
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

L I N L O G F S :
A L O G - S T R U C T U R E D F I L E S Y S T E M F O R L I N U X

Christian Czezatke and M. Anton Ertl

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

LinLogFS | A Log-Structured Filesystem For Linux

Christian Czezatke M. Anton Ertl

xS+S TU Wien

fczezatke,antong@mips.complang.tuwien.ac.at
http://www.complang.tuwien.ac.at/projects/linux.html

Abstract

LinLogFS is a log-structured �lesystem for Linux.
It currently o�ers features like fast crash recov-
ery and in-order write semantics. We implemented
LinLogFS by putting a logging layer between an
adapted version of the ext2 �le system and the block
device.

1 Introduction

In early 1998 we started working on LinLogFS1 to
address the two main shortcomings that Linux had
(in comparison to Digital/Tru64 Unix with AdvFS):

� Crash recovery is slow and sometimes requires
manual intervention.

� There is no way to make consistent backups
while the �le system is writable.

These shortcomings are not just inconvenient for the
users of desktop machines, they are also one of the
main barriers against Linux servers in applications
requiring high availability.

We decided to solve these problems by implement-
ing a log-structured �le system; this approach also
promises a number of other bene�ts:

� In-order semantics for data consistency upon
system failure (see Section 3.2).

� Cheap cloning (writable snapshots) of the
whole �le system can be used for exploring
what-if scenarios while writing to the other
clone of the �le system (in addition to consis-
tent backups).

1Formerly known as dtfs (renamed to avoid con
icts with
SCO's dtfs).

� Growing, shrinking, or migrating a �le system
while it is mounted.

� Fast update of a network mirror after a network
failure.

� Relatively good performance for synchronous
writes (NFS).

� Good write performance with RAIDs.

In the meantime, there are a number of Linux
projects nearing completion that address fast crash
recovery and consistent backups (see Section 8),
and may also provide some of the other advantages.
However, we think that LinLogFS provides an inter-
esting design point, and that its features combined
with its performance will make it attractive once it
is mature.

We �rst introduce log-structured �le systems (Sec-
tion 2), then discuss some advanced topics in the
design of log-structured �le systems (Section 3). In
Section 4 we describe which of these ideas we have
implemented until now. Then we describe our im-
plementation, �rst the layering (Section 5), then the
modi�cations to the Linux kernel (Section 6). In
Section 7 we compare the performance of LinLogFS
and other Linux �le systems. In Section 8 we discuss
related work.

2 A Log-Structured File System

This section explains the concept of log-structured
�le systems by using LinLogFS as an example. Most
of this description also �ts other log-structured �le
systems like BSD LFS. Section 8 describes the dif-
ferences from other systems and the original points
in LinLogFS.

A �le system provides a layer of abstraction that
allows the user to deal with �les and directories on
top of a block-oriented storage medium. In Unix the

.ifile inode

superblock

file inode

data block 2data block 1

Figure 1: On-disk structure for locating data blocks
of a �le

�le system can be considered as consisting of two
layers: the upper layer maps the hierarchical struc-
ture of the directory tree onto the
at namespace of
inode numbers; the lower layer maps an inode num-
ber and a position within a �le to the disk block
that contains the data. The di�erence between log-
structured and other �le systems is in the lower
layer, so we will focus on it in this section (and in
the rest of this paper).

2.1 Reading

Reading is quite similar to conventional �le sys-
tems like ext2 and BSD FFS: when reading a cer-
tain block from a certain �le, the �le's inode is ac-
cessed, and the data block is accessed by follow-
ing the pointer there (possibly going through several
levels of indirect blocks).

How do we �nd the inode? In LinLogFS (in contrast
to conventional �le systems) the inodes reside in the
�le .ifile. We �nd the inode of this �le through
the superblock (see Fig. 1).

2.2 Writing

The distinctive feature of log-structured �le systems
is that they perform no update-in-place; instead
they write changed data and meta-data to an un-
used place on the disk. So, when writing a block
of data to a �le, the block is written to a new lo-
cation, the now-changed indirect block pointing to
it is written to a new location, and so on for the
whole chain from the superblock to the data block
(see Fig. 2).2

Bene�t: Since existing data is not destroyed by
writing over it, it is easy to clone the �le system
for backup purposes and to undelete �les.

2This is similar to the handling of data structures in
single-assignment languages, in particular eager functional
programming languages like ML.

.ifile inode

superblock

file inode

data block 2

.ifile inode

file inode

new data block 2data block 1

Figure 2: Change of the on-disk structure when
overwriting data block 2 of the �le

The superblock is written and updated in a �xed
place, allowing us to �nd it, the .ifile and thus
the whole �le system when mounting it. Therefore,
updating the superblock commits all the writes since
the last superblock update.

Bene�t: Having explicit commits allows perform-
ing atomic operations involving more than one
block, e.g., directory operations. This makes
it easy to ensure that the committed state of
the �le system is consistent and provides fast
crash recovery. It also makes it easy to guaran-
tee in-order write semantics upon a crash (see
Section 3.2).

