
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

P O R T I N G T H E S G I X F S F I L E S Y S T E M T O L I N U X

Jim Mostek, Bill Earl, Steven Levine, Steve Lord, Russell Cattelan,
Ken McDonell, Ted Kline, Brian Gaffey, and Rajagopal Ananthanarayanan

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Porting the SGI XFS File System to Linux

Jim Mostek, Bill Earl, Steven Levine, Steve Lord, Russell Cattelan, Ken McDonell, Ted Kline,
Brian Gaffey, Rajagopal Ananthanarayanan

SGI

Abstract
The limitations of traditional Linux file systems are
becoming evident as new application demands for Linux
file systems arise. SGI has ported the XFS file system to
the Linux operating system to address these constraints.
This paper describes the major technical areas that were
addressed in this port, specifically regarding the file sys-
tem interface to the operating system, buffer caching in
XFS, and volume management layers. In addition, this
paper describes some of the legal issues surrounding the
porting of the XFS file system, and the encumbrance
review process that SGI performed.

1. Introduction
In the early 1990s, SGI realized its existing file system,
EFS (Extent File System) would be inadequate to sup-
port the new application demands arising from the
increased disk capacity, bandwidth, and parallelism
available on its systems. Applications in film and video,
supercomputing, and huge databases all required perfor-
mance and capacities beyond what EFS, with a design
similar to the Berkeley Fast File System, could provide.
EFS limitations were similar to those found recently in
Linux file systems: small file system sizes (8 gigabytes),
small file sizes (2 gigabytes), statically allocated meta-
data, and slow recovery times using fsck.

To address these issues in EFS, in 1994 SGI released an
advanced, journaled file system on IRIX1; this file sys-
tem was called XFS[1]. Since that time, XFS has proven
itself in production as a fast, highly scalable file system
suitable for computer systems ranging from the desktop
to supercomputers.

To help address these same issues in Linux as well as to
demonstrate commitment to the open source commu-
nity, SGI has made XFS technology available as Open
Source XFS2, an open source journaling file system.

Open Source XFS is available as free software for
Linux, licensed with the GNU General Public License
(GPL).

As part of our port of XFS, we have made two major
additions to Linux. The first is linvfs, which is a porting
layer we created to map the Linux VFS to the VFS layer
in IRIX. The second is pagebuf, a cache and I/O layer
which provides most of the advantages of the cache
layer in IRIX. These additions to Linux are described in
this paper.

2. The File System Interface
The XFS file system on IRIX was designed and imple-
mented to the vnode/VFS interface[2]. In addition, the
IRIX XFS implementation was augmented to include
layered file systems using structures called “behaviors”.
Behaviors are used primarily for CXFS, which is a clus-
tered version of XFS. CXFS is also being ported to
Linux. Much of XFS contains references to vnode and
behavior interfaces.

On Linux, the file system interface occurs at 2 major
levels: the file and inode. The file has operations such as
open() and read() while the inode has operations such as
lookup() and create(). On IRIX, these are all at one
level, vnode operations. This can be seen in figure 1,
which shows the mapping of Linux file system opera-
tions to vnode operations such as XFS uses.

In order to ease the port to Linux and maintain the struc-
ture of XFS we created a Linux VFS to IRIX VFS map-
ping layer (linvfs).

2.1 The VFS Mapping Layer (linvfs)

For the most part, the XFS port to Linux maintained the
vnode/VFS and behavior interfaces[3]. Translation from
file/inodes in Linux to vnodes/behaviors in XFS is per-
formed through the linvfs layer. The linvfs layer maps
all of the file and inode operations to vnode operations.1. SGI’s System-V-derived version of UNIX

2. http://oss.sgi.com/projects/xfs

Figure 1 shows the mapping of Linux VFS to IRIX
VFS. In this figure, the Linux file system interface is
shown above the dotted line. The bottom half of the fig-
ure shows the file system dependent code, which resides
below the inode.

The two major levels of the Linux file system interface,
file and inode, are shown in the figure. Each of these lev-
els has a set of operations associated with it. The dirent
level, also shown in the figure, has operations as well,
but XFS and most other file systems do not provide file
system specific calls.

The linvfs layer is invoked through the file and inode
operations. This layer then locates the vnode and imple-
ments the VFS/vnode interface calls using the semantics
that XFS expects.

Figure 1: Mapping a Linux VFS Operation to an
IRIX VFS Operation.

Linux has three separate types of file and inode opera-
tions: directory, symlink, and regular file. This helps
split up the functionality and semantics. If the file sys-
tem does not provide a specific operation, a default
action is taken.

Information on the XFS Linux I/O path itself is pro-
vided in section 3.8, File I/O.

The linvfs layer is a porting device to get XFS to work
in Linux. linvfs allows other VFS/vnode-based file sys-
tems to be ported to Linux.

2.2 linvfs Operation Examples

The following examples show how three operations are
performed in the linvfs layer.

