
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

M B U F I S S U E S I N 4 . 4 B S D I P V 6 / I P S E C S U P P O R T :
E X P E R I E N C E S F R O M K A M E I P V 6 / I P S E C

I M P L E M E N TAT I O N

Jun-ichiro itojun Hagino

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Mbuf issues in 4.4BSD IPv6/IPsec support
— experiences from KAME IPv6/IPsec implemntation —

Jun-ichiro itojun Hagino

KAME Project
Research Laboratory, Internet Initiative Japan Inc.

http://www.kame.net/
itojun@iijlab.net

ABSTRACT

The 4.4BSD network stack has made certain assumptions regarding the packets it
will handle. In particular, 4.4BSD assumes that (1) the total protocol header length is
shorter than or equal to MHLEN, usually 100 bytes, and (2) there are a limited number of
protocol headers on a packet. Neither of these assumptions hold any longer, due to the
way IPv6/IPsec specifications are written.

We at the KAME project are implementing IPv6 and IPsec support code on top of
4.4BSD. To cope with the problems, we have introduced the following changes: (1) a
new function called m_pulldown, which adjusts the mbuf chain with a minimal number of
copies/allocations, and (2) a new calling sequence for parsing inbound packet headers.
These changes allow us to manipulate incoming packets in a safer, more efficient, and
more spec-conformant way. The technique described in this paper is integrated into the
KAME IPv6/IPsec stack kit, and is freely available under BSD copyright. The KAME
codebase is being merged into NetBSD, OpenBSD and FreeBSD. An integration into
BSD/OS is planned.

1. 4.4BSD incompatibility with IPv6/IPsec
packet processing

The 4.4BSD network code holds a packet in
a chain of ‘‘mbuf ’’ structures. Each mbuf struc-
ture has three flavors:

non-cluster header mbuf, which holds
MHLEN (100 bytes in a 32bit architecture
installation of 4.4BSD),

non-cluster data mbuf, which holds MLEN
(104 bytes), and

cluster mbuf which holds MCLBYTES
(2048 bytes).

We can make a chain of mbuf structures as a
linked list. Mbuf chains will efficiently hold vari-
able-length packet data. Such chains also enable
us to insert or remove some of the packet data
from the chain without data copies.

When processing inbound packets, 4.4BSD
uses a function called m_pullup to ease the
manipulation of data content in the mbufs. It also
uses a deep function call tree for inbound packet

processing. While these two items work just fine
for traditional IPv4 processing, they do not work
as well with IPv6 and IPsec processing.

1.1. Restrictions in 4.4BSD m_pullup

For input packet processing, the 4.4BSD
network stack uses the m_pullup function to ease
parsing efforts by adjusting the data content in
mbufs for placement onto the continuous memory
region. m_pullup is defined as follows:

struct mbuf *

m_pullup(m, len)

struct mbuf *m;

int len;

m_pullup will ensure that the first len bytes in the
packet are placed in the continuous memory
region. After a call to m_pullup, the caller can
safely access the the first len bytes of the packet,
assuming that they are continuous. The caller
can, for example, safely use pointer variables into
the continuous region, as long as they point inside
the len boundary.

IPv6 header
next = routing

routing header
next = auth

auth header
next = TCP

TCP header TCP payload

Figure 1: IPv6 extension header chain
m_pullup makes certain assumptions regarding
protocol headers. m_pullup can only take len
upto MHLEN. If the total packet header length is
longer than MHLEN, m_pullup will fail, and the
result will be a loss of the packet. Under IPv4
(Postel, 1981), the length assumption worked fine
in most cases, since for almost every protocol, the
total length of the protocol header part was less
than MHLEN. Each packet has only two protocol
headers, including the IPv4 header. For example,
the total length of the protocol header part of a
TCP packet (up to TCP data payload) is a maxi-
mum of 120 bytes. Typically, this length is 40 to
48 bytes. When an IPv4 option is present, it is
stripped off before TCP header processing, and
the maximum length passed to m_pullup will be
100.

1 The IPv4 header occupies 20 bytes.

2 The IPv4 option occupies 40 bytes maxi-
mum. It will be stripped off before we
parse the TCP header. Also note that the
use of IPv4 options is very rare.