Since there is no restriction on where the blocks
must be written, they can all be appended to a log.
Most of the time a number of writes can be collected
and written in one large batch. Ideally the disk is
written from the start to the end (see Section 2.3
for deviations from this ideal).

Bene�t: The resulting sequential writes require no
disk seeks (except for the superblock updates;
see Section 3.1.1 for reducing these seeks) and
thus allow fast synchronous writes. Large se-
quential writes are also helpful when writing to
RAIDs. Moreover, they make it easy to �nd
the newly written data when synchronizing a
(network) mirror.

2.3 Reclaiming Space

Unfortunately disks are �nite, so we have to reclaim
the space occupied by deleted or overwritten data
before the disk is full. LinLogFS divides the volume
into segments of about 512KB.3 The cleaner pro-
gram reclaims a segment by copying the (hopefully
small amount of) live data to the end of the log.

3Note that starting a new segment does not commit
changes written in the last one (at least in LinLogFS).

Then the reclaimed segment is available again for
writing.

Bene�t: Using large segments instead of a free
blocks map ensures that the �lesystem can usu-
ally write sequentially, avoiding seeks. Using
segments instead of treating the log as one big
ring bu�er allows segregating long-lived from
short-lived data and varying the cleaning fre-
quency accordingly. The copying approach of
the cleaner makes it easy to free speci�c seg-
ments in order to shrink or migrate a volume.

The cleaner uses segment summary information:
For every block in the segment, the segment sum-
mary contains the �le and the block number within
the �le. This makes it e�cient for the cleaner to
�nd out whether a block is live.

3 Log-structured File System Details

This section discusses a number of design issues for
log-structured �le systems in more detail.

3.1 Optimizations

3.1.1 Roll forward

Writing the superblock requires a seek to the su-
perblock and a seek back to the log, limiting the
performance for small synchronous writes.

This can be solved by writing special commit blocks
into the log. When mounting a �le system, the �le
systems does not assume that the superblock points
to the end of the log. Instead, it uses the pointed-to
block as a roll-forward start point and scans forward
for the last written commit block. The �le system
uses that commit block as the end of the log; i.e.,
it contains the .i�le inode and allows �nding the
whole �le system. To limit the crash recovery time,
the superblock is still written now and then (e.g.,
when about 10MB of segments have been written
to achieve a crash recovery time on the order of one
second).

3.1.2 Change Records

Instead of writing every changed block out when
committing, space and write time can be saved in
many cases by recording just what has changed.

During roll-forward, the �le system updates its in-
memory copies of the changed (meta-)data with this
information. Of course, the changed blocks still
have to be written out when establishing a new roll-
forward start point, but for blocks that are changed
several times between such start points, this opti-
mization pays o�.

The state to which a change record is applied on
recovery is known completely, so we can use any
kind of change record (in contrast to journaling �le
systems, where change records are usually restricted
to idempotent operations [VGT95]).

Change records in
uence recovery time by requiring
reading the blocks that they change (and possibly
indirect blocks to �nd them). This should be taken
into account when deciding when to write a new roll-
forward start point. Another consequence is that
the cleaner has to treat these blocks as live.

3.1.3 Block Pointers

Writing one data block can cause up to eight meta-
data blocks to be written to the log: up to three
indirect blocks, the block containing the inode of
the �le, up to three indirect blocks of the .ifile,
and the commit block containing the .ifile inode;
the reason for this cascade is that the pointer to
the next block in the chain changes. The usual case
is much better, because usually many written data
blocks share meta-data blocks. However, for small
synchronous writes block pointer updates would be
a problem. Moreover, part of this meta-data (the
.i�le inode and its indirect blocks) tends to be over-
written and thus become dead quickly, requiring a
cleaning pass even if none of the user data in the
segment has died.

To alleviate this problem, we are considering to add
change records for the most frequent cause of meta-
data updates: updates of pointers to blocks. The
change record would describe which block of which
�le now resides where.

There is an improvement of this optimization: we
need to store the information about which blocks
reside where only once, not once for the change
records and once as segment summary information
for the cleaner.

Another re�nement of this optimization is to com-
bine the change records for ranges of blocks of the
same �le into one change record, saving space.

3.2 In-order semantics

With in-order semantics we mean that the state of
the �le system after recovery represents all write()s
(or other changes) that occurred before a speci�c
point in time, and no write() (or other change) that
occurred afterwards. I.e., at most you lose a minute
or so of work.

The value of this guarantee may not be immedi-
ately obvious. It means that if an application en-
sures �le data consistency in case of its own unex-
pected termination by performing writes and other
�le changes in the right order, its �le data will also
be consistent (but possibly not up-to-date) in case
of a system failure; this is su�cient for many appli-
cations.

