
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

S AF E T Y C H E C K I N G
O F K E R N E L E X T E N S I O N S

Craig Metz

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Safety Checking of Kernel Extensions

Craig Metz

Department of Computer Science

University of Virginia

Charlottesville, VA 22904

cmetz@inner.net

Abstract

There are many places in operating systems today
where extending the running kernel with small and
fast extensions is an interesting thing to do. For exam-
ple, the Berkeley Packet Filter (BPF) allows code for
a virtual machine to be uploaded into a running ker-
nel and executed at packet reception, allowing fairly
arbitrary �ltering of packets before they cross the ex-
pensive kernel to user interface. Whatever mechanism
is used needs to provide some reasonable guarantees
about the safety of the resulting code, which makes
this problem complex.
This paper describes a simple x86 bytecode veri�er

that is intended to be used to verify that a small pro-
gram that is to be loaded obeys a reasonable safety
policy. For program constructs that it is able to rea-
son about, it can verify that code does not execute
privileged instructions, only accesses known memory
locations, and terminates. It cannot reason about arbi-
trary programs, but can reason about simple programs
and developers that know the prover's limitations can
write their code to be recognizable by the veri�er.
The contribution of this work is to show that a very

limited prover can operate on native machine code and
can e�ciently reason about a small but still interesting
set of programs.

1 Introduction

The Berkeley Packet Filter (BPF) is a simple virtual
machine that is commonly found in the kernels of BSD-
like systems. It allows user processes (that may or may
not be privileged) to install simple extensions into the
running kernel that are called at well-de�ned points.
These extensions provide a service in kernel space on
behalf of the user process that installed them, and pro-
vide greater
exibility than a data-only con�guration
interface can. The virtual machine has a fairly high
overhead due to both the instruction set emulation and
the run-time access checking, but this is much lower

than the overhead of crossing into the user process.
Increasing network speeds and interest in applying

this approach to other problems have made emulation
overhead an issue. Also an issue is that the BPF pro-
gram must be written in a special assembly language;
no high-level language compilers currently exist that
target the BPF machine. Native machine code has
neither problem; it executes at full machine speed and
can be targeted by whatever compilers are available.
Many systems have a facility for extending the run-
ning kernel using native instructions (loadable kernel
modules). Typically, these extensions are installed by
a privileged process, are not subject to any sort of
veri�cation at installation time, and have the same
run-time privileges as the rest of the kernel (in partic-
ular, there is usually almost no access checking). Such
facilities are inappropriate for use by unprivileged pro-
cesses, and represent serious risks even when restricted
to privileged processes. In particular, the extension
code can put the entire system in a bad state, either
due to deliberate actions or unintended
aws.
A possible solution to the problem is to statically

analyze program code to determine whether it obeys
certain restrictions and safety policies. BPF already
does this in a very limited way. The bpf validate()

function is called before code is installed into the run-
ning system, and checks three safety properties [1]:

1. \Check that jumps are forward, and within the
code block."

2. \Check that memory operations use valid ad-
dresses" (within the VM)

3. \Check for constant division by 0"

At run-time, the BPF virtual machine provides mem-
ory access checking (by only allowing access through
well-known pointers and bounds checking of o�sets),
provides no unsafe instructions, and guarantees that
the C calling convention will be obeyed (because the
virtual machine itself is implemented as a C function).
Still, the run-time checking creates overhead.

A similar approach is used by the Java Virtual Ma-
chine (JVM), which uses a bytecode veri�er to check
for memory and type safety as code is loaded into the
system[2]. Again, some safety is provided by the emu-
lated machine, which provides no truly unsafe instruc-
tions and guarantees that the calling convention will
be obeyed. However, the JVM approach alleviates the
need for run-time bounds checking of memory accesses
by moving that overhead to a load-time static analy-
sis. While this improves run-time performance, there
is still signi�cant overhead due to the emulation of the
JVM's instruction set.