3 The TCP header length is 20 bytes.

4 The TCP option is 40 bytes maximum. In
most cases it is 0 to 8 bytes.

IPv6 specification (Deering, 1998) and
IPsec specification (Kent, 1998) allow more flexi-
ble use of protocol headers by introducing
chained extension headers. With chained exten-
sion headers, each header has a ‘‘next header
field’’ in it. A chain of headers can be made as
shown in Figure 2. The type of protocol header is
determined by inspecting the previous protocol
header. There is no restriction in the number of
extension headers in the spec.

Because of extension header chains, there is
now no upper limit in protocol packet header
length. The m_pullup function would impose
unnecessary restriction to the extension header
processing. In addition, with the introduction of
IPsec, it is now impossible to strip off extension
headers during inbound packet processing. All of
the data on the packet must be retained if it is to
be authenticated using Authentication Header
(Kent, 1998). Continuing the use of m_pullup
will limit the number of extension headers

allowed on the packet, and could jeopadize the
possible usefulness of IPv6 extension headers. 1

Another problem related to m_pullup is that
it tends to copy the protocol header even when it
is unnecessary to do so. For example, consider
the mbuf chain shown in Figure 2:

IPv4
TCP

TCP payload

Figure 2: mbuf chain before m_pullup
Here, the first mbuf contains an IPv4 header in the
continuous region, and the second mbuf contains
a TCP header in the continuous region. When we
look at the content of the TCP header, under
4.4BSD the code will look like the following:

struct ip *ip;

struct tcphdr *th;

ip = mtod(m, struct ip *);

/* extra copy with m_pullup */

m = m_pullup(m, iphdrlen + tcphdrlen);

/* MUST reinit ip */

ip = mtod(m, struct ip *);

th = mtod(m, caddr_t) + iphdrlen;

As a result, we will get a mbuf chain shown in
Figure 3.

IPv4
TCP

TCP payload

Figure 3: mbuf chain in figure 2 after m_pullup
Because m_pullup is only able to make a continu-
ous region starting from the top of the mbuf
chain, it copies the TCP portion in second mbuf
into the first mbuf. The copy could be avoided if
m_pullup were clever enough to handle this case.
Also, the caller side is required to reinitialize all
of the pointers that point to the content of mbuf,
since after m_pullup, the first mbuf on the chain

1 In IPv4 days, the IPv4 options turned out to be
unusable due to a lack of implementation. This was
because most commercial products simply did not
support IPv4 options.

ip6_input rthdr6_input ah_input
stack

overflow
esp_input tcp_input

Figure 5: an excessively deep call chain can cause kernel stack overflow
can be reallocated and lives at a different address
than before. While m_pullup design has provided
simplicity in packet parsing, it is disadvantageous
for protocols like IPv6.

The problems can be summarized as fol-
lows: (1) m_pullup imposes too strong restriction
on the total length of the packet header
(MHLEN); (2) m_pullup makes an extra copy
ev en when this can be avoided; and (3) m_pullup
requires the caller to reinitialize all of the pointers
into the mbuf chain.

1.2. Protocol header processing with a deep
function call chain

Under 4.4BSD, protocol header processing
will make a chain of function calls. For example,
if we have an IPv4 TCP packet, the following
function call chain will be made (see Figure 4):

(1) ipintr will be called from the network soft-
ware interrupt logic,

(2) ipintr processes the IPv4 header, then calls
tcp_input.

(3) tcp_input will process the TCP header and
pass the data payload to the socket queues.

ipintr tcp_input

Figure 4: function call chain in IPv4 inbound
packet processing

If chained extension headers are handled as
described above, the kernel stack can overflow by
a deep function call chain, as shown in Figure 5.
IPv6/IPsec specifications do not define any upper
limit to the number of extension headers on a
packet, so a malicious party can transmit a
‘‘legal’’ packet with a large number of chained
headers in order to attack IPv6/IPsec implementa-
tions. We hav e experienced kernel stack overflow
in IPsec code, tunnelled packet processing code,
and in several other cases. The IPsec processing
routines tend to use a large chunk of memory on
the kernel stack, in order to hold intermediate data
and the secret keys used for encryption. 2 We

cannot put the intermediate data region into a
static data region outside of the kernel stack,
because it would become a source of performance
drawback on multiprocessors due to data locking.