However, most �le systems nowadays guaran-
tee only meta-data consistency and require the
extensive use of fsync(2) to ensure any data
consistency at all. So, if applications fsync, isn't
the in-order guarantee worthless? Our experience
(http://www.complang.tuwien.ac.at/anton/sync-
metadata-updates.html) suggests that even popular
applications like Emacs don't fsync enough to avoid
signi�cant data losses; and even for applications
that try to ensure data consistency across OS
crashes with fsync, this is probably not a very
well-tested feature. So, providing the in-order
guarantee will improve the behaviour of many
applications.

Moreover, fsync() is an expensive feature that
should not be used when cheaper features like the
in-order guarantee are su�cient.

One problem with guaranteeing in-order semantics
in a log-structured �le system is that frequent fsyncs
can lead to fragmenting unrelated �les.4 There are
two possible solutions:

� Defragment the �les upon cleaning.

� Weaken the guarantee such that the state of the
�le system after recovery represents all write()s
(or other changes) that occurred before a spe-
ci�c point in time, and only fsync()s that oc-
curred afterwards; after all, applications using
fsync supposedly know what they are doing.

4The reason for this fragmentation is: with in-order se-
mantics, fsync() is equivalent to sync(), i.e., all changes are
written out. Now assume a workload where lots of �les are
written concurrently. Given the sequential writing strategy
of log-structured �le systems, parts of unrelated �les end up
close to each other, and these �les will be fragmented.

3.3 Cleaning and Cloning

We have not implemented a cleaner for LinLogFS
yet; this section re
ects our current thoughts on
cleaning.

The cleaning heuristics discussed in the literature
[RO92, BHS95] work well, so this is the direction
we would like to take: cleaning proactively when
the disk is idle, and using utilization and age for
choosing segments to clean. We also like the Spira-
log [WBW96] idea of producing entire segments out
of collected data (instead of copying the collected
data into the current segment), which allows avoid-
ing mixing up data with di�erent ages (i.e., di�erent
expected lifetimes). The cleaner can also be used for
defragmentation.

The main new problem in cleaning LinLogFS is how
to deal with cloning. The cleaners described in the
literature use information about the utilization of a
segment in their heuristics. This information is not
easily available in the presence of cloning; in par-
ticular, dismissing a clone can result in changes in
utilization that are expensive to track. File deletion
would also be relatively expensive (especially con-
sidering that it would be very cheap otherwise): for
every block in the �le the �lesystem would have to
check whether the block is still alive in any other
clone.

Therefore, we have to search for heuristics that work
without this information, or with just approximate
information (like upper and lower bounds on utiliza-
tion).

If we don't �nd such heuristics, we may have to bite
the bullet, and keep track of which blocks are alive
in which clone. WAFL [HLM94] uses a simple bit
matrix for this (with 32 bits/block). This has the
following disadvantages:

RAM consumption For a 20GB �le system with
4KB blocks, this requires 20MB, much of which
will have to reside in RAM at most times, in
particular when cloning or dismissing clones.
This is especially worrying because disks tend
to grow faster than RAM since the early 1990s.

High cloning and dismissing cost Cloning re-
quires copying a bit to another bit in each word
of the matrix. This can take longer than you
want to lock out �le system write operations, so
you may have to allow writing during cloning;
also, the new matrix has to be written to disk.

Limited number of clones There can be at most

32 clones (20 in WAFL).

A more sophisticated data structure may reduce
these problems; the following properties can be ex-
ploited: most blocks are alive in all clones, or dead
in all clones; large extents of blocks will be all alive
or all dead everywhere.

If we have per-block liveness information, it may be
preferable to simply write to dead blocks instead
of using a cleaner to clean segments. WAFL uses
this approach, but it is unclear how well it performs
without NVRAM support, especially in the presence
of frequent fsyncs or syncs. It also requires some
sophistication in selecting where to write.

3.4 Write Organization

We have not described how LinLogFS organizes
the blocks within a segment, because we intend to
change this (the current organization is not very ef-
�cient). The basic constraints are

� It must be possible to �nd all commit blocks
written to disk since the last roll-forward start
point.

� If a commit block is on disk, all previous com-
mit blocks (starting at the roll-forward start
point) are on disk, too.

� If a commit block is on disk, all the data it
describes are on disk, too.

Note that there is no dependence between data
writes belonging to di�erent commit blocks, or be-
tween commit block writes and data writes belong-
ing to later commit blocks.

We experimented with several ATA and SCSI disks
(by performing synchronous user-level writes to the
partition device), and found some interesting re-
sults:

Write caching in the drive can perform writes to
disks out-of-order and has to be disabled if we want
to satisfy the dependence constraints by write or-
dering.5 Without write caching, all disks we mea-
sured lose a disk revolution for each consecutive
write (tagged command queuing won't help us when
we have to wait for the acknowledgment of the

5The disks we measured only wrote out-of-order if the
same block was written twice (in some caching window), but
there is no guarantee that other disks behave in the same
way nor that we have seen all cases of out-of-order writing.

data write (and previous commit block write) be-
fore starting the current commit block write).

By placing the commit block at some distance
(20KB in our experiments) behind the last data
block, we can write the commit block in the same
revolution and reduce the time until the commit is
completed. This is useful in the case of frequent
fsyncs. The blocks between the data blocks and the
commit block can be used by the next write batch.

