes the layout; otherwise an automator is free to
make the change itself. In effect, the site has an owner
(which may be the control itself) that interprets all
requests made on the site, usually forwarding them to
a layout engine (see Figure 1).

In our main application, the Dynagraph ActiveX con-
trol, the Dynagraph library maintains network dia-
grams. Dynagraph is a portable C library that defines
an interface for incremental graph layout services.
Clients can open and close diagrams and edit their
contents by sending layout events to an engine. Events
refer to operations on individual nodes and edges ref-
erenced by client-side descriptors, for example, “insert
node v at (x,y)”, “move edge e to (x0 ,y0, x1, y1, x2, y2,…)”
or “delete node v”. To update live diagram displays,
layout managers send events of the same type via call-
backs. Note that a single request event may yield many
diagram display update events, and it is also possible
for an update request to be denied by a layout engine
(say, if a request is inconsistent with diagram-specific
constraints). Compound updates are handled by input
event queues in layout engines. The library currently
has managers for dynamic hierarchical layout [10],
virtual physical (“spring”) models, and incremental
orthogonal layout.

In order to abstract the layout engines into a separate
module, we created a COM wrapper for the Dyna-
graph library. The C structures are manipulable
through COM interfaces, and the callbacks get broad-
cast through COM connection points. Then a separate
module, called DGM (Dynagraph for Montage), man-
ages the translation from Montage events to Dyna-
graph events, and from Dynagraph events to com-

mands for Montage. This design helps ensure that
neither is dependent on the details of the other.

Modes and Toolbars
Because Montage is a general control container, it has
no built-in user interface. On its own it does not re-
spond to mouse or keyboard events, so the only objects
that can respond are controls activated within Mon-
tage. The user interface of a Montage application con-
sists mainly of the controls plugged in as modes and as
toolbars. Modes provide the main interface. These are
transparent, windowless controls placed in front of all
inactive objects but behind all active objects. Here
they receive all mouse events that the active contained
objects do not process on their own.

For example, a left mouse button drag consists of the
Windows messages WM_LBUTTONDOWN, multiple
WM_MOUSEMOVEs, and a WM_LBUTTONUP. If
an active windowed control is under the mouse, Win-
dows routes these messages directly to it, for instance
selecting text in a Word document. Otherwise the mes-
sages go to the Montage window, which searches the Z
order for the control under the mouse and forwards the
messages. If there is no active object in front of it, the
active mode will then receive the messages through
the OCX96 interface IOleInPlaceObjectWindowless. If
the mode interprets the drag as a move, it then asks
Montage what control is below it at the coordinates of
the WM_LBUTTONDOWN, and generates the event
IMCCSiteOwner::Move on the site, or calls
IMCCSite::put_Rect itself if there are no sinks for that
event.

The design of modes as contained controls is a strategy
to ensure that the Montage architecture is as open as
possible. Even though two modes are compiled into
the same dynamic link library (DLL) as Montage, all
use only public interfaces to manipulate Montage. Ac-
cordingly, some of Montage’s internal calculations,
such as “find control at point,” are exposed as public
methods, and Montage provides utility objects to sim-
plify some of the common, cumbersome operations of
modes, such as data transfer.

The two basic modes included with Montage, View
and Edit, should be somewhat familiar from other
ActiveX containers. View mode activates all con-
tained objects so that they can be edited but does not
allow any “structural” operations, such as moving,
deleting, copying or pasting. Edit mode allows struc-
tural changes, as well as in-place activation with a
double-click. Both modes should be applicable in

many layout/UI applications. In fact, together they
define a container with purely manual layout.

Unlike the generic View and Edit modes, the Draw
mode of Dynagraph is entirely application-specific.
Drawing (placing new objects) is a function of the user
interface that will usually be specific to a class of ap-
plications, because the contained objects have various
types that are presumably selected by various user-
interface operations. In Dynagraph Draw mode,
clicking on the canvas creates a new node, and drag-
ging between two nodes creates a new edge.