Even though the IPv6 specifications do not
define any restrictions on the number of extension
headers, it may be possible to impose additional
restriction in an IPv6 implementation for safety.
In any case, it is not possible to estimate the
amount of the kernel stack, which will be used by
protocol handlers. We need a better calling con-
vention for IPv6/IPsec header processing, regard-
less of the limits in the number of extension head-
ers we may impose.

2. KAME approach

This section describes the approaches we at
the KAME project took against the problems
mentioned in the previous section. We introduce
a new function called m_pulldown, in place of
m_pullup, for adjusting payload data in the mbuf.
We also change the calling sequence for the pro-
tocol input function.

2.1. What is the KAME project?

In the early days of IPv6/IPsec develop-
ment, the Japanese research community felt it
very important to make a reference code available
in a freely-redistributable form for educational,
research and deployment purposes. The KAME
project is a consortium of 7 Japanese companies
and an academic research group. The project
aims to deliver IPv6/IPsec reference implementa-
tion for 4.4BSD, under BSD license. The KAME
project intends to deliver the most spec-confor-
mant IPv6/IPsec implementation possible.

2.2. m_pulldown function

Here we introduce a new function, m_pull-
down, to address the 3 problems with m_pullup
that we have described above. The actual source
code is included at the end of this paper. The
function prototype is as follows:

2 For example, blowfish encryption processing
code typically uses an intermediate data region of
4K or more. With typical 4.4BSD installation on
i386 architecture, the kernel stack region occupies
less than 8K bytes and does not grow on demand.

struct mbuf *

m_pulldown(m, off, len, offp)

struct mbuf *m;

int off, len;

int *offp;

m_pulldown will ensure that the data region in the
mbuf chain, starting at off and ending at off + len,
is put into a continuous memory region. len must
be smaller than, or equal to, MCLBYTES (2048
bytes). The function returns a pointer to an inter-
mediate mbuf in the chain (we refer to the pointer
as n), and puts the new offset in n to *offp. If offp
is NULL, the resulting region can be located by
mtod(n, caddr_t); if offp is non-null, it will be
located at mtod(n, caddr_t) + *offp. The mbuf
prior to off will remain untouched, so it is safe to
keep the pointers to the mbuf chain. For example,
consider the mbuf chain on Figure 6 as the input.

mbuf1
50 bytes

mbuf2
20 bytes

Figure 6: mbuf chain before the call to m_pulldown
If we call m_pulldown with off = 40, len = 10,
and a non-null offp, the mbuf chain will remain
unchanged. The return value will be a pointer to
mbuf1, and *offp will be filled with 40. If we call
m_pulldown with off = 40, len = 20, and null offp,
then the mbuf chain will be modified as shown in
Figure 7, by allocating a new mbuf, mbuf3, into
the middle and moving data from both mbuf1 and
mbuf2. The function returns a pointer to mbuf3.

mbuf1
40 bytes

mbuf3
20 bytes

mbuf2’
10 bytes

Figure 7: mbuf chain after call to m_pulldown,
with off = 40 and len = 20

The m_pulldown function solves all 3 problems in
m_pullup that were described in the previous sec-
tion. m_pulldown does not copy mbufs when
copying is not necessary. Since it does not mod-
ify the mbuf chain prior to the speficied offset off,
it is not necessary for the caller to re-initialize the
pointers into the mbuf data region. With
m_pullup, we always needed to specify the data
payload length, starting from the very first byte in
the packet. With m_pulldown, we pass off as the
offset to the data payload we are interested in.
This change avoids extra data manipulation when

we are only interested in the intermediate data
portion of the packet. It also eases the assumption
regarding total packet header length. While
m_pullup assumes that the total packet header
length is smaller than or equal to MHLEN (100
bytes), m_pulldown assumes that single packet
header length is smaller than or equal to
MCLBYTES (2048 bytes). With mbuf frame-
work this is the best we can do, since there is no
way to hold continuous region longer than
MCLBYTES in a standard mbuf chain.