4 Current State and Further Work

Much of what we have described above is still unim-
plemented. LinLogFS currently performs all the
usual �le system functions except reclaiming space.
It provides in-order semantics (even in the presence
of fsync()). LinLogFS uses the roll-forward opti-
mization, but does not use any change records yet.

The only component missing to make LinLogFS
practically useful is the cleaner. Other features
that are still missing and will be implemented in
the future are: cloning (including writable, clon-
able clones), change records for block pointers, pin-
ning segments containing a �le down (for LILO),
fast update of network mirrors, e�cient grow-
ing/shrinking/migrating the volume. We are also
considering a version of LinLogFS as a low-level
OBD driver (see www.lustre.org and Section 8).

5 Layering

5.1 Logging Block Device?

The di�erence between traditional and log-
structured �le systems is mainly in block writing.
Most other parts of the �le system (e.g., dealing
with directories or permissions) are hardly a�ected.

So we �rst considered realizing the logging function-
ality as a block device driver. We decided against
this, because:

� The block device driver interface is not su�-
cient to make a conventional �le system log-
structured without signi�cant changes in the
�le system (atomicity for multiple block writes,
crash recovery).

� A logging block device driver would interfere
with other functionality implemented in the
block device layer (software RAID).

5.2 Logging Layer!

We decided to reuse most of the ext2 code. We
de�ned a logging layer that sits below the rest of
the �le system. It is also possible to turn other �le
systems into log-structured �le systems by adapting
their code to work on top of our logging layer, but
we have not done so yet.6

This separation into layers proved to be bene�cial
due to the usual advantages of modularization (e.g.,
separate testing and debugging).

The adaption of the ext2 �lesystem turned out the
be relatively straightforward because the ext2 im-
plementation does a good job in encapsulating indi-
rect block handling from the rest of the �lesystem
implementation. The interface provided by the log-
ging layer is similar to the one o�ered by the bu�er
cache/block device driver thereby easing the adap-
tion of the ext2 code.

Furthermore, we have added calls that bracket every
�lesystem operation to the ext2 �lesystem layer.
This ensures that dirty blocks do not get
ushed to
disk while a �lesystem-modifying operation is taking
place. This approach guarantees that the �lesystem
is always in a consistent state when a commit to
disk is taking place.

6 Implementation Experiences

6.1 The Linux Kernel Framework. . .

Like many other implementations of Unix-like oper-
ating systems, Linux uses a uniform interface within
the kernel (the VFS Layer) to access all the various
�lesystems it supports.

Usually local �lesystems do not directly write to
the block devices they reside on. They make use
the bu�er cache, a uni�ed cache that helps to avoid
costly synchronous block device I/O operations in
order to ful�ll VFS requests.

Instead of doing synchronous block I/O, they rather
mark blocks that are in the bu�er cache as dirty
(i.e., they need to be
ushed to the device) when a

6Since logging changes the on-disk data structure, this
would not be useful for �le systems that are only used for
compatibility, such as the MS-DOS �le system. It would be
useful for �le systems that o�er special features, performance
or scalability advantages like XFS. We designed the logging
layer and the on-disk structures to allow several adapted �le
systems to work on top of the logging layer at the same time
(this is an extension of the cloning functionality).

VFS operation has caused a change in a block. It is
then the task of the kupdate kernel thread to actu-
ally commit changes to the device asynchronously.

So a local �lesystem can be seen as a �lter that turns
VFS calls into block read/write operations passed to
the bu�er cache.

The kupdate kernel thread will start writing dirty
bu�ers back to the underlying block devices when
one of the following conditions gets true:

� there are dirty blocks that have aged beyond a
certain threshold,

� the operating system is running low on memory
and needs to free up some RAM,

� there is an explicit request to update the block
device, such as a sync() call.

6.2 . . . And Changes Made to it

6.2.1 Extending The Bu�er Cache

While this approach works �ne for traditional �le
systems, such as ext2, it is not applicable for �lesys-
tems that want to ensure certain consistency guar-
antees for on-disk data structures. In order to be
able to make such consistency guarantees, a �lesys-
tem implementation needs a more �ne-grained con-
trol over the actual order in which writes are per-
formed. However, this cannot be ensured by us-
ing the traditional bu�er caching mechanisms for
writes.7

LinLogFS also faces another di�culty using this ap-
proach. Since write operations are grouped into seg-
ments, the actual on-disk location of a block is not
known until the block is actually about to be writ-
ten out to disk. On the other hand, the bu�er cache
uses the device and the block number in order to lo-
cate a cached item.

Therefore, LinLogFS assigns block numbers past the
physical end of the underlying device to unwritten
dirty blocks. When a block is about to be written
out, an address �xup is performed on the �lesys-
tem's meta data to re
ect the �nal on-disk location.
However, this cannot be handled using the bu�er
cache alone because some additional information is
required in order to accomplish that task:

In order to be able to perform the address �xup,
it is necessary to know the inode of the �lesystem

7Of course it would be possible to bypass the bu�er cache
completely. But this is not desirable due to the performance
impacts this approach will have.