In a typical application, multiple modes are active
concurrently. ActiveX defines two levels of activation:
in-place and UI . In-place activation only allows an
object to receive mouse messages; a mouse message
“falls through” any mode (or other windowless con-
trol) that does not catch it. UI Activation provides for
toolbar, menu, and keyboard sharing, but unfortunately
only defines negotiation between a container and one
contained object. Presumably it would be much harder
to negotiate between three or more graphic interfaces.
But in the typical Montage case, we can assume that
the concurrently active objects have been designed
compatibly. So Montage defines a protocol for Coop-
erative UI (coUI) Activation . In coUI Activation:

• Keyboard messages fall through interested objects
in the same way as mouse messages.

• Objects get a chance to add to the menu Montage
negotiates with its container, and register to re-
ceive callbacks from their additions.

• The toolbar is exposed as a resource for all Mon-
tage-aware objects.

Additional services could ensure that the clients’ uses
of these resources do not collide.

To support toolbars, Montage can be activated “into”
another window, typically the frame window of its
container. Two auxiliary controls round out toolbar
functionality. The toolbar control provides familiar
grab handles around any ActiveX control, and can be
floated. (To float, it removes the control and toolbar
from the bar area, and re-activates the control into a
new, independent floating window.) The toolback
control provides the blank space on which toolbars can
be arranged. Toolbars use the same layout architecture
as graphs: moves initiated with the mouse get trans-
lated into requests to a toolbar layout engine, which

ensures that toolbars don’t pile up, while keeping them
fairly close to where the user placed them.

Persistence and Data Transfer
Persistence is a key feature that must be implemented
by ActiveX clients and servers, especially because
data transfer actions such as cut-and-paste rely on the
same mechanisms as the simpler save and load. Per-
sistence of a collection of linked heterogeneous com-
ponents requires some way to save the references be-
tween objects. The hierarchical persistence protocols
provided by ActiveX make it possible for objects to
create and initialize other objects, but there is no gen-
eral way to connect objects not in a hierarchy. The
problem may arise earlier: it is often only possible to
create a live object by using a factory, yet the creator
does not necessarily own (or know about) the factory.

Montage defines a new storage type called a group for
this purpose. A group holds a set of named and
anonymous objects, and supplies monikers for them.
Monikers are standard ActiveX objects that can be
“bound on” one object to get another; Montage uses
“item monikers,” which are the standard way to bind
string names on a live object. A group’s monikers,
especially those identifying anonymous objects, are
valid only within that group, so any group item that
holds monikers must have them translated if the item
is added to a new group. Because it would be ineffi-
cient and possibly incorrect to copy most live objects,
the group model defines the persistor, a separate ob-
ject that holds the monikers to reconnect an object on
loading. The persistor gets copied and translated for
each group, whereas its subject, the connected object,
does not. A persistor may also hold a moniker to its
subject’s factory; in this way the persistor can be cre-
ated without special knowledge although its subject
cannot.

Persistors implement the interface IGroupItem, which
allows them to control the way they are copied from
group to group and to make sure any connected objects
are copied as well. Since the persistors pull objects
from group to group as necessary, drag-and-drop and
cut-and-paste are fairly simple operations: the initiator
of the transfer (usually a mode) creates a new group
and pastes all objects to be transferred into the new
group with IGroup::Paste. Then it saves the group to a
storage object, and wraps the storage object in an
ActiveX-compatible data object for the operating sys-
tem. The destination of the transfer retrieves the group
and pastes the objects into its own group to complete
the transfer.

Data transfer between Montage and another applica-
tion is also straightforward, as the ActiveX format
negotiation protocol defines a standard for embedded
objects. If items are dragged out of Montage and into
another application, that application can embed them
as a new instance of Montage because Montage sup-
ports the standard “embedded” format. Instead of
transferring names (that the client will know nothing
about), the client loads the data as a complete object.
Similarly, if the user drags from a non-Montage object
onto a Montage canvas, modes can accept this drop in
the embedded object format as a new contained item,
though they know nothing about the source applica-
tion. (For example, Graph Draw Mode embeds an ob-
ject as a new layout node.)

The Dynagraph Application
Figure 2 shows Montage, embedded in Microsoft
Word, running Dynagraph. The session actually con-
sists of three instances of Montage: the graph view, the
toolbar area, and the node palette in the toolbar. Addi-
tional diagrams and views would involve more in-
stances. Nodes may be added to a diagram by dragging
items from the palette or another application to the
canvas, or by clicking on the canvas to insert the ob-
ject selected in the palette. Similarly, items can be
added to the palette by dragging them from the canvas
or from another application. It is satisfying that this
capability arises naturally from the Montage architec-
ture, as it took considerable programming effort to put
similar features into dotty.