In theory, the instructions present in the BPF vir-
tual machine's instruction set and the JVM's instruc-
tion set are functionally equivalent to instructions (or
short sequences of instructions) in native machine in-
structions. If it is possible to reason about the BPF or
JVM instructions statically, it may be possible to do
the same with a constrained version of a real machine's
instruction set. This is an active area of research typ-
ically for use with micro-kernels, where fast and safe
kernel extensions are more commonly needed. A par-
ticularly interesting research solution is Proof Carry-
ing Code (PCC) [3], in which native code is statically
analyzed, an attempt is made to generate a proof that
the code obeys certain safety properties, and the proof
and code are later veri�ed by the kernel before accept-
ing the code as an extension.

If a proof can be found and veri�ed, then the code
is known to have the safety properties and run-time
checks are not needed [4]. If a proof cannot be found,
this does not necessarily mean that the code is unsafe
{ as a nontrivial program property, this is an undecid-
able problem[5], but it is always a safe default action
to consider code to be unsafe. If a programmer has
the prover in hand and knows what the safety policy
is, development can be done iteratively where the pro-
grammer adjusts the code in equivalent ways until it
passes the prover; while the prover might not be able
to reason about arbitrary programs, it is usually pos-
sible for a programmer to �nd a functionally similar
program that it can reason about.

The main problem with the PCC approach is that
the prover is too heavyweight, yet is still very limited
in its ability to actually prove properties of programs.
In one PCC implementation, the prover is a general-
purpose theorem prover, which is very large and slow,
but can attempt to prove rather arbitrary properties of
programs. In practice, this approach becomes far less
likely to successfully generate a proof as program com-
plexity increases. In another, the prover is built into a
special type-safe C compiler; most of the overhead of
the prover is shared with the compiler and proofs are
always generated for valid programs in the language
(the property proved is type safety and the language

is a type-safe language, so one is always possible), but
now a speci�c compiler must be used. Because the
proof generation step is so heavyweight, the PCC ap-
proach separates proof generation and proof veri�ca-
tion and makes only the latter a trusted component.

A promising direction for a solution to this prob-
lem is to start with the PCC approach and to make
the prover su�ciently fast and lightweight that the
proof generation can be a trusted component (elimi-
nating the need for an intermediate representation of
the proof and a proof veri�er). This is done by greatly
constraining what programs are allowed to do; if pro-
grams are simple enough, reasoning about them be-
comes simple also. In particular, extensions are cur-
rently required to be stateless and return a simple inte-
ger result. This is still interesting for many problems
such as packet �ltering, and allows the extension to
be terminated by the system without having to worry
about cleanup. Conditions like division by zero are
already checked at run-time \for free" by the hard-
ware and global state can be recovered from rather
painlessly, so there is little value in a relatively expen-
sive static analysis to decide whether the condition
is possible. In contrast, safety of memory accesses is
expensive to do with the hardware (due to the time re-
quired to switch to more restrictive page tables), and
backing out a write to a random memory location is
painful if not e�ectively impossible, so statically check-
ing for this kind of safety is valuable.

2 Prototype Prover

2.1 General Approach

The prover that was constructed takes native machine
code and executes it using a simple simulator. The
implementation currently only supports the x86 in-
struction set, though there is nothing in this approach
that would prevent an implementation for another In-
struction Set Architecture (ISA) (and most ISAs will
actually be far easier to build an implementation for,
but the popularity of the x86 instruction set motivated
its use in this prototype). Privileged machine instruc-
tions and machine instructions that would not be out-
put by a normal linear-mode x86 compiler (e.g., me-
dia instructions and instructions using segmentation)
are not allowed in extensions. Floating point is also
not allowed because hardware
oating point instruc-
tion support may not be present on the machine and
is not automatically emulated for code inside many
kernels. Known values are tracked through the simu-
lated execution of the program using a simple linear
representation:

value = base + a� x+ b; x = 0::xmax

Where base is either 0 or an abstract unknown base
variable whose concrete value will be supplied by the
runtime environment (such as the initial value of the
stack pointer, or the pointer to the function's input
structure). Preconditions, such as the input values,
descriptions of the accessible memory objects (align-
ment, size, and permissions), and the C calling conven-
tion's stack layout, are set up with their values. All
other memory and register values in the system are set
to \unde�ned," and the simulation is run. At all re-
turn points, postconditions such as register and stack
restoration are checked.
Memory accesses are required to be to known values.