Item Modi�cation

Filesystem Layer (new) Based on ext2
Handles perms, dirs, etc. . .
Performs address �xup on request

Logging Layer (new) Lock dirty blocks in memory
Trigger o� address �xup
Trigger o� re-hashing of blocks after �xup

Bu�er Cache Added support for re-hashing blocks
Prevent random writes
Extended bu�er head for address �xup

Inode Cache Added code for locating an inode in the cache

Figure 3: Overview of modi�cations to the Linux kernel

object the block belongs to and the logical o�set
within it. However, the Linux 2.2 bu�er cache does
not preserve this information.

Because of these obstacles, LinLogFS uses a slightly
di�erent approach when it comes to dealing with
write operations: Instead of leaving the decision
when to write which block to disk to the bu�er
cache, LinLogFS locks dirty blocks in the bu�er
cache. This prevents them from being
ushed
to disk by the kupdate daemon at free disposal.
LinLogFS performs direct block I/O instead when
enough blocks are dirty or a sync has been re-
quested. This also allows the block address �xup
to be performed just before the block is actually
being written out to disk.

This approach of determining the address of a block
upon the disk write could also be used to optimize
other �le systems, e.g., ext2: When the block is
actually written to disk, usually its �le is already
closed. Therefore the �le system knows the �le's
probable �nal size, and can allocate the �les on the
disk in a way that avoids �le and free space frag-
mentation.

6.2.2 Implementing the Address Fixup

In order to be able to perform the address �xup on
pending �lesystem meta-data before a data block
is written out to disk, we need to store some addi-
tional information about the block. Currently, this
is done by extending the structure that is used to
describe entries in the bu�er cache bu�er head by a
few additional members:8

8We are planning to reduce these additional members in
the future. In general, we would suggest adding a general-
purpose pointer member to this structure.

� inum: This member holds the inode number of
the �lesystem object this block belongs to.

� log blknum: The o�set (logical block number)
of this block within the �lesystem object it be-
longs to.

� private data: A pointer to a data structure de-
scribing the LinLog �lesystem. This eases the
porting of existing �lesystem implementations
to LinLogFS's logging layer since this allows an
interface similar to the one of the bu�er cache
to be used.9

When LinLogFS decides to write out dirty blocks
the logging layer �xes up the block addresses in the
bu�er head structs of all blocks that are about to be

ushed to disk. It then issues a callback to the upper
�lesystem layer that is now supposed to adjust its
meta-data information accordingly.

Since the bu�er cache uses the on-device block num-
ber to hash entries, the respective blocks need to be
re-hashed in the bu�er cache after the address �xup
has been performed. Therefore, a function has been
added to the Linux bu�er cache that allows to re-
hash blocks in the bu�er cache after the address
�xup has been performed.

The address �xup is also complicated by the fact
that there might actually be two copies of an inode
in memory: One stemming from data blocks of the
.i�le (the �le containing all the inodes in LinLogFS)
and another one being located in the inode cache.
The inode cache in Linux is mainly used for storing a
uni�ed representation of a �lesystem inode that has
been obtained through the VFS layer. All processes
wanting to access a certain �le are associated with

9This allows us to simulate routines, such as
mark bu�er dirty or bread.

the representation of the �le's inode in the inode
cache.

However, the inode cache causes problems for Lin-
LogFS, since it needs to make sure that the inode's
copy in the inode cache remains consistent with the
one in the .i�le's dirty bu�ers. Therefore, a call has
been added to the Linux inode cache implementa-
tion that allows to obtain the current cached copy
of an inode in the inode cache (if there is one at
all). This allows us to locate a cached copy of an
inode and to keep it consistent with the inode's ac-
tual state. We are currently considering to bypass
the inode cache for �lesystem-speci�c information
in future versions of LinLogFS.

After the upper �lesystem layer has completed the
address �xup, the actual disk write is triggered by
the logging layer by issuing an ll rw blk request to
the underlying block device.

7 Performance

We compared several Linux �le systems:

ext2 (Linux 2.2.13); this is the standard Linux �le
system, and represents traditional �le systems.
It performs all writes asynchronously. Ext2
does not give any consistency guarantees by
ordering writes; instead, it relies on a sophisti-
cated fsck program for crash recovery, but suc-
cessful recovery is not guaranteed.

reiserfs (3.5.19 on Linux 2.2.14); this �le system
tries to scale well to dealing with large numbers
of small �les. Concerning recovery guarantees,
this �le system logs meta-data, so the directory
tree will be preserved on crash recovery, but the
data in it may not.

ext3 (0.0.2d on Linux 2.2.15pre15); this is the ext2
�le system with journaling added; currently it
logs both data and meta-data, which allows for
very good consistency guarantees.10.

linlogfs (on Linux 2.2.14); the version we mea-
sured did not contain a cleaner and does not
keep track of segment usage as a version with
a cleaner probably would; there are also sev-
eral other changes planned that will a�ect per-
formance. Concerning consistency guarantees,
Linlogfs provides the in-order guarantee (see

10For higher performance at reduced safety meta-data-only
logging is planned

Section 3.2), so crash recovery will restore both
data and meta-data to the state a short time
before the crash (ext3 probably provides a sim-
ilar guarantee).