Example 1: The lookup operation

The lookup operation is performed to convert a file
name into an inode. It makes sense to do a lookup only
in a directory, so the symlink and regular file operation
tables have no operation for lookup. The directory oper-
ation for XFS is linvfs_lookup:

struct dentry * linvfs_lookup(struct inode
*dir, struct dentry *dentry)
{

First, get the vnode from the Linux inode.

vp = LINVFS_GET_VP(dir);

Now, initialize vnode interface structures and pointers
from the Linux values:

/*
 * Initialize a pathname_t to pass down.
 */
bzero(pnp, sizeof(pathname_t));
pnp->pn_complen = dentry->d_name.len;
pnp->pn_hash = dentry->d_name.hash;
pnp->pn_path = (char *)dentry->d_name.name;

cvp = NULL;

VOP_LOOKUP(vp, (char *)dentry->d_name.name,
 &cvp, pnp, 0, NULL, &cred, error);

If the lookup succeeds, linvfs_lookup gets the inode
number from the vnode. The inode number is needed to
get a new Linux inode. XFS was modified to set this
new field, v_nodeid, for Linux.

if (!error) {
 ASSERT(cvp);
 ino = cvp->v_nodeid;
 ASSERT(ino);
 ip = iget(dir->i_sb, ino);
 if (!ip) {
 VN_RELE(cvp);
 return ERR_PTR(-EACCES);
 }
}

In all cases of linvfs_lookup, an entry is added to the
Linux dcache.

vnode

bhv_desc

xfs_inode

xfs_vnodeops

NULL

xfs_open()

xfs_read().
.

inode

ops

XFS

Linux

linvfs_lookup()

linvfs_create()

data
vobj
ops
next

.

.

.

fs dependent

bhv_head

bhv_lock

xfs_lookup()

xfs_create()
.

dirent

ops

fs dependent

file

ops
linvfs_open()

linvfs_read()

.

.

.

dirent

NULL

/* Negative entry goes in if ip is NULL */
d_add(dentry, ip);

If the lookup fails, ip will be NULL and a negative
cache entry is added, which is an entry that will return
an indication of not found on subsequent lookups. Sub-
sequent lookups of the same pathname will not reach
linvfs_lookup since the dentry will already be initial-
ized. If the pathname is modified by an operation such
as create, rename, remove, or rmdir, the dcache is modi-
fied to remove the dentry for this pathname.

Most of the functionality of the lookup operation occurs
below VOP_LOOKUP and iget(). VOP_LOOKUP may
read the disk to search the directory, allocate an
xfs_inode, and more.

iget() is a Linux routine that eventually calls the file sys-
tem specific read_inode() super operation. This routine
required a new VOP, VOP_GET_VNODE, which sim-
ply returns the already allocated vnode so the inode can
be initialized and point to the vnode. The vnode is actu-
ally allocated and initialized by VOP_LOOKUP.

The VOP_LOOKUP functionality is much broader than
what is expected in the Linux lookup operation. For
now, the XFS port keeps the VOP_LOOKUP function-
ality and just requires the file system to provide a new
VOP_GET_VNODE interface where the vnode can be
found and linked to the inode. In the future, this could
be split such that the xfs_iget() code could be moved
into linvfs_read_inode().

Example 2: The linvfs_open operation

An example of a file system operation is open(). For
XFS, the operation is currently linvfs_open() for files
and directories and is as follows:

static int linvfs_open(
 struct inode *inode,
 struct file *filp)
{
 vnode_t *vp = LINVFS_GET_VP(inode);
 vnode_t *newvp;
 int error;

 VOP_OPEN(vp, &newvp, 0,
 get_current_cred(), error);

 if (error)
 return -error;

 return 0;
}

This is a very simple routine. XFS never returns a
newvp and this vnode functionality needs more work if
additional file systems are added that exploit newvp. For
performance, XFS starts a read-ahead if the inode is a
directory and the directory is large enough. For all cases,
xfs_open checks to see if the file system has been shut-
down and fails the open. The shutdown check provides
important functionality to avoid panics and protect the
integrity of the file system when errors occur such as
permanent disk errors.

Example 3: The linvfs_permission routine

The final example is linvfs_permission. On linux, this
routine is used to check permissions and this maps to the
IRIX VOP_ACCESS() call as follows:

int linvfs_permission(struct inode *ip, int
mode)
{
 cred_t cred;
 vnode_t *vp;
 int error;

 /* convert from linux to xfs */
 /* access bits */
 mode <<= 6;
 vp = LINVFS_GET_VP(ip);
 VOP_ACCESS(vp, mode, &cred, error);

 return error ? -error : 0;
}

2.3 linvfs Overhead

The overhead of the linvfs_permission operation has
been computed. These numbers were generated by aver-
aging 4 runs of 1000000 access() system calls after an
initial run to warm the cache. This was performed on a 2
CPU 450 MHz PIII box.

The implementation of VOP_ACCESS in XFS is funda-
mentally the same as the permissions function code exe-
cuted by ext2.

Table 1 shows the access system call numbers for this
test. For this test, we turned off our locking code since
XFS without locks more closely resembles the ext2
code. Our goal was to measure the overhead of the linvfs
layer, not to measure the overhead of locking.

The linvfs layer overhead is around 0.35 micro-seconds
for this simple call.

With locking turned on, XFS took 5.14 microseconds
per call.

