
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

J E M A C S :
T H E J AV A / S C H E M E - B A S E D E M A C S

Per Bothner

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

JEmacs: The Java/Scheme-based Emacs

Per Bothner
<per@bothner.com>

Abstract

JEmacs is a re-implementation of the Emacs pro-
grammable text editor. It is written in Java, and uses
the Swing GUI toolkit. Emacs is based on the extension
language Emacs Lisp (Elisp), which is a dynamically-
scoped member of the Lisp family. JEmacs supports
Elisp, as well as the use of Scheme, a more modern
statically-scoped Lisp dialect. Both languages get com-
piled to Java bytecodes, either in advance or on-the-fly,
using the Kawa compilation framework.

1 Introduction

Emacs [7] [5] (in various versions) is a popular pro-
grammer’s text editor. Emacs is programmable using
“Emacs Lisp” (Elisp) [6] and many powerful packages
are written in Elisp. The Free Software Foundation has
a goal to replace Elisp with Scheme while also provid-
ing a translator to convert old Elisp files to Scheme. One
reason is that Elisp is an ad-hoc, non-standard Lisp vari-
ant not used anywhere else, and not consistent with mod-
ern programming-language ideas. Another reason is that
Guile, the primary GNU dialect of Scheme, is intended
to be the standard extension language for GNU software,
and so it makes sense for Emacs (the main GNU applica-
tion with extensive use of a scripting language) to follow
suit.

My opinion is that Guile is not the best Scheme imple-
mentation to use for Emacs. I happen to be biased, as
I am the author of Kawa, a Java-based Scheme imple-
mentation. I also think that just replacing the extension
language may not go far enough, and perhaps it is time
to also replace the low-level code written in C. (One of
the XEmacs maintainers told me he would really like to
replace the re-display engine of XEmacs.)

Therefore, I have been working on a “next-generation”
Emacs, based on Java and Kawa. The design includes:

� An implementation of the Scheme language.

� An implementation of the Elisp (core) syntax and
language, such as functions used for creating lists
and strings, defining functions, and macros.

� A set of Java classes based on the Swing GUI
api that implement the Emacs “types”, such as
Buffer, Keymap, Window, Marker.

� A set of Scheme bindings to the Java methods.
These are “similar to” and have the same names as
standard Emacs Lisp functions, but are written in
Scheme and intended to be called from Scheme.

� The equivalent Elisp functions: Implementations
of the high-level Emacs functions as Elisp func-
tions, so existing Elisp applications can (mostly)
run without change.

The totality of these features is what I call “JEmacs”.
Below is a screenshot showing some of what has al-
ready been implemented. It includes a frame with a
menubar, split into multiple windows, each with a mode
line. The top window is a “Scheme interaction win-
dow”, where Scheme expressions can be typed, and the
result displayed. (Notice the user input is automatically
boldfaced.) The user has just typed C-x C-f, which
is bound to the function find-file. When find-
file is called interactively or with no arguments, the
read-dialog is called, which pops up the simple di-
alog window we see.

Figure 1: JEmacs in action

2 Motivation

This is a major, perhaps foolhardy, undertaking. Here
are some reasons why it might make sense; I expand on
these later.

� Swing is a modern GUI toolkit with good support
for major Emacs concepts.

� Building on a Java run-time means we benefit from
the work being done to run Java bytecodes fast.

� Java is multi-threaded.

� Kawa is a modern object-oriented Scheme, while
Emacs is based on rather old design ideas.

� Java is based on Unicode and has good internation-
alization support.

� Java has lots of neat packages we can use.

� It would be useful to have Scheme (and Elisp)
scripting for Swing applications.

� It is a good way to learn Swing!

3 Kawa

Kawa (see [2], [3]) is an implementation of the Scheme
programming language written in Java. I have been
developing Kawa since 1996. Unlike other such im-
plementations, Kawa compiles Scheme into Java byte-
codes, with non-trivial optimizations. It also provides
almost all the other features you expect from a produc-
tion Scheme system (including eval and load) and
convenient interaction between Scheme and Java.

Kawa is also a framework used to implement Scheme,
and which can be used for other languages. The pack-
age gnu.bytecode provides classes to generate Java
.class bytecode files, including methods to generate
the Java virtual machine instructions. It also lets you
read, print, and otherwise manipulate the Java .class
file format.

At a higher level, the gnu.expr package works on
Expression objects. This is basically an abstract
syntax tree (AST) representation, and the package has
classes to generate and optimize expressions and decla-
rations. It uses the gnu.bytecode package to gener-
ate bytecodes from the Expression representation.