The hardware we have used for this performance
comparison is based on a 450MHz AMD K6-III
CPU, an Asus P5A mainboard (with ALI chipset),
128MB RAM and a 15GB IDE Harddisk (IBM-
DJNA-351520).

For all benchmarks except one we disabled write
caching on the hard disk with hdparm -W0. This
is necessary for reiserfs, ext3, and LinLogFS, be-
cause with write caching enabled disks can perform
the writes out-of-order in a way that would compro-
mise the crash recovery guarantees these �le systems
make. Ext2 makes no crash recovery guarantees,
but write caching must still be disabled to ensure
that ext2 works correctly for sync etc. We have
also run ext2 with write caching, because this is a
common con�guration (all IDE hard disks we know
enable write caching by default).

Many factors in
uence �le system performance, and
it is probably impossible to reduce the wide range
of usage patterns in real life to a small set of bench-
marks that exercise all �le systems in representative
ways. So take the following with a grain of salt. The
benchmarks we used were:

� Un-tarring the Linux 2.2.14 kernel sources,
starting with a freshly-made �le system; we ran
this benchmark 50 times. Un-tarring is one of
the few disk-intensive tasks we encounter in real
life. This is a data writing benchmark.

� A single run of removing the 50 instances of
the Linux kernel source trees generated by the
previous benchmark. This is another one of the
few disk-intensive tasks we encounter in real
life; this benchmark mainly writes meta-data,
in contrast to the un-tar benchmark.

� Tarring11 the Linux 2.2.14 kernel (20 runs).
This is a data reading benchmark.

� A single run of �nd, searching for \foo" (non-
existent) in 20 Linux kernel source trees. This
is a meta-data reading benchmark.

In addition to running these benchmarks on the var-
ious �le systems, we also measured the limits of the
hardware: We wrote 74MB (the same amount of

11We used tar c linux|cat >/dev/null, because tar
seems to optimize direct output to /dev/null.

elapsed time (s)

ext2 cache
ext2 nocache

reiserfs
ext3

linlogfs

20

40

60

 raw disk

Figure 4: Un-tar timings

elapsed time (s)

ext2 cache
ext2 nocache

reiserfs
ext3

linlogfs

200

400

600

800

Figure 5: Rm timings

data as written by the un-tar benchmark) to the
device with dd if=/dev/zero of=/dev/hda7 ...

to measure the disk speed limit.

We ran the benchmarks using the default settings
for the IDE chipset: no DMA (not supported
for this chipset), no multiple sector access, 16-bit
data transfers; with write caching disabled, en-
abling multiple-sector access and 32-bit data trans-
fers make no di�erence for the elapsed time for di-
rect device accesses (but reduced the CPU time
somewhat). We also performed a few experiments
with �le systems and observed little di�erence be-
tween the two settings; we also believe that using
DMA would not make much di�erence. The CPU
load (as reported by time) in all the benchmarks
except un-tor on ext2 cache was well below 50%, so
the PIO probably did not interfere much with the
�le system.

With write caching enabled, raw writing becomes
CPU-bound, and enabling these features reduces
the elapsed time for writing 75MB to the device
from 9.9s to 6.3s. So the ext2 cache results would
be slightly better with the faster settings. Also, the
read performance would be better with the faster
settings.

elapsed time (s)

ext2 cache
ext2 nocache

reiserfs
ext3

linlogfs

20

40

60

 raw disk

Figure 6: Tar timings

elapsed time (s)

ext2 cache
ext2 nocache

reiserfs
ext3

linlogfs

25

50

75

100

Figure 7: Find timings

The results are shown in Fig. 4, Fig. 5, Fig. 6, and
Fig. 7. For the un-tar and tar benchmarks, we dis-
play the result as a box-plot showing the median,
the quartiles, extreme values, and outliers.

In the local un-tar benchmark, we see that turn-
ing o� write caching reduces raw disk write per-
formance almost by a factor of 2, but ext2 write
performance only by a factor of about 1.5. Ext2
utilizes 2/3 of the write bandwidth of the disk with-
out caching, which is hard to beat. Between ext2,
reiserfs and ext3 we see that �le systems provid-
ing more consistency guarantees perform somewhat
slower. LinLogFS breaks this trend, performing as
well as ext2 nocache on this benchmark; of course,
once cleaning comes into play the performance will
su�er. Similarly, the performance of the other �le
systems on a fuller, aged �le system might be worse,
too. The outliers below the raw disk line that you
see for ext2 nocache and reiserfs are probably due
to write caching by the �le system before memory
becomes full.

In the rm benchmark LinLogFS wins, probably be-
cause it does not do any bookkeeping of segment
usage or free blocks yet; you can expect some slow-

down in LinLogFS rm performance in the future.