2.3. New function prototype for inbound
packet processing

For IPv6 processing, our code does not
make a deep function call chain. Rather, we make
a loop in the very last part of ip6_input, as shown
in Figure 8. IPPROT O_DONE is a pseudo-proto-
col type value that identifies the end of the exten-
sion header chain. If more protocol headers exist,
each header processing code will update the
pointer variables and return the next extension
header type. If the final header in the chain has
been reached, IPPROT O_DONE is returned.
With this code, we no longer have a deep call
chain for IPv6/IPsec processing. Rather,
ip6_input will make calls to each extension
header processor directly. This avoids the possi-
bility of overflowing the kernel stack due to multi-
ple extension header processing.

ip6_input

rthdr6_input

ah_input

esp_input

tcp_input

Figure 9: KAME avoids function call chain by
making a loop in ip6_input

Regardless of the calling sequence imposed
by the pr_input function prototype, it is important
not to use up the kernel stack region in protocol
handlers. Sometimes it is necessary to decrease
the size of kernel stack usage by using pointer
variables and dynamically allocated regions.

struct ip6protosw {
int (*pr_input) __P((struct mbuf **, int *, int));
/* and other members */

};

ip6_input(m)
struct mbuf *m;

{
/* in the very last part */
extern struct ip6protosw inet6sw[];
/* the first one in extension header chain */
nxt = ip6.ip6_nxt;
while (nxt != IPPROTO_DONE)

nxt = (*inet6sw[ip6_protox[nxt]].pr_input)(&m, &off, nxt);
}

/* in each header processing code */
int
foohdr_input(mp, offp, proto)

struct mbuf **mp;
int *offp;
int proto;

{
/* some processing, may modify mbuf chain */

if (we have more header to go) {
*mp = newm;
*offp = nxtoff;
return nxt;

} else {
m_freem(newm);
return IPPROTO_DONE;

}
}

Figure 8: KAME IPv6 header chain processing code.
3. Alternative approaches

Many BSD-based IPv6 stacks have been
implemented. While the most popular stacks
include NRL, INRIA and KAME, dozens of other
BSD-based IPv6 implementations have been
made. This section presents alternative
approaches for purposes of comparison.

3.1. NRL m_pullup2

The latest NRL IPv6 release copes with the
m_pullup limitation by introducing a new func-
tion, m_pullup2. m_pullup2 works similarly to
m_pullup, but it allows len to extend up to
MCLBYTES, which corresponds to 2048 bytes in
a typical installation. When the len parameter is
smaller than or equal to MHLEN, m_pullup2 sim-
ply calls m_pullup from the inside.

While m_pullup2 works well for packet
headers up to MCLBYTES with very little change
in code, it does not avoid making unnecessary
copies. It also imposes restrictions on the total
length of packet headers. The assumption here is
that the total length of packet headers is less than
MCLBYTES.

3.2. Hydrangea changes to m_devget

The Hydrangea IPv6 stack was imple-
mented by a group of Japanese researchers, and is
one of the ancestors of the KAME IPv6 stack.
The Hydrangea IPv6 stack avoids the need for
m_pullup by modifying the mbuf allocation pol-
icy in drivers. For inbound packets, the drivers
allocate mbufs by using the m_devget function, or
by re-implementing the behavior of m_devget.
m_devget allocates mbuf as follows:

1 If the packet fits in MHLEN (100 bytes),
allocate a single non-cluster mbuf.

2 If the packet is larger than MHLEN but fits
in MHLEN + MLEN (204 bytes), allocate
two non-cluster mbufs.

3 Otherwise, allocate multiple cluster mbufs,
MCLBYTES (2048 bytes) in size.

For typical packets, the second case is where
m_pullup is used. The Hydrangea stack avoids
the use of m_pullup by eliminating the second
case.

This approach worked well in most cases,
but failed for (1) loopback interface, (2) tunnelled
packets, and (3) non-conforming drivers. With
the Hydrangea approach, every device driver had
to be examined to ensure the new mbuf allocation

policy. We could not be sure if the constraint was
guaranteed until we checked the driver code, and
the Hydrangea approach raised many support
issues. This was one of our motivations for intro-
ducing m_pulldown.

4. Comparisons

This section compares the following three
approaches in terms of their characteristics and
actual behavior: (1) 4.4BSD m_pullup, (2) NRL
m_pullup2, and (3) KAME m_pulldown.