2.4 fcntl Versus ioctl in IRIX and Linux

In IRIX, XFS supports approximately 20 special fcntl
interfaces used for space pre-allocation, extent retrieval,
extended file information, etc. In addition, IRIX XFS
has about a dozen special system call interfaces, all
implemented via the special syssgi system call. These
interfaces are used for operations such as growing the
file system or retrieving internal file system information.

The Linux file system interface has no fcntl operation.
The only supported fcntl calls on Linux are file locking
calls. We proposed to the Linux community that a fnctl
file operation be added. After extensive discussion, it
was decided to use the existing ioctl operation,
linvfs_ioctl, and we are in the process of converting all
of the fcntl and syssgi usages into ioctls. A shortcoming
to the ioctl approach is in the semantics of an ioctl to
block or character special devices which reside within
the file system: In these cases, the device driver’s ioctl
routine will be used rather than the file system’s. Out-
side of that, porting the fcntl and syssgi interfaces to
ioctl’s has been straightforward.

2.5 IRIX XFS creds and Linux

In older UNIX systems, the file system code used the
current process’s data structures to determine the user’s
credentials such as uid, gid, capabilities, etc. The VFS/
vnode interface removed this code and introduced a cred
structure which is passed to certain file system opera-
tions such as create and lookup. The file system uses this
information to determine permissions and ownership.

XFS was written using the VOP/vnode interface, so it
regularly uses cred structures. One of the more prevalent
cred usages on IRIX XFS is get_current_cred, which
returns this structure for the current process.

Linux is similar to older UNIX implementations in that
file systems are expected to look directly at the task

structure to determine the current process’s credentials.
Linux does not utilize a cred structure.

In porting XFS to Linux, we first attempted to map the
various cred fields onto the corresponding task fields.
This had the undesired side-effect of producing code
that utilized a cred pointer that in actuality was pointing
at a task. This was determined to be unacceptable.

We then considered implementing a complete cred
infrastructure, which would include a pool of active
creds, cred setup, teardown, lookup, etc. It was deter-
mined that this would require too much overhead.

In looking at the Linux code, we saw that all of the
access/permission work occurs above the file system
dependent code, so having a cred is important only on
creation. We then examined our own internal usage of
cred fields in XFS, and found that more often than not, a
cred was passed down through a VOP_, and never used.
The few places that did use a cred field were changed to
use the current task structure in Linux.

We still pass a cred address on the VOP_s, but it is not
used. In the future, as part of the port cleanup, we may
change the VOP_ macros, or more likely simply pass
NULL as the cred address.

In addition to these cred changes, we have removed
many access checks from the XFS code since these are
now performed at a higher layer and are redundant in the
file system dependent code.

3. XFS Caching and I/O
When XFS was first implemented within IRIX, the
buffer cache was enhanced in a number of ways to better
support XFS, both for better file I/O performance and
for better journaling performance. The IRIX implemen-
tation of XFS depends on this buffer cache functionality
for several key facilities.

First, the buffer cache allows XFS to store file data
which has been written by an application without first
allocating space on disk. The routines which flush
delayed writes are prepared to call back into XFS, when
necessary, to get XFS to assign disk addresses for such
blocks when it is time to flush the blocks to disk. Since
delayed allocation means that XFS can determine if a
large number of blocks have been written before it allo-
cates space, XFS is able to allocate large extents for
large files, without having to reallocate or fragment stor-
age when writing small files. This facility allows XFS to
optimize transfer sizes for writes, so that writes can pro-

Table 1: access() Timings

File system Microseconds per call

ext2 3.54

xfs 3.89 (with locking commented out)

ceed at close to the maximum speed of the disk, even if
the application does its write operations in small blocks.
In addition, if a file is removed and its written data is
still in delayed allocation extents, the data can be dis-
carded without ever allocating disk space.

Second, the buffer cache provides a reservation scheme,
so that blocks with delayed allocation will not result in
deadlock. If too much of the available memory is used
for delayed allocation, a deadlock on the memory occurs
when trying to do conversion from delayed to real allo-
cations. The deadlock can occur since the conversion
requires metadata reads and writes which need available
memory.

Third, the buffer cache and the interface to disk drivers
support the use of a single buffer object to refer to as
much as an entire disk extent, even if the extent is very
large and the buffered pages in memory are not contigu-
ous. This is important for high performance, since allo-
cating, initializing, and processing a control block for
each disk block in, for example, a 7 MB HDTV video
frame, would represent a large amount of processor
overhead, particularly when one considers the cost of
cache misses on modern processors. XFS has been able
to deliver 7 GB/second from a single file on an SGI Ori-
gin 2000 system, so the overhead of processing millions
of control blocks per second is of practical significance.

Fourth, the buffer cache supports “pinning” buffered
storage in memory, which means that the affected buff-
ers will not be written to disk until they have been
“unpinned”. XFS uses a write-ahead log protocol for
metadata writes, which means XFS writes a log entry
containing the desired after-image before updating the
actual on disk metadata. On recovery, XFS just applies
after-images from the log (in case some of the metadata
writes were not completed). In order to avoid having to
force the log before updating metadata, XFS “pins”
modified metadata pages in memory. Such pages must
count against the memory reservation (just as do
delayed allocation pages). XFS pins a metadata page
before updating it, logs the updates, and then unpins the
page when the relevant log entries have been written to
disk. Since the log is usually written lazily, this in effect
provides group commit of metadata updates.