In the tar and �nd benchmarks, we see that ext2
cache, ext2 nocache, and ext3 perform the same,
because neither caching nor journaling plays a role
when reading (i.e., for reading ext3 is the same as
ext2).

For the tar benchmark, LinLogFS performs worse
than ext2 by about 15%, probably because of the
current write organization within a segment. The
outliers for most �le systems are probably due to
interference with the delayed writes of the un-tars
that immediately precede the tar benchmark.

For the �nd timings, LinLogFS and reiserfs are sig-
ni�cantly faster than ext2/ext3. The lower perfor-
mance of ext2 may be due to the way it allocates
inodes to di�erent block groups, whereas in a clean
LinLogFS data written close together in time is close
in space. Our benchmark performs a �nd on an un-
tarred directory tree; therefore the meta-data writ-
ten close in time tends to be read close in time, and
having them close in space gives an advantage.

The system times reported by time show LinLogFS
as taking the same or a little less CPU time than
the other �le systems on all benchmarks; however,
take this with a grain of salt, because we saw some
strange results in our raw disk measurements, so the
reported system time for I/O-intensive benchmarks
is not necessarily accurate.

8 Related Work

In many respects LinLogFS is similar to the Sprite
LFS [RO92] and especially the BSD LFS [SBMS93].
The most signi�cant di�erence is that LinLogFS is
designed to allow e�cient cloning of the �le system.
One important di�erence from Sprite LFS is the log-
ical separation of commits and segment summaries;
Sprite LFS views segment boundaries as commits
and requires additional complexity like the directory
operation log to work around the resulting prob-
lems; BSD LFS logically separates commits from
segments (look for segment batching in [SBMS93]).
BSD LFS does not use change records, Sprite LFS
uses the segment summaries as change records for
block pointer update optimization.

Another interesting aspect is that the original moti-
vation for log-structured �le systems (in particular,
Sprite LFS) was performance [OD89], while our mo-
tivation is mainly functionality12 (the performance

12You can see crash recovery speed as a performance issue,

of ext2 in the usual case is satisfactory). For perfor-
mance evaluations of log-structured �le systems see
[SSB+95, MRC+97].

Cleaning heuristics and performance are discussed
extensively in [RO92, BHS95].

The Spiralog �le system [WBW96] for VMS is a log-
structured �le system with a number of interesting
di�erences from the �le systems discussed above.
One of the di�erences to LinLogFS is its approach to
backups [GBD96]: Spiralog just physically backups
all live segments; for incremental backups it backs
up all live segments written in the corresponding
range of time. In contrast, in LinLogFS you will
create a logical read-only clone of the �le system,
and use your favourite logical backup tool (e.g., tar)
to make the backup.

Network Appliance's WAFL �le system [HLM94]
di�ers from LinLogFS mainly in using free block
maps instead of segments and by not performing
roll-forward of on-disk structures (i.e., every com-
mit needs a write to the superblock); WAFL is
supported by an NVRAM bu�er, mitigating the
worst-case performance impacts of these decisions.
WAFL's allocation scheme trades additional seek
times for the elimination of the cleaning overhead;
moreover, creating snapshots13 is signi�cantly more
expensive (tens of seconds). Concerning implemen-
tation complexity, WAFL needs no cleaner, but
probably incurs some additional complexity in the
block allocator.

There are two other Linux log-structured �le system
projects we know of, by Cornelius Cook, and by
Adam Richter, but to our knowledge they stalled at
some early stage.

Journaling (e.g., ext3 [Twe98]) augments conven-
tional �le systems for fast crash recovery by writing
data �rst to a log and later to the home location;
after a crash the log is replayed to get a consis-
tent on-disk state. Space in the log is reclaimed
by completing writes to the home location. Most
journaling �le systems (e.g., BFS [Gia99], Calaveras
[VGT95], Episode [CAK+92], IBM's JFS, reiserfs)
only log meta-data writes (for performance reasons),
and therefore only guarantee meta-data consistency.
Journaling �le systems can provide fast crash recov-
ery and (with data logging) in-order write seman-
tics and relatively good performance for synchro-
nous writes. But they do not easily support cloning,

but this is not the kind of performance that most papers
focus on.

13User-visible snapshots; WAFL also uses the term snap-

shot for commits; commits are not that expensive.

snapshots or other features that are easily avail-
able in log-structured �le systems. Still, Episode
[CAK+92] supports read-only clones, using block-
level copy-on-write.

Soft updates [MG99] enhance BSD's FFS by asyn-
chronously writing in an order that ensures that
the �le system can be safely mounted after a crash
without being checked. They make FFS's writes
and crash recovery faster. McKusick and Ganger
[MG99] also show how to do snapshots in a con-
ventional �le system. While they address our main
motivations for developing LinLogFS, their software
does not work under Linux, and we believe that
their solution is more complex to implement than
a log-structured �le system.