4.1. Comparison of assumption

Table 1 shows the assumptions made by
each of the three approaches. As mentioned ear-
lier, m_pullup imposes too stringent requirement
for the total length of packet headers. m_pullup2
is workable in most cases, although this approach
adds more restrictions than the specification
claims. m_pulldown assumes that the single
packet header is smaller than MCLBYTES, but
makes no restriction regarding the total length of
packet headers. With a standard mbuf chain, this
is the best m_pulldown can do, since there is no
way to hold continuous region longer than
MCLBYTES. This characteristic can contribute
to better specification conformance, since m_pull-
down will impose fewer additional restrictions
due to the requirements of implementation.

Among the three approaches, only m_pull-
down avoids making unnecessary copies of inter-
mediate header data and avoids pointer reinitial-
ization after calls to these functions. These
attributes result in smaller overhead during input
packet processing.

At present, we know of no other 4.4BSD-
based IPv6/IPsec stack that addresses kernel stack
overflow issues, although we are open to new per-
spectives and new information.

4.2. Performance comparison based on simu-
lated statistics

To compare the behavior and performance
of m_pulldown against m_pullup and m_pullup2
using the same set of traffic and mbuf chains, we
have gathered simulated statistics for m_pullup
and m_pullup2, in m_pulldown function. By run-
ning a kernel using the modified m_pulldown
function, we can easily gather statistics for these
three functions against exactly the same traffic.

The comparison was made on a computer
(with Celeron 366MHz CPU, 192M bytes of

memory) running NetBSD 1.4.1 with the KAME
IPv6/IPsec stack. Network drivers allocate mbufs
just as normal 4.4BSD does. m_pulldown is
called whenever it is needed to ensure continuity
in packet data during inbound packet processing.
The role of the computer is as an end node, not a
router.

To describe the content of the following
table, we must look at the source code fragment.
Figure 10 shows the code fragment from our
source code. The code fragment will (1) make the
TCP header on the mbuf chain m at offset hdrlen
continuous, and (2) point the region with pointer
th. We use a macro named
IP6_EXTHDR_CHECK, and the code before and
after the macro expansion is shown in the figure.
/* ensure that *th from hdrlen is continuous */
/* before macro expansion... */
struct tcphdr *th;
IP6_EXTHDR_CHECK(th, struct tcphdr *, m,

hdrlen, sizeof(*th));
if (th == NULL)

return; /*m is already freed*/

/* after macro expansion... */
struct tcphdr *th;
int off;
struct mbuf *n;
if (m->m_len < hdrlen + sizeof(*th)) {

n = m_pulldown(m, hdrlen, sizeof(*th), &off);
if (n)

th = (struct tcphdr *)(mtod(n, caddr_t) + off);
else

th = NULL;
} else

th = (struct tcphdr *)(mtod(m, caddr_t) + hdrlen);
if (th == NULL)

return;

Figure 10: code fragment for trimming mbuf
chain.
In Table 2, the first column identifies the test case.
The second column shows the number of times
the IP6_EXTHDR_CHECK macro was used. In
other words, it shows the number of times we
have made checks against mbuf length. The
remaining columns show, from left to right, the
number of times memory allocation/copy was
performed in each of the variants. In the case of
m_pullup, we counted the number of cases we
passed len in excess of MHLEN (96 bytes in this
installation). This result suggests that there was
no packet with a packet header portion larger than
MCLBYTES (2048 bytes). In the evaluation we
have used m_pulldown against IPv6 traffic only.

m_pullup m_pullup2 m_pulldown

total header length MHLEN(100) MCLBYTES(2048) −
single header length − − MCLBYTES(2048)

no no yesavoids copy on inter-
mediate headers

no no yesavoids pointer reini-
tialization

Table 1: assumptions in mbuf manipulation approaches.

test len checks m_pulldown m_pullup m_pullup2
call alloc copy alloc copy fail alloc copy

(1) 204923 1706 1595 1596 165 165 1541 1596 1596
(2) 1063995 23786 22931 23008 1171 1229 22557 22895 22953
(3) 520028 1245 948 957 432 432 813 945 945
(4) 438602 180 6 6 178 178 2 24 24
(5) 5570 2236 206 206 812 812 1424 1424 1424

Table 2: number of mbuf allocation/copy against traffic

test IPv6 input TCP UDP ICMPv6 1 mbuf 2 mbufs ext mbuf(s)