With Linux 2.3 and later releases, the intent is that most
file system data will be buffered in the page cache, but
the I/O requests are still issued one block at a time, with
a separate buffer_head for each disk block and multiple
buffer_head objects for each page (if the disk block size
is smaller than the page size). As in Linux 2.2, drivers
may freely aggregate requests for adjacent disk blocks

to reduce controller overhead, but they must discover
any possibilities for aggregation by scanning the
buffer_head structures on the disk queue.

3.1 The pagebuf Module

Our approach to porting XFS has included adding page-
buf, a layered buffer cache module on top of the Linux
page cache. This allows XFS to act on extent-sized
aggregates. Key to this approach is the pagebuf struc-
ture, which is the major structure of the pagebuf layer.
The pagebuf objects implemented by this module
include a kiovec (a Linux data structure which describes
one or more lists of physical pages) to describe the set of
pages (or parts of pages) associated with pagebuf, plus
the file and device information needed to perform I/O.
We are experimenting with a new device request inter-
face, so that we can queue one of these pagebuf objects
directly to a device, rather than having to create and
queue a large number of single-block buffer_head
objects for each logical I/O request. For backward com-
patibility, we support a routine which does create and
queue buffer_head objects to perform the I/O for page-
buf.

A key goal for the layered buffer cache module is that its
objects be strictly temporary, so that they are discarded
when released by the file system, with all persistent data
held purely in the page cache. This requires storing a lit-
tle more information in each mem_map_t (page frame
descriptor), but it avoids creating yet another class of
permanent system object, with separate locking and
resource management issues. The IRIX buffer cache
implementation has about 11000 lines of very complex
code. By relying purely on the page cache for buffering,
we avoid most of the complexity, particularly in regard
to locking and resource management, of hybrid page
and buffer caches, at the cost of having to pay careful
attention to efficient algorithms for assembling large
buffers from pages.

3.2 Partial Aggregate Buffers

Pages within an extent may be missing from memory, so
a buffer for an extent may not find all pages present. If
the buffer is needed for writing, empty (invalid) pages
may be used to fill the holes, in cases where the intended
write will overwrite the missing pages. If only part of a
page will be modified, pagebuf will read in the missing
page or pages. If the buffer is needed for reading or writ-
ing just part of the extent, missing pages need not be
read if all pages to be read are present.

XFS extents are typically large. However, small extents
are still possible, and hence a page could be mapped by

more than one extent. In such cases, it would be desir-
able to avoid having to seek to multiple locations when
the I/O is to a part of the page mapped by one extent.
Therefore, we added a map (block_map) of valid disk
blocks for each page. When the entire page is read or
written, all blocks of the page are marked valid. On a file
write, if a part of the page is modified, only the corre-
sponding bits for the modified blocks are marked valid.
Similar actions are performed during a read of a partial
page. Note that similar information is maintained by
Linux if buffers are mapped (or not mapped) to parts of
the page. block_map provides this functionality without
having to attach buffer_head’s to the page. Finally, if the
page and the disk block sizes are the same, the
block_map is equivalent to (and is replaced by) the
PG_uptodate flag of the page.

3.3 Locking for pagebufs

As noted above, the basic model for pagebufs is that
each pagebuf structure is independent, and that it is just
a way of describing a set of pages. In this view, there
may be multiple pagebufs referring to a given page, just
as a given page may be mapped into multiple address
spaces. This works well for file data, and allows page-
bufs in the kernel to be operationally equivalent to mem-
ory mapped file pages in user mode. For metadata,
however, XFS assumes that its buffer abstraction allows
for sleeping locks on metadata buffers, and that meta-
data buffers are unique. That is, no two metadata buffers
will share a given byte of memory. On the other hand,
two metadata buffers may well occupy disjoint portions
of a single page.

To support this model, we implemented a module lay-
ered above the basic pagebuf module, which keeps an
ordered list (currently an AVL tree) of active metadata
buffers for a given mounted file system. This module
ensures uniqueness for such buffers, assures that they do
not overlap, and allows locking of such buffers. Since
we were unsure whether this facility would be of use for
other file systems, we have kept it separate from the
basic pagebuf module, to keep the basic module as clean
and fast as possible.

3.4 Delayed Allocation of Disk Space for
Cached Writes

Allocating space when appending to a file slows down
writes, since reliable metadata updates (to record extent
allocations) result in extra writes. Also, incremental
allocations can produce too-small extents, if new extents
are allocated each time a small amount of data is
appended to a file (as when many processes append to a

log file). Delayed allocation reserves disk space for a
write but does not allocate any particular space; it sim-
ply buffers the write in the page cache. Later, when
pages are flushed to disk, the page writing path must ask
the file system to do the actual allocation. Also, to allow
for optimal extent allocations and optimal write perfor-
mance, the page writing path must collect adjacent dirty
pages (“cluster” them) and write them as a unit.