The logical disk [dJKH93] provides an interface
that allows a log-structured layer below and an
adapted conventional �le system on top. The logical
disk translates between logical and physical blocks,
requiring considerable memory and long startup
times. In contrast, our logging layer uses physical
block addresses and only a�ects writes.

The Linux logical volume manager LVM 0.8�nal
supports multiple snapshot logical volumes per orig-
inal logical volume. This allows making consistent
backups for any Linux �le system.

The object based disk (OBD) part of the Lustre
project (www.lustre.org) divides the �le system into
a hierarchical layer on top, and a
at layer of �les at
the bottom, like the layering presented in Section 2.
OBD allows inserting logical object drivers between
these layers. In particular, there is a snapshot driver
that uses copy-on-write on the �le level. The inter-
face between the OBD layers is higher-level than
the interface between the LinLogFS layers. We are
considering to have a derivative of LinLogFS as the
lower layer in OBD (currently a derivative of ext2fs
is used).

9 Conclusion

Log-structured �le systems o�er a number of ben-
e�ts; one of the little-known bene�ts is in-order
write semantics, which makes application data safer
against OS crashes. LinLogFS is a log-structured
�le system for Linux. It is implemented by adding
a log-structured layer between an adapted ext2 �le
system and the bu�er cache. LinLogFS defers the
assignment of block addresses to data blocks until
just before the actual device write; it assigns tem-
porary block addresses to dirty data blocks at �rst,

and �xes the addresses just before writing.

The current version of LinLogFS works
on Linux 2.2 (versions for Linux 2.0
are available). You can get it through
www.complang.tuwien.ac.at/czezatke/lfs.html.

Acknowledgments

Stephen Tweedie (our shepherd), Ulrich Neumerkel,
Manfred Brockhaus, and the referees provided help-
ful comments on earlier versions of this paper.

References

[BHS95] Trevor Blackwell, Je�rey Harris, and
Margo Seltzer. Heuristic cleaning al-
gorithms in log-structured �le systems.
In Usenix Annual Technical Conference,
pages 277{288, 1995.

[CAK+92] Sailesh Chutani, Owen T. Anderson,
Michael L. Kazar, Bruce W. Leverett,
W. Anthony Mason, and Robert N.
Sidebotham. The Episode �le system. In
Usenix Conference, pages 43{60, Winter
1992.

[dJKH93] Wiebren de Jonge, M. Frans Kashoek,
and Wilson C. Hsieh. Logical disk: A
simple new approach to improving �le
system performance. Technical Report
LCS/TR-566, MIT, 1993. A paper on
the same topic appeared at SOSP '93.

[GBD96] Russel J. Green, Alasdair C. Baird, and
J. Christopher Davies. Designing a
fast, on-line backup system for a log-
structured �le system. Digital Technical
Journal, 8(2):32{45, 1996.

[Gia99] Dominic Giampaolo. Practical File Sys-
tem Design. Morgan Kaufmann, 1999.

[HLM94] Dave Hitz, James Lau, and Michael
Malcolm. File system design for an NFS
�le server appliance. In Usenix Confer-
ence, Winter 1994.

[MG99] Marshall Kirk McKusick and Gre-
gory R. Ganger. Soft updates: A
technique for eliminating most syn-
chronous writes in the fast �lesystem.

In FREENIX Track, USENIX Annual
Technical Conference, pages 1{17, 1999.

[MRC+97] Jeanna Neefe Matthews, Drew Roselli,
Adam M. Costello, Randolph Y. Wang,
and Thomas E. Anderson. Improving
the performance of log-structured �le
systems with adaptive methods. In Six-
teenth ACM Symposium on Operating
System Principles (SOSP '97), 1997.

[OD89] John Ousterhout and Fred Douglis.
Beating the I/O bottleneck: A case for
log-structured �le systems. Operating
Systems Review, 23(1):11{28, January
1989.

[RO92] Mendel Rosenblum and John K. Ouster-
hout. The design and implementa-
tion of a log-structured �le system.
ACM Transactions on Computer Sys-
tems, 10(1):26{52, 1992.

[SBMS93] Margo Seltzer, Keith Bostic, Mar-
shall Kirk McKusick, and Carl Staelin.
An implementation of a log-structured
�le system for UNIX. In Usenix Confer-
ence, pages 307{326, Winter 1993.

[SSB+95] Margo Seltzer, Keith A. Smith, Hari
Balakrishnan, Jacqueline Chang, Sara
McMains, and Venkata Padmanabhan.
File system logging versus clustering: A
performance comparison. In Usenix An-
nual Technical Conference, 1995.

[Twe98] Stephen Tweedie. Journaling the Linux
ext2fs �lesystem. In LinuxExpo '98,
1998.

[VGT95] Uresh Vahalia, Cary G. Gray, and Den-
nis Ting. Metadata logging in an nfs
server. In Usenix Annual Technical Con-
ference, pages 265{276, 1995.

[WBW96] Christopher Whitaker, J. Stuart Bayley,
and Rod D. W. Widdowson. Design
of the server for the Spiralog �le sys-
tem. Digital Technical Journal, 8(2):15{
31, 1996.