(1) 29334 20892 2699 5739 3624 15632 10078
(2) 313218 215919 15930 80263 38751 172976 101491
(3) 132267 117822 8561 5882 12782 59799 59686
(4) 73160 66512 5249 1343 7475 42053 23632
(5) 1433 148 53 52 103 1203 127

Table 3: Traffic characteristics for tests in Table 2
From these measured results, we obtain

several interesting observations. m_pullup actu-
ally failed on IPv6 trafic. If an IPv6 implementa-
tion uses m_pullup for IPv6 input processing, it
must be coded carefully so as to avoid trying
m_pullup against any length longer than MHLEN.
To achieve this end, the code copies the data por-
tion from the mbuf chain to a separate buffer, and
the cost of memory copies becomes a penalty.

Due to the nature of this simulation, the
comparison described above may contain an
implicit bias. Since the IPv6 protocol processing
code is written by using m_pulldown, the code is
somewhat biased toward m_pulldown. If a pro-
grammer had to write the entire IPv6 protocol
processing with m_pullup only, he or she would
use m_copydata to copy intermediate extension
headers buried deep inside the header chains, thus
making it unnecessary to call m_pullup. In any
case, a call to m_copydata will result in a data
copy, which causes extra overhead.

In all cases, the number of length checks
(second column) exceeds the number of inbound
packets. This behavior is the same as in the origi-
nal 4.4BSD stack; we did not add a significant
number of length checks to the code. This is
because m_pulldown (or m_pullup in the 4.4BSD

case) is called as necessary during the parsing of
the headers. For example, to process a TCP-over-
IPv6 packet, at least 3 checks would be made
against m->m_len; these checks would be made
to grab the IPv6 header (40 bytes), to grab the
TCP header (20 bytes), and to grab the TCP
header and options (20 to 60 bytes). The length
of the TCP option part is kept inside the TCP
header, so the length needs to be checked twice
for the TCP part.

IPv6 header
TCP header

(len)
TCP options payload

40

20

20 to 60

Figure 11: processing a TCP-over-IPv6 packet
requires 3 length checks.

The results suggest that we call m_pulldown more
frequently in ICMPv6 processing than in the pro-
cessing of other protocols. These additional calls
are made for parsing of ICMPv6 and for neighbor
discovery options. The use of loopback interface
also contributes to the use of m_pulldown.

In the tests, the number of copies made in
the m_pullup2 case is similar to the number made
in the m_pulldown case. m_pulldown makes less
copies than m_pullup2 against packets like below:

A packet is kept in multiple mbuf. With
mbuf allocation policy in m_devget, we will
see two mbufs to hold single packet if the
packet is larger than MHLEN and smaller
than MHLEN + MLEN, or the packet is
larger than MCLBYTES.

We hav e extension headers in multiple
mbufs. Header portion in the packet needs
to occupy first mbuf and subsequent mbufs.

To demonstrate the difference, we have generated
an IPv6 packet with a routing header, with 4 IPv6
addresses. The test result is presented as the 5th
test in Table 2. Packet will look like Figure 12.
First 112 bytes are occupied by an IPv6 header
and a routing header, and the remaining 16 bytes
are used for an ICMPv6 header and payload. The
packet met the above condition, and m_pulldown
made less copies than m_pullup2. To process sin-
gle incoming ICMPv6 packet shown in the figure,
m_pullup2 made 7 copies while m_pulldown
made only 1 copy.
node A (source) = 2001:240:0:200:260:97ff:fe07:69ea
node B (destination) = 2001:240:0:200:a00:5aff:fe38:6f86
17:39:43.346078 A > B:

srcrt (type=0,segleft=4,[0]B,[1]B,[2]B,[3]B):
icmp6: echo request (len 88, hlim 64)

6000 0000 0058 2b40 2001 0240 0000 0200
0260 97ff fe07 69ea 2001 0240 0000 0200
0a00 5aff fe38 6f86 3a08 0004 0000 0000
2001 0240 0000 0200 0a00 5aff fe38 6f86
2001 0240 0000 0200 0a00 5aff fe38 6f86
2001 0240 0000 0200 0a00 5aff fe38 6f86
2001 0240 0000 0200 0a00 5aff fe38 6f86
8000 b650 030e 00c8 ce6e fd38 d553 0700

Figure 12: Packets with IPv6 routing header.