Figure 3 shows sample automator code that inserts a
node into a graph. It demonstrates most of the com-
mon Montage operations: the manipulation of sites and
layers, the use of transforms and connectors, and the
activation model.

Unfortunately, the details of coding in COM may
make the code somewhat cryptic to the uninitiated.
The syntax of the code requires some explanation:

• All COM interfaces (which by convention start
with the letter “I”) extend the interface IUnknown,
which provides methods for reference counting
and querying for interfaces on the object. ATL’s
CComPtr and CComQIPtr template classes (“qi”
is a macro based on CComQIPtr) abbreviate the
use of these methods by automatically calling the
IUnknown methods as necessary.

• All COM methods return error codes that should
not be ignored, so the RUN macro echoes errors

by returning them, effectively treating them as ex-
ceptions.

• Since COM only supports methods and not prop-
erties, it recommends that get and set methods be
prefixed with “get_” and “put_” respectively.
(“new_” is an analogous convention in Montage
code for methods that create objects that share
memory with their parents.)

• All classes that do not share memory have 128-bit
IDs (whose constants start with “CLSID_”), and
are created with the system call CoCreateInstance.

The code starts with the creation of a new site in the
Montage container. Sites are the only way to refer to
contained objects; they represent the work that Mon-
tage is doing to keep a contained object afloat. Next it
places the site in the main layer, which is the lowest
layer in the Z order in the standard configuration of
Montage.

The call to CoCreateInstance instantiates the control
which will provide the visual part of the node. This
control may also come from a data transfer triggered
by a drop or paste operation. (In Graph Draw Mode,
the data source is the active selection in the palette.)
Next the code tells the control its size through the
standard ActiveX interface IOleObject. The control
does not have to accept this size (i.e. SetExtent may
return an error code), so code within the connector
asks the size through GetExtent rather than trusting the
argument value. This illustrates a recurrent design
theme in ActiveX component design: just about every
method call is a request that can be interpreted or ig-
nored, a callback or future query works better than
remembered state.

As described before, the Dynagraph application of
Montage has three levels of objects. The next section
of code creates both Dynagraph and DGM objects.
The DGM object is made aware of the two sides it is
mediating through the interfaces INeedOnePointer (of
the Group model) and IObjectWithSite (of standard
ActiveX). It is unfortunate that such non-specific
methods must be used to set up the connector, but us-
ing generic interfaces makes persistence simpler. Spe-
cifically, INeedOnePointer makes it simple to define a
generic persistor for the common case where the per-
sisted object needs to be connected to exactly one
other object when it is loaded, or in order to load. And
IObjectWithSite makes it possible for the site persistor
to tell the owners their property, without knowing
what the site means to them. When it is told its site,

the connector sets itself up as a sink of the IMCCSite-
Owner event interface, so that it handles all layout
events.

Now that the structure is in place, it is possible to ac-
tually begin the layout. The code here tells the Dyna-
graph node object directly what the position is; it
could instead use the event interface on the site, but it
can be pretty certain at this point that the Dynagraph
node object will handle the event. First it must trans-
late the coordinates, though: the engine expects canvas
coordinates, expressed in units of .01mm
(HIMETRIC), not the window coordinates the mode is
working from. So this code fetches the transform ob-
ject (another modular component) from Montage, and
asks that to do the translation.

Finally the node can be shown. The code here uses the
IMCCSiteOwner event interface on the site to issue a
show request. We omit the code for clarity, but the
function intend() enumerates the sinks of that interface
on the site, and calls IMCCSiteOwner::Intend() on
each.

Summary
Montage is a convenient framework for ActiveX con-
tainer applications and controls. It does not replace
ActiveX, but handles most of a container’s busywork,
while leaving actual interface policy decisions to the
modes and layout engines. An interesting issue is
whether Montage ought to have a more abstract inter-
face, instead of one so closely tied to Microsoft Win-
dows and COM. Whether this is worth much effort is
moot without an alternative application embedding
platform to target.