Since allocation of disk space may be required in the
page writing path when delayed allocation is present,
and such allocation may require the use of temporary
storage for metadata I/O operations, some provision
must be made to avoid memory deadlocks. The delayed
allocation path for writes must make use of a main
memory reservation system, which will limit the aggre-
gate amount of memory used for dirty pages for which
disk space has not been allocated, so that there will
always be some minimum amount of space free to allow
allocations to proceed. Any other non-preemptible
memory allocations, such as kernel working storage
pages, must be counted against the reservation limit, so
that the remaining memory is genuinely available.
Based on experience with IRIX, limiting dirty delayed
allocation pages and other non-preemptible uses to 80%
of available main memory is sufficient to allow alloca-
tions to proceed reliably and efficiently.

Page flushing should flush enough delayed allocation
pages to keep some memory available for reservation,
even if there is free memory. That is, the page flushing
daemon must attempt both to have free memory avail-
able and have free reservable memory available. The
reservation system must, of course, allow threads to wait
for space.

3.5 Page Cleaning

At present in Linux, a dirty page is represented either by
being mapped into an address space with the “dirty” bit
set in the PTE, or by having buffer_head objects point-
ing to it queued on the buffer cache delayed write queue,
or both. Such dirty pages are then eventually written to
disk by the bdflush daemon. This has several drawbacks
for a high-performance file system. First, having multi-
ple buffer_head objects to represent, in effect, one bit of
state for page is inefficient in both space and time. Sec-
ond, when dirty pages are cleaned, there is no particular
reason to expect that all adjacent dirty pages within an
extent will be written at once, so the disk is used less
efficiently. Third, modifications to pages made via
mmap() may be indefinitely delayed in being written to
disk, so many updates may be lost on a power failure,
unless msync() is used frequently. That is, either one

slowly and synchronously updates the disk, or one gives
up any expectation of timely updating of the disk.
Fourth, disk write traffic is not managed for smoothness,
so there is considerable burstiness in the rate of disk
write requests. This in turn reduces utilization of the
drive and increases the variability of read latencies.

For the XFS port, we are implementing a page cleaner
based on a “clock” algorithm. If the system is config-
ured to move a given update to disk with in K seconds,
and if there are N dirty pages out of M total pages, the
page cleaner will visit enough pages every second to
clean N/K pages. That is, the page cleaner will advance
its clock hand through the page frame table (mem_map)
until it has caused sufficient pages to be queued to the
disk to meet its target. Since the page write path will
cluster dirty pages, visiting a given dirty page may cause
multiple pages to be written, so the page cleaner may
not directly visit as many dirty pages as are written.

Note that the page cleaner does not simply run once a
second. Rather, it runs often enough (multiple times per
second) to maintain a queue of disk writes, but without
creating an excessively long queue (which would
increase the variability of read latency). Moreover, on a
ccNUMA system, there will be a page cleaner thread per
node, so that page cleaning performance will scale with
the size of the system.

Since the page cleaner must steadily clean pages, it must
not block for I/O. For clusters of pages where disk space
has already been allocated, the page cleaner can simply
queue a pagebuf to write the cluster to disk. For cases
where the allocation has been delayed, however, the
allocation of disk space by the file system will in general
require waiting to read in metadata from disk and may
also require waiting for a metadata log write, if the log
happens to be full. The page cleaner has a number of
writeback daemon threads to handle writing pages for
which disk allocation has been deferred. (This could
also be used by any file system where a write might
block.) The file system pagebuf_iostart routine has a
flags argument, and a flag, PBF_DONTBLOCK, which
the page cleaner uses to indicate that the request should
not block. If the pagebuf_iostart routine returns an
EWOULDBLOCK error, the page cleaner queues the
cluster pagebuf to its writeback deamon threads, one of
which then processes it by calling the file system
pagebuf_iostart routine without the
PBF_DONTBLOCK flag.

3.6 Pinning memory for a buffer

In the course of the XFS port, it became clear that meta-
data objects would in many cases be smaller than pages.
(This will be even more common on systems with larger
page sizes.) This means that we cannot actually “pin”
the entire page, since doing so might keep the page from
being cleaned indefinitely: The different metadata
objects sharing the page might be logged at various
times, and at least one might be pinned at any given
time. We decided to treat metadata pages specially in
regard to page cleaning. The page cleaning routine asso-
ciated with a metadata page (via the address_space
operations vector) looks up any metadata pagebufs for
the page, instead of simply writing out the page. Then,
for each such metadata pagebuf which is not “pinned”,
the page cleaning routine initiates writing the pagebuf to
disk. The page cleaning routine simply skips any pinned
pagebufs (which will then be revisiting on the next page
cleaning cycle).

Since only metadata pages are pinned, we do not need a
separate mechanism to pin regular file data pages. If,
however, it were desirable to integrate transactional
updates for file data into a future file system, it would be
possible to simply add a “pin” count to the mem_map_t.
We have not done this, however, since XFS does not
support transactional update of file data.