The Kawa framework was originally used to compile
Scheme. However, I wrote the beginnings of an Ec-
maScript (JavaScript) implementation, and others are
using Kawa to compile other languages. For the JEmacs
project, the framework is being used to compile Emacs
Lisp to Java bytecodes, replacing the Emacs byte-
compiler: Instead of .elc files loaded into the Emacs
bytecode interpreter, we use Java bytecode (.class)
files loaded into a Java Virtual Machine.

4 Performance

A primary advantage of JEmacs is that Kawa is poten-
tially much faster than either Elisp or Guile. Using an
optimizing compiler that compiles to bytecode is cer-
tainly going to be faster than Guile or Emacs’s simple
interpreter. The Emacs bytecode-compiler uses the same
idea, and produces a bytecode format that is more suit-
able to Emacs than Java bytecodes. However, there are
many projects and companies working very hard on run-
ning Java bytecodes fast. The common approach is to
use a “Just-in-Time compiler” (JIT), which dynamically
compiles a bytecode method into native code inside the
runtime. Another approach is to use a traditional “ahead-
of-time” compiler (such as the Gcc-based Gcj [1]). It
thus seems plausible (though unproven) that JEmacs can
achieve better performance than Emacs.

5 The Swing Toolkit

Sun introduced Swing [4] in 1998 as the “next-
generation” GUI toolkit for Java. Swing has a lot of
functionality and many useful features. It builds on the
earlier AWT (Abstract Windowing Toolkit). Of partic-
ular interest is that the text support in Swing is both
very powerful, and also seems to be inspired by Emacs
ideas. Swing has new “widgets” based on separating the
“model” (data) and “view+control” (look+feel). For ex-
ample, Swing distinguishes between a Document ver-
sus a JTextComponent that displays the Document,
which is essentially the same as the Emacs buffer versus
window distinction.

Swing also has a Keymap class similar to that of Emacs,
and a Position that is like an Emacs marker. Unfor-
tunately, neither of these are quite right for Emacs, but
it was not difficult to create new classes that implement
the Swing interfaces.

Swing has some other nice features, such as “pluggable-

look-and-feel” (themeability), a number of flexible
“widgets”, and support for “structured” documents (i.e.
XML/HTML structure in a buffer).

One problem with Swing is that while it is portable and
freely redistributable, it does not have a free license, and
there are no free re-implementations so far. (A related
issue is that the documentation of Swing is very poor.)
I’m hoping that by the time JEmacs becomes useable a
free re-implementation of (the needed subset of) Swing
will be available, and perhaps JEmacs will encourage
this to happen. If not, we may re-write JEmacs so it
can be built on top of some other free library (such as
Gtk/Gnome or Qt).

Another possible problem with Swing is performance.
Swing has the reputation for being slow. The first Emacs
package ported to JEmacs (Towers-of-Hanoi animation)
does run slower than under XEmacs. The cause of this is
not clear, but it is quite possible it is due to Swing over-
heads. Perhaps in practice this may not matter, but it is
certainly a possibility we may replace the use of Swing
with a faster toolkit. More likely is replacing some of
the implementation classes by alternative implementa-
tions; Swing is very flexible in this respect, because the
API is defined in terms of abstract interfaces, rather than
specific classes. (Some of these new implementation
classes may also be useful in implementing a free Swing
replacement.)

6 Multi-threading

One problem with traditional Emacs is that it is single-
threaded. If you start some non-trivial operation (such as
getting new mail), your Emacs session will be frozen un-
til the operation completes. Java is designed to be multi-
threaded, so it is in theory straightforward to create a
multi-threaded Emacs.

One complication is that the Emacs Lisp execution
model is inherently single threaded, since any Elisp
function can change the current buffer or window to an-
other buffer or window, while in the middle of the func-
tion. This means we cannot associate a thread with each
buffer or with each window.

A solution to this problem is to use “buffer groups”, that
is a group of related buffers and their windows which run
in the same thread. Typically, there would be one buffer
group for each Elisp “application”. By default, when an
Elisp function creates a new buffer, it is put in the same
buffer group as the the current buffer. However, an Elisp

function such as find-file can create a new buffer
group when it creates a new buffer.

Another problem is that Swing is single-threaded. Only
one thread (the event thread) can safely modify a buffer
that is visible in a window. In the current JEmacs imple-
mentation all interactive commands are run by the event
thread. Thus effectively, all of JEmacs is running inside
the event thread. A solution is for long-running com-
mands to use a “worker” thread. When the worker thread
is finished, it lets the event thread know it is done, which
can then update the buffers and display.