Our work list includes support for object linking (be-
sides embedding), dispatch interfaces for compatibility
with Visual Basic and scripting languages, DCOM,
further development of coUI Activation, and replace-
ment of some high-level C++ code (such as that in the
example) with scripts. A more ambitious goal on the
layout side is to support compound nodes and edges.
Complications arise in managing layouts where edges
are allowed to connect nodes at variable levels of
nesting, as in Harel’s Statecharts [6]. Because there is
yet no automated Statechart drawing algorithm or tool,
this is an interesting practical problem.

Acknowledgments
The authors thank Ted Kowalski from the AT&T Labs
Software Practices and Technology Center for techni-
cal and financial support. We also thank Pierre Sierra
for programming the first version of Dynagraph. We

also gratefully acknowledge contributions by David
Dobkin, Emden Gansner, Eleftherios Koutsofios and
Phong Vo to the Dynagraph system.

Montage may be obtained under a non-commercial
license at www.research.att.com/sw/tools/Montage.

References
[1] Barghouti, Naser, John Mocenigo and Wenke Lee.
“Grappa: A Graph Package in Java”, Proc. Graph
Drawing ‘97, Lecture Notes in Computer Science vol.
1353, pp. 336-343, Berlin: Springer-Verlag, 1998. See
also www.research.att.com/~john/Grappa

[2] Brockschmidt, Kraig. Inside Ole, Second Edition.
Redmond: Microsoft Press, 1995.

[3] Cooper, Alan. About Face: The Essentials of User
Interface Design. Foster City, CA: IDG Books, 1995.

[4] Ellson, John and Stephen North, “TclDG – a Tcl
Extension for Dynamic Graphs”, Proc. 4th USENIX
Tcl/Tk Workshop, pp. 37-48, July 1996.

[5] Gansner, Emden and Stephen North. “An Open
Graph Visualization System and its Application to
Software Engineering,” submitted, Nov. 1997.

[6] Harel, David. “On Visual Formalisms”, Comm.
ACM 31:5, pp. 514-530, May 1988.

[7] Himsolt, Michael. “GraphEd: An Interactive Graph
Editor”, Proc. STACS ‘89, Lecture Notes in Computer
Science vol. 239, pp. 532-33.

[8] Himsolt, Michael. “The Graphlet System”, Proc.
Graph Drawing ‘96, Lecture Notes in Computer Sci-
ence vol. 1190, pp. 233-240. See also www.uni-
passau.de/~himsolt/Graphlet

[9] Newbery-Paulish, Frances and Walter F. Tichy.
“EDGE: An Extendible Graph Editor”in Software –
Practice and Experience 20:S1, pp. 64-88, 1990.

[10] North, Stephen. “Incremental Layouts in Dy-
naDAG” in Proc. Graph Drawing ‘95, Lecture Notes
in Computer Science vol. 1027, pp. 409-418. Berlin:
Springer-Verlag, 1996.

Figure 1: Montage Dynagraph object model. Contained boxes represent objects that share memory; lines represent
communication over COM interfaces.

Figure 2: A Dynagraph diagram embedded in Word

CComPtr<IUnknown> pControl;
CComPtr<IMCCSite> pSite;
// create site in main layer
RUN(m_cont->new_Site(&pSite));
RUN(pSite->put_Layer(m_mainl));

// create control
RUN(CoCreateInstance(CLSID_CShapeNodeCtl,0,CLSCTX_ALL,

IID_IUnknown,(void**)&pControl));

// size it.
if(hasSize)

if(qi(IOleObject) oo = pControl)
hr = oo->SetExtent(DVASPECT_CONTENT,&size);

// create layout node
CComPtr<IDGNode> pNode;
RUN(m_eng->new_Node(&pNode));
// Create connector & init.
CComPtr<IDGMConnector> pConnect;
RUN(CoCreateInstance(CLSID_DGMNodeConnector,NULL,CLSCTX_INPROC_SERVER,

IID_IDGMConnector,(void **)&pConnect));
RUN(qi(INeedOnePointer)(pConnect)->TakePointer(pNode));
RUN(qi(IObjectWithSite)(pConnect)->SetSite(site));
// set position.
CComPtr<IMCCTransform> t;
RUN(m_cont->get_Transform(&t));
POINTL ptVirt;
RUN(t->W2CP(pt,&ptVirt));
RUN(pNode->put_Pos(pointf(ptVirt)));
// prob. just connector is sinked by now, but you never know.
RUN(intend(site,MCCS_SHOWN));

Figure 3: The code required to insert a Dynagraph node