Given a known value as above and memory objects in
a similar representation, it is possible to check whether
a memory access will always be in a de�ned region for
which the program has permission to read or write.
Known values are tracked on write, so that register
spills to the stack do not lose information.
The simplifying assumption that makes the simula-

tor function is that it is always safe to declare a value
to be unknown if a known value cannot be easily com-
puted. For example, most bitwise logical instructions
yield a result of unknown because the simulator can-
not create a linear function representation of their out-
put given a linear function representation of their in-
put. The main exception to this is bitwise AND, which
is treated as constraining the linear function's range.
This works in practice because most memory accesses
are done through linear functions (scale-index-base, as
seen in the x86 ISA), so the linear values tracked by the
simulator contain enough information to reason about
mostmemory addresses, while the other values used by
a program aren't usually important for memory access
safety.
The end result is a prover that can take short bi-

naries compiled with gcc and verify their safety. The
veri�ed code can then be installed into a running ker-
nel and used for small extension functions in the same
way that the BPF virtual machine is used. These func-
tions can be called as C functions through a front-end
function, and are guaranteed to return and not to write
except where explicitly permitted.

2.2 Implementation Walk-Through

In order to make discussion of the implementation
more concrete, Figures 1-4 give an example of a short
real-world �lter program that was used extensively in
the development of the prototype prover. First, a short
libpcap �lter program shown in Figure 1 was used as a
starting point. It was chosen to be a short example of
how BPF is typically used. The tcpdump program was
used as a front-end to libpcap's internal compiler and
optimizer, which generated the BPF program shown
in Figure 2.

ip host 127.0.0.1 and udp port 42

Figure 1: Original libpcap �lter program syntax

(000) ld [0]

(001) jeq #0x2000000 jt 2 jf 16

(002) ld [16]

(003) jeq #0x7f000001 jt 6 jf 4

(004) ld [20]

(005) jeq #0x7f000001 jt 6 jf 16

(006) ldb [13]

(007) jeq #0x11 jt 8 jf 16

(008) ldh [10]

(009) jset #0x1fff jt 16 jf 10

(010) ldxb 4*([4]&0xf)

(011) ldh [x + 4]

(012) jeq #0x2a jt 15 jf 13

(013) ldh [x + 6]

(014) jeq #0x2a jt 15 jf 16

(015) ret #1576

(016) ret #0

Figure 2: BPF program resulting from compilation

Then the C program shown in Figure 3 was con-
structed by hand, attempting to be as faithful to the
contents of the BPF programas possible. However, the
C implementation uses abstractions for protocol head-
ers and address information for the sake of readability
and to show that programs that might be written by
a real programmer compile down to analyzable code.
The C program adds some run-time bounds checking
that is not present in the BPF instructions { the BPF
virtual machine does these checks implicitly, while a
native program must do them explicitly.

Finally, the C program was compiled with the GNU
C compiler into a native x86 program whose assembly
listing is shown in Figure 4.

The �rst thing that the prover does is load the code
of the program to be proven into a memory bu�er.
This requires the program to parse the i386 ELF bi-
nary object format, which is currently done in a rea-
sonable but minimal fashion. Only the .text segment
is loaded, which is assumed to contain exactly one C
function, and no relocation is performed. The program
loader is currently linked into the same binary as the
prover, but is otherwise decoupled from it. In prac-
tice, the loader would be separated from the prover
and would be an untrusted component (for example,
a part of the user process).