7 Java classes for Emacs

The folllowing Java classes implement what we might
call the Emacs data “model”.

� Buffer: An Emacs buffer. Contains a Swing
StyledDocument object that manages the ac-
tual text (and styles). Contains a BufferKeymap,
which manages the actions executed for different
keystrokes.

� BufferContent: The actual characters of the
Buffer. Implements the Swing Content inter-
face. This class is needed because standard Swing
does not support the Marker semantics we need.

� Marker: A position in a buffer that gets adjusted
as needed. Similar to the Swing Position class,
but also knows the Buffer it points to.

The following Java classes implement what we might
call the Emacs “view+controller”.

� BufferKeymap: A data structure in one-to-one
association with a Buffer. It implements the
Swing Keymap interface, and manages the prim-
itive Keymaps, to give the correct Emacs function-
ality.

� Window: Extends the Swing JtextPane class.
Includes an assocated Modeline, and a scrollbar.

� Frame: A top-level window. A Frame contains
a nested hierarchy of Windows, sub-divided using
Swing’s JSplitPane.

8 Editing procedures

JEmacs includes a number of Scheme procedures for
operating on the Java classes just mentioned. The
Scheme API is designed to be similar to the tradi-
tional Elisp functions, but put in Scheme form. Here
is the JEmacs definition of the standard Emacs function
beginning-of-line, written in Scheme.

(define (beginning-of-line
#!optional
(n :: <int> 1)
(buffer :: <buffer>

(current-buffer)))
(invoke buffer ’setPoint
(point-at-bol n buffer)))

(define-key global-map "\C-a"
beginning-of-line)

Note the optional type declarations for the two parame-
ters. Also note the invoke “function”. This calls the
specified method (in this case setPoint) on the speci-
fied object (in this case the buffer). In a case like this
where the receiver class is known, the Kawa compiler
can directly generate a invokevirtual bytecode in-
struction.

Once we have defined beginning-of-line, it can
be used from either Elisp or Scheme code. This makes
it easier to mix Scheme and Elisp, convert (if desired)
Elisp to Scheme, and lets us re-use Elisp documentation.

Our goal is to be able to run most Elisp package unmod-
ified. Some packages may require minor changes, but
no more than say porting to XEmacs. The first Emacs
package that runs under JEmacs without requiring a sin-
gle modification to the Elisp source is hanoi.el, an
animation of the Towers-of-Hanoi puzzle. However, it
may be desirable to rewrite some packages, possibly in
Scheme or Java. For example, dired needs a more
modern interface.

The Scheme and Elisp APIs implemented in JEmacs
are based on those of both GNU Emacs and XEmacs.
JEmacs will not implement either API exactly, but will
try to implement the features that make most sense. For
example, GNU Emacs and XEmacs have very different
APIs for manipulating the menubar. In this case, JEmacs
implemented a menubar API based on the XEmacs
API, partly because it was closer to the Swing menubar
model.

Figure 2: Towers of Hanoi

9 Action

The basic Java event model is of event listeners be-
ing registered with objects that generate events. On
top of that, Swing has an API especially convenient
for keyboard events: You can associate a Keymap
with each text component, where the Keymap maps a
KeyStroke (high-level keyboard input events) to an
Action, which is then gets executed. Emacs is sim-
ilar, except looking up something in a keymap yields
a “keymap entry”, of which there are many kinds. So
what JEmacs does is to “wrap” the Emacs-style keymap
entries using special subclasses of Action. For ex-
ample, looking up a prefix key in Emacs returns an-
other keymap; in JEmacs it returns a PrefixAction.
Performing the PrefixAction modifies the current
BufferKeymap state so that when the next keystroke
appears it will lookup a “key sequence” that is the
concatenation of the remembered prefix key(s) and the
new keystroke. One slight difference from standard
Emacs: JEmacs remembers previous prefix keys on a
per-Buffer basis, so if you switch to a different buffer
with the mouse, the old prefix key is remembered until
you switch back.

10 Some issues in implementing Elisp

There are some tricky issues if you want to implement
Elisp, especially if you want nice interoperability with
Scheme. (The plan for GNU Emacs is to translate Elisp
into Scheme, which raises similar issues.)

10.1 Syntax

While both Scheme and Elisp share the fully parenthe-
sized prefix notation common to the Lisp family, there
are some differences in the syntax of literals and iden-
tifiers. For example, the character ’a’ is written #\a
in Scheme, and ?a in Elisp. The part of a Lisp system
that converts a stream of characters to a value (usually
a linked list) is traditionally called the “reader”. We
needed to write an Elisp reader to go along with the
Scheme reader, and make sure the right one is invoked.
This is fairly straightforward, and (except for some ob-
scure features) done.