3.7 Efficient Assembly of Buffers

We would like the overhead for finding all valid pages
within an extent to be low. At present, we simply probe
the hash table to find the relevant pages. If this proves to
be a performance problem for large I/O requests, we
could modify the address_space object to record pages
in some sorted fashion, such as an AVL tree, so that we
could quickly locate all of the pages in a range, at a very
low and constant cost after the first one.

3.8 File I/O

The Linux XFS file read and write routines are provided
by the default Linux I/O path with calls into page_buf,
when appropriate.

Buffered File Reading

The read routine first loops through the user’s I/O
requests, searching for pages by probing the page cache.
If a page is present, the read routine copies the data from
the page cache to the user buffer. If all of the pages are
present, the read is then complete.

When a page is not found, what the read routine will do
depends on the remaining I/O size. If the remaining I/O

size is less then the page cache size times 4 (which is
16K for IA 32 systems, which have a 4K page size) the
default Linux kernel do_generic_file_read is performed,
just as for an ext2 file system.

If the remaining I/O size when a page is not found is
greater than 4 times the page cache size, the read routine
calls back into the file system via a pagebuf_bmap rou-
tine to obtain an extent map covering the portion of the
file to be read which is not in the cache. The extent map
is composed of one or more extent descriptions. Each
can be a real extent (with a disk address and a length), a
hole (with no disk storage assigned or reserved), or a
delayed allocation (with disk storage reserved but not
assigned).

Unlike the conventional Linux bmap file system call-
back routine, the pagebuf_bmap routine can return a list
of extentmaps, not simply a single disk block address.
Each entry in the list of extentmaps can represent many
file system blocks.

One or more instances of an extent map are returned by
pagebuf_bmap(). Table 2 shows the fields that are con-
tained in an extent map.

Table 3 shows the option flags that are current used in an
extent map.

For non-delayed allocations, the pages might or might
not be present in the cache. For a hole, any cached pages

would have been created by mmap access or by small
reads. The pagebuf read path does not allocate pages for
holes. Rather, it zeros out the user’s buffer.

If a read returns a delayed allocation, the pages must
exist and are copied to the user’s buffer.

If the map is not HOLE or Delay, the read routine fills in
the disk block addresses, allocates empty pages and
enters them in the page cache, attaches them to the page-
bufs, and queues the read requests to the disk driver. A
page may already be marked as being up to date, how-
ever, in which case it is not necessary to read that page
from disk.

After the requests have completed, the read routine
marks the pages valid, releases the pagebufs, and fin-
ishes copying the data to the user buffer. If a single
pagebuf is not sufficient, the read path waits for the data
from the first pagebuf read requests to be copied to the
user buffer before getting the next pagebuf.

Buffered File Writing

The write routine, like the read routine, first loops
through the file page offsets covering the desired portion
of the file, probing the page cache. If a page is present,
the write routine copies the data from the user buffer to
the page cache, and marks the pages dirty. If O_SYNC
is not set, the write is then complete. If O_SYNC is set,
the write routine writes the pages synchronously to disk
before returning.

If a page is not found, the write routine calls back into
the file system to obtain the extent map that covers the
portion of the file to be written. The call to the file sys-
tem is for the offset and length of the user’s I/O, rounded
to page boundaries.

The file system pagebuf_bmap routine accepts some
optional flags in a flag argument. One, PBF_WRITE,
specifies that a write is intended. In this case, any hole
will be converted to a real or delayed allocation extent.
A second flag, PBF_ALLOCATE, specifies that a real
extent is required. In this case, any delayed allocation
extent will be converted to a real extent. This latter flag
is used when O_SYNC is set, and is also used when
cleaning pages or when doing direct I/O.

The NEW flag indicates when a mapping has just been
allocated, and should not be read from disk. This can
occur when a hole is converted to allocated space, or
you are allocating new space at the end of a file. Empty
pages are then allocated and hashed for any pages not

Table 2: Contents of Extent Map

Field Meaning

bn starting block number of map

offset byte offset from bn (block number) of
user’s request.

bsize size of mapping in bytes

flags option flags for mapping

Table 3: Option Flags for Mapping

Flag Meaning

HOLE mapping covers a hole

DELAY mapping covers dealloc region

NEW mapping was just allocated

no value mapping is actual disk extent

present in the cache. Any pages covering a new map
which will be partially overwritten are then initialized to
zero, at least insofar as they will not be overwritten. If
the NEW flag is not set, the space already existed in the
file. In this case, any pages which will only be partially
overwritten must be synchronously read from disk
before modification with the new user’s data.

In both the NEW and already existing cases, the pages
are marked as up to date but dirty, indicating that they
need to be written to disk.

Preliminary I/O Performance Testing

We have tested the read performance for XFS on Linux,
using the lmdd program of the lmbench toolkit to time
the I/O. We used lmdd I/O request sizes from 1K to
1024K for the following file system configurations.
Each file system was created with a 4K block size.

• XFS file system that does not use pagebufs
• XFS file system with 16K cutover point for using

pagebufs
• XFS file system with 32K cutover point for using

pagebufs
• ext2 file system

What we found for this specific test and configuration
was that for XFS file systems, currently the I/O size
makes only a small difference in performance. We also
have not yet seen a significant difference in performance
when switching the pagebuf cutoff size between 16K (4
pages) and 32K (8 pages). This was because the test was
disk bound. At the time of this writing, we have done
only minimal performance testing on a single thread
without read-ahead. We expect to see better perfor-
mance with multiple threads and faster disks.