Next, the prover initializes preconditions. The reg-
ister pre- and post-conditions are listed in Figure 5,
and are generic to the x86 C calling convention. The
�rst four general purpose registers are initially set to

#include <sys/types.h>

#include <netinet/in.h>

#include <netinet/ip.h>

#include <netinet/udp.h>

struct bpf_preamble {

uint32_t a;

};

int f(caddr_t p, unsigned int len)

{

struct bpf_preamble *bpf_preamble;

struct ip *ip;

struct udphdr *udp;

if (len < sizeof(struct bpf_preamble))

goto fail;

bpf_preamble = (struct bpf_preamble *)p;

if (bpf_preamble->a != PF_INET)

goto fail;

if (len < sizeof(struct bpf_preamble)

+ sizeof(struct ip))

goto fail;

ip = (struct ip *)(p + sizeof(struct bpf_preamble));

if (ip->ip_hl < 5)

goto fail;

if ((ip->ip_src.s_addr != htonl(INADDR_LOOPBACK)) &&

(ip->ip_dst.s_addr != htonl(INADDR_LOOPBACK)))

goto fail;

if (ip->ip_off & IP_OFFMASK)

goto fail;

if (len < sizeof(struct bpf_preamble) + ip->ip_hl * sizeof(uint32_t) +

sizeof(struct udphdr))

goto fail;

udp = (struct udphdr *)(p + sizeof(struct bpf_preamble) +

ip->ip_hl * sizeof(uint32_t));

if ((udp->uh_sport != htons(42)) &&

(udp->uh_dport != htons(42)))

goto fail;

return 1576;

fail:

return 0;

}

Figure 3: Equivalent C source code

.text

.align 4

.globl f

.type f,@function

f:

pushl %ebp

movl %esp,%ebp

pushl %esi

movl 8(%ebp),%ecx

movl 12(%ebp),%esi

cmpl $3,%esi

jbe .L8

cmpl $2,(%ecx)

jne .L8

cmpl $23,%esi

jbe .L8

leal 4(%ecx),%edx

movzbl 4(%ecx),%eax

andl $15,%eax

cmpl $4,%eax

jle .L8

cmpl $16777343,12(%edx)

je .L18

cmpl $16777343,16(%edx)

jne .L8

.L18:

testl $8191,6(%edx)

jne .L8

leal 0(,%eax,4),%edx

leal 12(%edx),%eax

cmpl %eax,%esi

jb .L8

leal 4(%ecx,%edx),%eax

cmpw $10752,(%eax)

je .L25

cmpw $10752,2(%eax)

jne .L8

.L25:

movl $1576,%eax

jmp .L26

.p2align 4,,7

.L8:

xorl %eax,%eax

.L26:

popl %esi

movl %ebp,%esp

popl %ebp

ret

.Lfe1:

.size f,.Lfe1-f

Figure 4: x86 program resulting from compilation (GCC 2.95.2, -O6)

\unde�ned," which is a special value in the prover that
indicates that these cannot be read from until changed
to a de�ned value (to prevent unknown or unintended
values from being available to the program). The last
four general purpose registers are initially set to ab-
stract variables representing their initial value. This
allows the program to generate values as o�sets from
their initial values (such as stack pointer relative ad-
dresses, which need to be resolved to an address rel-
ative to the initial value of the stack pointer) and it
also allows the prover to check as a postcondition that
the initial value has been faithfully restored when the
program returns.

The memory preconditions are listed in Figure 6,
and are speci�c to the problem of a BPF �lter function
with the function signature seen in Figure 3. Di�erent
functions will require di�erent memory preconditions.
The current prover implementation allows these to be
changed easily. Memory words are de�ned to con-
tain each input parameter, and the input packet bu�er
that is passed to the program is also de�ned. The in-
put packet bu�er is currently de�ned as a �xed-length
bu�er in order to greatly simplify the prover's opera-
tion; it is much easier to reason about falling within
a known bound than an unknown bound (though this
would be a useful feature to add in the future). At
run-time, the caller would need to copy packets into a

Register Precondition Postcondition
%eax - %edx (unde�ned) n/c
%esp sp0 sp0
%ebp bp0 bp0
%esi si0 si0
%edi di0 di0

Figure 5: Register Pre/postconditions for the x86 C
Calling Convention

bu�er of 8192 bytes in order for this to be safe. The
input parameters are all treated as read-only because
there is no legitimate need for them to be modi�able.
In order to have some available scratch space, twelve
words of stack space is set aside for read/write local
variables. This scratch space is easily increased by
de�ning more such words in the prover, but arbitrary
amounts of temporary space are not supported. There
are no memory postconditions; values that are read-
only are never writable and thus need no postcondition
checking, and values that are read-write are considered
mutable.