During the test, we experienced no kernel
stack overflow, thanks to a new calling sequence
between IPv6 protocol handlers.

The number of copies and mbuf allocations
vary very much by tests. We need to investigate
the traffic characteristic more carefully, for exam-
ple, about the average length of header portion in
packets.

5. Related work

Van Jacobson proposed pbuf structure 3 as
an alternative to BSD mbuf structure. The pro-
posal has two main arguments. First is the use of
continuous data buffer, instead of chained frag-
ments like mbufs. Another is the improvement to
TCP performance by restructuring TCP

3 A reference should be here, but I’m having
hard time finding published literature for it.

input/output handling. While the latter point still
holds for IPv6, we believe that the former point
must be reviewed carefully before being used
with IPv6. Our experience suggests that we need
to insert many intermediate extension headers into
the packet data during IPv6 outbound packet pro-
cessing. We believe that mbuf is more suitable
than the proposed pbuf structure for handling the
packet data efficiently. Using pbuf may result in
the making of more copies than in the mbuf case.

In a cross-BSD portability paper (Metz,
1999), Craig Metz described nbuf structure in
NRL IPv6/IPsec stack. nbuf is a wrapper struc-
ture used to unify linux linear-buffer packet man-
agement and BSD mbuf structure, and is not
closely related to the topic of this paper. The
m_pullup2 example discussed in this paper is
drawn from the NRL implementation.

6. Conclusions

This paper discussed mbuf manipulation in
a 4.4BSD-based IPv6/IPsec stack, namely KAME
IPv6/IPsec implementation. 4.4BSD makes cer-
tain assumptions regarding packet header length
and its format. For IPv6/IPsec support, we
removed those assumptions from the 4.4BSD
code. We introduced the m_pulldown function
and a new function call sequence for inbound
packet processing. These innovations helped us
to implement IPv6/IPsec in a very spec-confor-
mant manner, with fewer implementation restric-
tions added against specifications.

The described code is publically available,
under a BSD-like license, at
ftp://ftp.kame.net/. KAME IPv6/IPsec
stack is being merged into 4.4BSD variants like
FreeBSD, NetBSD and OpenBSD. An integra-
tion into BSD/OS is planned. We will be able to
see official releases of these OSes with KAME
code soon.

7. Acknowledgements

The paper was made possible by the collec-
tive efforts of researchers at the KAME project
and the WIDE project and of other IPv6 imple-
menters at large. We would also like to acknowl-
edge all four BSD groups who helped us improve
the KAME IPv6 stack code by sending bug
reports and improvement suggestions, and the
Freenix reviewers helped polish the paper.

References

Postel, 1981.
John Postel, “Internet Protocol” in RFC791
(September 1981). ftp://ftp.isi.edu/in-
notes/rfc791.txt.

Deering, 1998.
S. Deering and R. Hinden, “Internet Proto-
col, Version 6 (IPv6) Specification” in
RFC2460 (December 1998).
ftp://ftp.isi.edu/in-notes/rfc2460.txt.

Kent, 1998.
Stephen Kent and Randall Atkinson, “Secu-
rity Architecture for the Internet Protocol”
in RFC2401 (November 1998).
ftp://ftp.isi.edu/in-notes/rfc2401.txt.

Kent, 1998.
Stephen Kent and Randall Atkinson, “IP
Authentication Header” in RFC2402
(November 1998). ftp://ftp.isi.edu/in-
notes/rfc2402.txt.

Metz, 1999.
Craig Metz, “Porting Kernel Code to Four
BSDs and Linux” in 1999 USENIX annual
technical conference, Freenix track (June
1999). http://www.usenix.org/publica-
tions/library/proceed-
ings/usenix99/metz.html.