For XFS and the specific configuration tested, the file
system I/O rate generally fluctuated between approxi-
mately 19.01 and 19.09 MB/sec. For an ext2 file system
using the same test, the file system I/O rate fluctuated
between approximately 18.8 and 18.9 MB/sec.

3.9 Direct I/O

Small files which are frequently referenced are best kept
in cache. Huge files, such as image and streaming media
files and scientific data files, are best not cached, since
blocks will always be replaced before being reused.
Direct I/O is raw I/O for files: I/O directly to or from
user buffers, with no data copying. The page cache must
cooperate with direct I/O, so that any pages, which are
cached and are modified, are read from memory, and so
that writes update cached pages.

Direct I/O and raw I/O avoid copying, by addressing
user pages directly. The application promises not to
change the buffer during a write. The physical pages are
locked in place for the duration of the I/O, via the Linux
kiobuf routines. The read and write paths for the page-
buf module treat direct I/O requests much as they do
regular requests, except for identifying the pages to be
addressed in the pagebuf. That is, for direct I/O, the user
buffer is referenced via a kiovec, which is then associ-
ated with the pagebuf, instead of locating page cache
pages and addressing them via a kiovec.

Any dirty pages in the page cache must be flushed to
disk before issuing direct I/O. The normal case will find
no pages in the cache, and this can be efficiently tested
by checking the inode. Once the pagebuf is assembled,
the I/O path is largely common with the normal file I/O
path, except that the write is never delayed and alloca-
tion is never delayed.

Direct I/O is indicated at open() time by using the
O_DIRECT flag. Usually the needed space for the file is
pre-allocated using an XFS ioctl call to insure maximum
performance.

4. Volume Management Layers
The integration of existing Linux volume managers with
the XFS file system has created some issues for the XFS
port to Linux.

Traditional Linux file systems have been written to
account for the requirements of the block device inter-
face, ll_rw_block(). ll_rw_block accepts a list of fixed
size I/O requests. For any given block device on a sys-
tem, the basic unit of I/O operation is set when the
device is opened. This size is then a fixed length of I/O
for that device. The current implementations of Linux
volume managers have keyed off this fixed size I/O and
utilize an I/O dispatcher algorithm.

By using a fixed I/O length, the amount of “math” that is
needed is significantly less than what it would be if the
I/O length were not fixed. All I/O requests from a file
system will be of the same size, as both metadata and
user data is of fixed size. Therefore, all underlying
devices of a logical volume must accept I/O requests of
the same size. All that the volume manager needs to do
for any I/O request is to determine which device in the
logical volume the I/O should go to and recalculate the
start block of the new device. Each I/O request is
directed wholly to a new device.

The XFS file system, however, does not assume fixed
size I/O. In an XFS file system, metadata can be any-
where from 512 bytes to over 8 Kbytes. The basic mini-
mum I/O size for user data is set at file system creation
time, with a typical installation using 4 Kbytes. One of
the XFS design goals was to aggregate I/O together, cre-
ating large sequential I/O.

This feature of XFS creates a problem for current Linux
volume managers, since the XFS file system can hand
an I/O request off to a block device driver specifying the
start position and length, which is not always fixed. A
logical volume manager is just another block device to
XFS, and a logical volume manager working in con-
junction with XFS needs to be able to handle whatever
size I/O request XFS desires, to some reasonable limit.

One of the options to address this problem in XFS is to
change the on disk format of the file system to use a
fixed size. This would render the Linux version of XFS
incompatible with the current IRIX implementations,
however, and so it was deemed unacceptable, just as
making different versions of NFS would be unaccept-
able.

Currently, XFS for Linux is addressing the problem of
variable I/O request size by opening a device with the
minimum I/O size needed: 512 bytes. Any request call-
ing ll_rw_block directly must be of that basic size. User
data requests use a different version of ll_rw_block, that
has been modified to accept a larger size.

Since all Linux volume managers use a call out from
ll_rw_block it is clear that XFS currently will not work
with current implementations.

In the long run, the solution to the problem of using
XFS with currently available Linux volume managers is
not clear. Changing interfaces in the kernel that other
file systems rely on is not an easy thing to do. It requires
agreement of all the current file-system maintainers to
change their interface to the kernel.

One thing that is clear is that it will be necessary to
develop an additional layer above ll_rw_block that
accepts I/O requests of variable size. This interface
would either be a direct connection to a device driver, an
interface to a logical volume manager, or the fall back
case of just calling ll_rw_block for compatibility.

The logical volume interface may need to “split” the I/O
request into multiple sub-I/O requests if the I/O is large
enough to span multiple devices. This not a difficult

thing to implement, but it must be done in agreement of
all the logical volume maintainers.

Since it is becoming apparent that Linux is growing up
and moving to larger and higher performance hardware.
The high bandwidth I/O that XFS offers will be needed.
High performance logical volumes will be an integral
part of this.