Name Base Variable O�set Size Contents Permissions
arg 0: caddr t p at 4(%esp) sp0 +4 4 p read
arg 1: unsigned int len at 8(%esp) sp0 +8 4 len read
locals 0..11 sp0 -4..-52 4 (unde�ned) read/write
Input packet (p) p 0 8192 (unknown) read

Figure 6: Memory Preconditions for a BPF-like Filter Program

2.3 Limited x86 Simulation in the
Prover

The core of the prover implements a very limited sim-
ulation of an x86 processor. The intent of this simu-
lation is not to run the program or yield results, but
to quickly attempt reason about the instructions and
values used in a program and to attempt to determine
whether memory accesses are safe.

A surprisingly complex part of this process is de-
coding the x86 instructions into the actual operation
and operands. Figure 7 shows the general form of a
x86 instruction. The x86 is a CISC architecture and
earns the designation \complex." There are multi-
ple opcodes for the same actual instruction, and the
operands are determined by the opcode in ways that
are frequently not well patterned. The instructions
appear to be designed for a table-driven instruction
decoder. For performance reasons, actual x86 chips
probably implement this as optimized combinational
logic, but development tools I looked at consistently
used the table-driven decoding approach.

Appendix A of Intel's ISA reference[6] contains \op-
code maps," which are tables of the mapping between
opcode byte values and the instructions and operands
they represent. Tools for the x86 instruction set com-
monly adapt these tables to drive their decoding of
the instruction set, so this approach was chosen for
use in the prover. The general structure of the tables
works well for an implementation. There were many
errors in the tables provided in Intel's documentation;
in most cases, these errors were obvious when read,
but there were a few cases that were more subtle and
caused problems that were found during debugging of
the prover. I submitted the �rst few corrections to In-
tel's developer support group and have yet to receive
any response. Given that many of these errors are
in parts of the tables that have not changed in over
twenty years, this is unfortunate.

Figure 8 lists the subset of the Intel operand codes
that are currently supported by the prover. Operands
relating to segmentation,
oating point, media in-
structions, and privileged or machine control instruc-
tions are all unsupported because the instructions
that might use them are unsupported. Also unsup-
ported are operand types not generated by gcc. These
operand codes are used directly in the decode tables of

op r/mmod

op1op2 sib d8
d16
d32

im8
im16
im32

mr

mr =

sib = ss index base

Figure 7: General Form of a x86 Instruction

the prover, along with a function pointer that calls a
function that actually implements the operation spec-
i�ed.
An example of the resulting decode structure is the

entry for opcode 0x89:

{ insn_mov, OP_Ev, OP_Gv, OP_NONE, FL_NONE },

This structure indicates that the actual operation is
performed by the function insn mov(), that its �rst
parameter is a variable-length (that is, determined by
the current word size mode) general purpose register,
that its second parameter is a variable-length general
purpose register or memory location, that this function
has no third parameter (which most don't), and that
this operation does not a�ect the %eflags register.
A set of important special cases are bytecodes that

are not opcodes at all, and instead are pre�xes that
modify the following bytecodes. Most of these fall into
categories of instructions that are not allowed (e.g.,
segment pre�xes, address-size pre�x, and the lock

pre�x), but two that need to be supported are the
word-size pre�x (0x66) and the two-byte opcode pre�x
(0x0f). Both are handled as if they were no-operand
opcodes, and the functions that implement them re-
turn special values that are accumulated into an in-
ternal set of
ags in the instruction decoder. These

ags are accumulated and a�ect decoding of subse-
quent bytes until an \ordinary" instruction comple-
tion, at which point they are reset. One
ag, used
to implement the two-byte opcodes, switches the ta-
ble used to decode opcode bytes. The other
ag, used
to implement the word-size pre�x, causes a tempo-
rary operand structure to be created for the current
instruction in which variable-length operand speci�ca-
tions are replaced with 16-bit length operand speci�-