Once the reader has converted an input line or file to a
list, the list needs to be converted input Kawa’s inter-
nal Expression (abstract syntax tree) representation.
This is handled similar for Elisp and Scheme. How-
ever, Elisp has some new syntax forms (such as defun,
save-excursion) and and some forms that are dif-
ferent than in Scheme (such as lambda). For that we
need to write new syntax transformers. This is almost
done.

10.2 Symbols

The symbol data type in Scheme is very simple: It is
an immutable atomic string; you can create a symbol
from a (mutable) string, and you can convert the symbol
back to a string (for example for printing). Whenever
you convert a string to a symbol, you will always get
the same identical symbol, as long as the strings have
the same characters. This process is called interning and
is implemented using a global hash-table. Symbols are
used for multiple purposes, but the most important one
is that identifiers in a Scheme program are represented
using symbols.

Java has a similar datatype, the class String, which
is used all over the place in Java. Java has a method,
called intern, which returns an interned version of the
String. This functionality is exactly what is needed
for Scheme, so Kawa uses String for Scheme sym-
bols. This has the side benefit of increasing interoper-
abilty between Scheme and Java.

On the other hand, an Elisp symbol has extra proper-
ties: value and function bindings, and a property list.
The traditional implementation is that a symbol value is
a pointer to a structure containing the necessary fields.
This makes extracting the value and function bindings
cheap, but it requires extra space in all symbols. JEmacs
uses an alternative implementation: an Elisp symbol

value is a reference to a String instance, just as in
Kawa. To get the value or function binding of a sym-
bol, you lookup the symbol in the current Environ-
ment. This yields a Binding, which contains the
needed fields. For symbols that are used as identifiers
in a function, the compiler generates code to get the
Binding when the function is loaded. Since we don’t
have to do a hashtable lookup when the function is exe-
cuted, symbol lookup is about as fast as in the traditional
implementation.

10.3 Nil - the empty list

In Elisp, the empty list and the symbol ’nil are the
same object, but in Scheme they are different. There
are various ways to deal with the problem, none partic-
ularly elegant. In Kawa, lists inherit from the abstract
Sequence class. I feel it is important that the empty
list also be a Sequence, even for Elisp, and it is impor-
tant to be able to pass lists between Scheme and Elisp
code. I decided that ’nil would have to be a spe-
cial case: While the Elisp symbol t is represented us-
ing the String "t", the symbol nil is represented
by the special LList value LList.Empty that Kawa
uses for empty lists. Thus the predicate (symbolp x)
is implemented as (x == List.Empty || x in-
stanceof java.lang.String).

10.4 Standard Elisp Functions

Elisp has many builtin functions and macros which are
different from Scheme. There is no fundamental diffi-
culty with this; just a lot of porting/conversion work.
Many of the basic editing functions are already imple-
mented, but many (such as those involving searching)
are not.

11 Variables

Variable lookup is different in Scheme and Elisp in two
main ways: Elisp uses dynamic scoping, while Scheme
uses lexical scoping; and Elisp has different namespaces
for function names and variables names, while Scheme
has a single namespace for both. The latter is an easy
matter of the compiler emitting the code to look for the
name in the correct namespace. Handling dynamic scop-
ing is done using Kawa’s support for the fluid-name
form, which provides dynamic binding using a very flex-
ible name-binding mechanism.

11.1 Constrained Variables

In Kawa, each global variable is a Binding object. A
Binding has an optional name, a value field, and a
Constraint. The constraint contains the actual meth-
ods that get/set the value of the Binding. For example,
setting b to x does b.constraint.set(b, x).

The default action for get retrieves the Binding value
field. Different sub-classes of Constraint have dif-
ferent implementations of get and set. If there is a
thread-local dynamic or buffer-local binding, we just put
the appropriate constraint in the binding.

This framework can handle indirection, unbound vari-
ables (get throws an exception), and constraint propa-
gation. Changing a value can trigger arbitrary checks or
notification messages.

12 Modes

In Emacs, a mode is a set of keybindings, functions, and
variables local to a buffer. There is no object correspond-
ing to a “mode”, but there is a set of conventions to fol-
low. In an object-oriented environment it seems better to
define a separate mode class for each mode. Each buffer
that has a mode enabled should have a corresponding
mode instance.

Each buffer has a linked list of mode instances, one
for each major/minor mode that is active for the buffer.
Mode functions are compiled to virtual methods of the
mode object. Instead of a buffer-local variable, use a
field of the mode object. This provides fast access to
variables in compiled code, without run-time symbol
lookup. A derived mode can use mode class inheritance.