/*
* ensure that [off, off + len) is contiguous on the mbuf chain "m".
* packet chain before "off" is kept untouched.
* if offp == NULL, the target will start at <retval, 0> on resulting chain.
* if offp != NULL, the target will start at <retval, *offp> on resulting chain.
*
* on error return (NULL return value), original "m" will be freed.
*
* XXX M_TRAILINGSPACE/M_LEADINGSPACE on shared cluster (sharedcluster)
*/
struct mbuf *
m_pulldown(m, off, len, offp)

struct mbuf *m;
int off, len;
int *offp;

{
struct mbuf *n, *o;
int hlen, tlen, olen;
int sharedcluster;

/* check invalid arguments. */
if (m == NULL)

panic("m == NULL in m_pulldown()");
if (len > MCLBYTES) {

m_freem(m);
return NULL; /* impossible */

}

n = m;
while (n != NULL && off > 0) {

if (n->m_len > off)
break;

off -= n->m_len;
n = n->m_next;

}
/* be sure to point non-empty mbuf */
while (n != NULL && n->m_len == 0)

n = n->m_next;
if (!n) {

m_freem(m);
return NULL; /* mbuf chain too short */

}

/*
* the target data is on <n, off>.
* if we got enough data on the mbuf "n", we’re done.
*/
if ((off == 0 || offp) && len <= n->m_len - off)

goto ok;

/*
* when len < n->m_len - off and off != 0, it is a special case.
* len bytes from <n, off> sits in single mbuf, but the caller does
* not like the starting position (off).
* chop the current mbuf into two pieces, set off to 0.
*/
if (len < n->m_len - off) {

o = m_copym(n, off, n->m_len - off, M_DONTWAIT);
if (o == NULL) {

m_freem(m);
return NULL; /* ENOBUFS */

}
n->m_len = off;
o->m_next = n->m_next;
n->m_next = o;
n = n->m_next;
off = 0;
goto ok;

}

/*
* we need to take hlen from <n, off> and tlen from <n->m_next, 0>,
* and construct contiguous mbuf with m_len == len.
* note that hlen + tlen == len, and tlen > 0.
*/
hlen = n->m_len - off;
tlen = len - hlen;

/*
* ensure that we have enough trailing data on mbuf chain.
* if not, we can do nothing about the chain.
*/
olen = 0;
for (o = n->m_next; o != NULL; o = o->m_next)

olen += o->m_len;
if (hlen + olen < len) {

m_freem(m);
return NULL; /* mbuf chain too short */

}

/*
* easy cases first.
* we need to use m_copydata() to get data from <n->m_next, 0>.
*/
if ((n->m_flags & M_EXT) == 0)

sharedcluster = 0;
else {

if (n->m_ext.ext_free)
sharedcluster = 1;

else if (MCLISREFERENCED(n))
sharedcluster = 1;

else
sharedcluster = 0;

}
if ((off == 0 || offp) && M_TRAILINGSPACE(n) >= tlen
&& !sharedcluster) {

m_copydata(n->m_next, 0, tlen, mtod(n, caddr_t) + n->m_len);
n->m_len += tlen;

m_adj(n->m_next, tlen);
goto ok;

}
if ((off == 0 || offp) && M_LEADINGSPACE(n->m_next) >= hlen
&& !sharedcluster) {

n->m_next->m_data -= hlen;
n->m_next->m_len += hlen;
bcopy(mtod(n, caddr_t) + off, mtod(n->m_next, caddr_t), hlen);
n->m_len -= hlen;
n = n->m_next;
off = 0;
goto ok;

}

/*
* now, we need to do the hard way. don’t m_copy as there’s no room
* on both end.
*/
MGET(o, M_DONTWAIT, m->m_type);
if (o == NULL) {

m_freem(m);
return NULL; /* ENOBUFS */

}
if (len > MHLEN) { /* use MHLEN just for safety */

MCLGET(o, M_DONTWAIT);
if ((o->m_flags & M_EXT) == 0) {

m_freem(m);
m_free(o);
return NULL; /* ENOBUFS */

}
}
/* get hlen from <n, off> into <o, 0> */
o->m_len = hlen;
bcopy(mtod(n, caddr_t) + off, mtod(o, caddr_t), hlen);
n->m_len -= hlen;
/* get tlen from <n->m_next, 0> into <o, hlen> */
m_copydata(n->m_next, 0, tlen, mtod(o, caddr_t) + o->m_len);
o->m_len += tlen;
m_adj(n->m_next, tlen);
o->m_next = n->m_next;
n->m_next = o;
n = o;
off = 0;

ok:
if (offp)

*offp = off;
return n;

}