Symbol(s) Description
Ev/Ew/Eb G.P. register, variable/16-bit/8-bit length
Gv/Gw/Gb G.P. register or memory, variable/16-bit/8-bit length
Iv/Id/Iw/Ib Immediate, variable/32-bit/16-bit/8-bit length
eAX/AL/AH %eax, variable length, lowest 8 bits, next 8 bits
eCX/CL/CH %ecx, variable length, lowest 8 bits, next 8 bits
eDX/DL/DH %edx, variable length, lowest 8 bits, next 8 bits
eBX/BL/BH %ebx, variable length, lowest 8 bits, next 8 bits
eSP/eBP %esp/%ebp, variable length
eSI/eDI %esi/%edi, variable length
CONST constant operand (based on opcode) (non-Intel symbol)

Figure 8: Operand Types Currently Implemented

cations (thus changing them from 32-bit operands to
16-bit operands).

Instruction execution is simulated through short
functions. These functions are not meant to model
the actual execution of instructions. They are meant
to track whether their results are predictable or not,
and, if so, attempt to predict or put a range on the
output values. So, for example, the mov instruction
simply copies its �rst operand to its second; its second
operand therefore has the same predictability proper-
ties as its �rst. In contrast, the or instruction takes
two values and does a bitwise operation on them. If
the two values are exactly known, an exactly known re-
sult can be generated; otherwise, the result of a bitwise
or operation on at least one unknown quantity with a
known quantity is di�cult to reason about, and is sim-
ply considered to yield an unknown result. This is not
a signi�cant problem in practice because bitwise oper-
ations are not commonly used to generate addresses,
and the prover is primarily interested in tracking val-
ues that are used as addresses.

One particularly tricky problem is conditional
branch instructions. The prover was originally in-
tended to use a reasonably sophisticated technique of
tracking where result
ags values came from and us-
ing some of those sources together with conditional
branches to constrain values. For example, in order
to implement reasoning about variable-length input
blocks, the prover needs to be able to look at a com-
parison with the length variable and to separate what
code is executed if the length is greater than or less
than the value compared against. Otherwise, the code
could be correctly checking for length and not doing
accesses beyond the bu�er, but the prover wouldn't be
able to determine that. A simpler technique turns out
to be surprisingly successful; all conditional branches
are treated as a nondeterministic branch, and both
forks are checked independently. Combined with a
large �xed input bu�er length, the inability to reason
about values is not a problem. This also captures the

critical property that run-time conditionals are typi-
cally not certain in advance (otherwise there would be
no need for such a conditional), but that both sides
of the branch must be to code that will do something
safe.

Levels of nondeterminism and the total number
of instructions that can be executed in a path are
bounded in the prover. This is not so much designed to
bound the program (though that is a consequence) as
it is to bound the run-time of the prover. The intended
applications of this prover are places where speed and
smallmemoryusage are important, and must be rather
tightly bounded. The current prover allows up to 32
levels of nondeterminism and up to 128 instructions
per path. These limits allow short and simple pro-
grams to be proven, which is the intent of the prover,
but are not enough to allow complex programs to be
proven safe, which probably would be outside the ca-
pacity of the prover anyway. These limits are very eas-
ily increased at compile-time if needed. Note that non-
deterministic branches currently cannot rejoin; they
become separate from every other branch until they
terminate.

2.4 Preliminary Results

Preliminary results show that the extension code is
sped up by an order of magnitude by being written in
optimized native code rather than emulated BPF code.
For the example used earlier, described in Figures 1-
4, executed on a 333MHz Celeron CPU and entirely
in-cache, the native code took an average of 0.130�s,
while the BPF code took an average of 1.328�s. This
is consistent with the PCC project's results and with
this project's expectations. This is the recurring cost
and is the cost that executes synchronously with the
performance-critical part of the system (packet recep-
tion from the network in real-time), so an order of
magnitude speedup is very helpful.