As an example, the abstract class ProcessMode in-
herits from the generic Mode class. A ProcessMode
represents some kind of process which (usually) gen-
erates output that gets inserted into the buffer. Par-
tial implementations exist of the sub-classes InfPro-
cessMode, which displays the output of an exter-
nal (possibly-interactive) program, and TelnetMode.
Both of these provide minimal terminal emulation. A
full terminal emulator would be desirable, though line
wrapping is a complication. (Swing handles line wrap-
ping on word boundaries, as expected by people used to
word processor, but a normal terminal emulator wraps
on character boundaries. The best solution is probably
to write a custom View class.)

Figure 3: Telnet mode

The Mode framework has been used for modes writ-
ten directly in Java. It is not yet clear how to write a
mode using Scheme, nor whether legacy Elisp code can
be automatically compiled into classes that inherit from
Mode.

13 Unicode and Internationalization

The Java char is a 16-bit Unicode character. In-
ternal strings and JEmacs buffers use these Unicode
chars. On the other hand, external files consist of 8-
bit bytes. So Java provides named encodings that map
byte streams and character streams.

Java with Swing handles much of the work needed for
complex text processing. For example, bi-directional
text (as needed for Hebrew and Arabic) is taken care of.
In the screenshot below, we have a file encoded in UTF-
8. It contains a string of four Hebrew characters, stored
in the buffer in logical (reading) order. When they dis-
played, they are shown right-to-left. Notice that if you
make a text selection that includes both English and He-
brew text, the selected characters form a contiguous re-
gion in the memory, but because different segments are
displayed in different order, in the window we see the
selection as two non-contiguous pieces.

Also note that characters not present in the font are dis-
played as hollow rectangles. I.e. I need to install a more
complete font!

Current releases of Emacs and XEmacs support some
internationalization, using the Mule framework which
supports text in many character sets. However, current
releases of Mule do not yet support Unicode, which is
where most of the world is heading. Mule is based on

Figure 4: Multiple scripts

some rather dated design decisions. JEmacs will not
support Mule; it won’t need to.

14 Word Processing and XML

Documents will be increasingly represented using XML
externally and DOM (Document Object Model) inter-
nally. Most of the programs and libraries for manipulat-
ing and formatting XML are written in Java. For exam-
ple, the Apache group has some major Java-based XML
projects.

If Emacs is to support word processing features, it
should build on XML standards. It is easier to use third-
party Java libraries if the Emacs core is Java-based.

The plan is for JEmacs to implement a class that imple-
ments the XEmacs “extent” API, and also implements
the Swing Element interface, as well as the DOM
Node interface.

JEmacs will use some form of “virtual document” that
implements the Swing Document interface, but gets
its content indirectly from other documents. The class
AbstractString is an abstract class that general-
izes strings, buffers, shared substrings, buffer regions,
and general indirection. This is part of a design to sup-
port editable documents which are defined using trans-
formations from other documents (rather like a database
“view”).

15 Status and Conclusion

A “proof-of-concept” prototype is working, including
partial Elisp implementation. There is still a lot of work
before you want to use JEmacs for day-to-day general

editing.

Using the libraries of Java and Swing takes care of many
problems.

JEmacs has a mailing list and a home page
(http://JEmacs.SourceForge.net/).

JEmacs is currently distributed together with Kawa
(http://www.gnu.org/software/kawa/).

References

[1] Per Bothner. A Gcc-based Java Implementation.
IEEE Compcon ’97, 1997.

[2] Per Bothner. Kawa - Compiling Dynamic Lan-
guages to the Java VM. Usenix Annual Technical
Conference, 1998.

[3] Per Bothner. Kawa: Compiling Scheme to Java.
Lisp Users Conference, 1998.

[4] Kathy Walrath and Mary Campione. The JFC
Swing Tutorial: A Guide to Constructing GUIs.
Addison-Wesley, ISBN 0-201-43321-4, 1999.

[5] Richard Stallman. GNU Emacs Manual. Free Soft-
ware Foundation, 1985.

[6] Bil Lewis, Daniel LaLiberte, and GNU manual
group. GNU Emacs Lisp reference manual. Free
Software Foundation, 1990.

[7] Richard Stallman. EMACS: The Extensible, Cus-
tomizable, Self-Documenting Display Editor. In
Text manipulation: Proceedings of the ACM SIG-
PLAN/SIGOA symposium (Portland, OR, June,
1981), June, 1981.