The more important result for this project is the

performance of the prover itself. Related works, such
as PCC, did not appear to make available solid infor-
mation about the performance of their provers, but
consistently indicated that their speed and memory
consumption were fairly high (with the justi�cation
that that was a one-time cost). In order to be prac-
tical for inclusion into an operating system's kernel,
the run-time and memory requirements for a prover
must still be reasonably small. On the example used,
the prover developed for this project took an average
of 938�s of execution time, and required 29,964 bytes
of heap space above 17,152 bytes of program (with a
small amount of stack space also required). This is for
a rough, un-optimized implementation. All of those re-
quirements could probably be decreased linearly, but
not by an order of magnitude. Implementing more
complex reasoning in the prover might increase those
costs.

3 Conclusions

This technique provides an alternative to BPF for
packet �ltering at gigabit speeds. In this application,
an order of magnitude run-time performance increase
is very helpful because receiving the packets is already
pushing the limits of what common x86 hardware can
do. With some straightforward modi�cations, the
commonly used packet capture library libpcap can be
made to generate native machine code rather than
BPF code, which can then be passed to the kernel
for veri�cation and installation. Such an arrangement
would allow many common packet-capture programs,
such as tcpdump, ethereal, and the ISC DHCP server,
to take advantage of this performance increase simply
by linking with the new library. Alternately, libpcap
could be completely bypassed and a compiler could be
used to generate an optimized binary for installation
in the kernel, but this would require applications to
change.

The single greatest danger of this approach is that
the prover is a trusted component and has not been
developed using high-assurance software techniques.
If the prover were to be
awed in such a way that
an unsafe program could be loaded as an extension,
it could circumvent the security of the entire system.
The prover's implementation needs to be subjected to
serious scrutiny before it could be deployed for use by
unprivileged users. A reasonable strategy would be to
initially constrain it to use by privileged users only.

Another problem is that the linear representation of
values is done as the sum of several machine integers,
each of which has as much precision as the sum will
have in the running program. It may be possible to
use this di�erence in precision to subvert the prover. A
work-around that is currently employed is to constrain

the range of values allowed in each �eld of a known
value, so that sign reversals are not possible as long as
the base values are not close to the beginning or the
end of the number space.
For the immediately intended application, static

veri�cation appears to be viable and the prover im-
plemented for this project appears to be a successful
proof of concept. This technique is probably also ap-
plicable to other problems, but care must be taken to
address the generality and trust issues of building a
practical prover.
There has been a good bit of similar work to this,

both on veri�cation of synthetic machine codes that
make properties easier to reason about at a higher run-
time cost and on extensive veri�cation of real machine
codes at a high proof cost. The expected contribu-
tion of this work is to show that a very limited prover
can operate on native machine code (to get the best
performance for the code that's executing) and can ef-
�ciently reason about a very small but still interesting
set of programs.

4 Acknowledgments

This work started out as a project for a special top-
ics seminar on microprocessor architectures taught by
Kevin Skadron of the University of Virginia.
Niels Provos, Kevin Skadron, and Chris Telfer re-

viewed early drafts of this paper and provided valuable
feedback.

References

[1] U. C. Berkeley CSRG. bpf �lter.c. From 4.4BSD-
Lite.

[2] Drew Dean, Edward W. Felten, and Dan S. Wal-
lach. Java Security: From HotJava to Netscape
and Beyond. Proceedings of the IEEE Symposium

on Security and Privacy, May 1996.

[3] George C. Necula and Peter Lee. Proof-Carrying
Code. CMU CS Tech Report CMU-CS-96-165,
September 1996.

[4] George C. Necula and Peter Lee. Safe Kernel Ex-
tensions Without Run-Time checking. Proceed-

ings of the USENIX Second Symposium on Operat-

ing Systems Design and Implementation, October
1996.

[5] Michael Sipser. Introduction to the Theory of

Computation. PWS Publishing Company, Boston,
1997.

[6] Intel Corp. Intel Architecture Software Devel-
oper's Manual, Volume 2: Instruction Set Refer-
ence. 1999.