5. Moving XFS to Open Source
For XFS to be a viable alternative file system for the
open source community, it was deemed essential that
XFS be released with a license at least compatible with
the GNU Public License (GPL).

The IRIX operating system in which XFS was originally
developed has evolved over a long period of time, and
includes assorted code bases with a variety of associated
third party license agreements. For the most part these
agreements are in conflict with the terms and conditions
of the GNU Public License.

The initial XFS project was an SGI initiative that started
with a top-to-bottom file system design rather than an
extension of an existing file system. Based upon the
assertions of the original developers and the unique fea-
tures of XFS, there was a priori a low probability of
overlap between the XFS code and the portions of IRIX
to which third-party licenses might apply. However it
was still necessary to establish that the XFS source code
to be open sourced was free of all encumbrances,
including any associated with terms and conditions of
third party licenses applying to parts of IRIX.

SGI’s objectives were:

• to ensure the absence of any intellectual property
infringements

• to establish the likely derivation history to ensure
the absence of any code subject to third party terms
and conditions

This was a major undertaking; as the initial release of
buildable XFS open source contained some 400 files and
199,000 lines of source. The process was long, but rela-
tively straightforward, and encumbrance relief was usu-
ally by removal of code.

The encumbrance review was a combined effort for
SGI’s Legal and Engineering organizations. The com-
ments here will be confined to the technical issues and
techniques used by the engineers.

5.1 The Encumbrance Review Process

We were faced with making comparisons across several
large code bases, and in particular UNIX System V
Release 4.2-MP, BSD4.3 NET/2, BSD4.4-lite and the
open source version of XFS. We performed the follow-
ing tasks:

1. Historical survey

We contacted as many as possible of the original
XFS developers and subsequent significant main-
tainers, and asked a series of questions. This infor-
mation was most useful as guideposts or to
corroborate conclusions from the other parts of the
review.

2. Keyword search (all case insensitive)

In each of the non-XFS code bases, we searched for
keywords associated with unique XFS concepts or
technologies (e.g. journal, transaction, etc.). In the
XFS code base, we searched for keywords associ-
ated with ownership, concepts and technologies in
the non-XFS code bases (e.g. at&t, berkeley, etc.).

3. Literal copy check

Using a specially built tool, we compared every line
of each XFS source file against all of the source in
the non-XFS code bases. The comparison ignored
white space, and filtered out some commonly
occurring strings (e.g. matching “i++;” is never
going to be helpful).

4. Symbol matching

We developed tools to post-process the ASCII for-
mat databases from cscope to generate lists of sym-
bols and their associated generic type (function,
global identifier, macro, struct, union, enum, struct/
union/enum member, typedef, etc.). In each XFS
source file the symbols were extracted and com-
pared against all symbols found in all the non-XFS
code bases. A match occurred when the same sym-
bol name and type was found in two different
source files. Some post-processing of the symbols
was done to include plausible name transforma-
tions, e.g. adding an “xfs_” prefix, or removal of all
underscores, etc.

5. Prototype matching

Starting with a variant of the mkproto tool, we
scanned the source code to extract ANSI C proto-
types. Based on some equivalence classes, “similar”
types were mapped to a smaller number of base

types, and then the prototypes compared. A match
occurred when the type of the function and the
number and type of the arguments agreed.

6. Check for similarity of function, design, concept or
implementation.

This process is based upon an understanding, and a
study, of the source code. In the XFS code, for each
source file, or feature implemented in a source file,
or group of source files implementing a feature, it
was necessary to conduct a review of the implemen-
tation of any similar source file or feature in each of
the non-XFS code bases. The objective of this
review is to determine if an issue of potential
encumbrance arises as a consequence of similarity
in the function, implementation with respect to
algorithms, source code structure, etc.

7. Check for evidence of license agreements.

We examined the XFS code (especially in com-
ments) to identify any references to relevant copy-
rights or license agreements.

In all of the steps above, the outcome was a list of possi-
ble matches. For each match, it was necessary to estab-
lish in the context of the matches (in one or more files),
if there was a real encumbrance issue.

We used a modified version of the tkdiff tool to graphi-
cally highlight the areas of the “match” without the
visual confusion of all of the minutiae of the line-by-line
differences. However, the classification of the matches
was ultimately a manual process, based on the profes-
sional and technical skills of the engineers.

5.2 Encumbrance Relief

Especially in view of the size of the XFS source, a very
small number of real encumbrance issues were identi-
fied.

In all cases the relief was relatively straightforward,
with removal of code required for IRIX, but not for
Linux, being the most common technique.

6. Summary
Porting the XFS file system to Linux required that we
address a variety of technical and legal issues. In this
paper, we have summarized how the file and inode oper-
ations of the XFS vnode interface were translated to
Linux by means of the linvfs layer. We have also
described how XFS caching was implemented in Linux,
and how this caching is used for I/O operations. Finally,

we provided a brief overview of the volume manage-
ment layer of XFS, and how this has been implemented
in Linux.

In addition to these technical concerns we have summa-
rized the technical aspects of the encumbrance review
process we went through to ensure that XFS could be
released to the open source community without legal
ramifications.

We continue to evaluate our use of the linvfs porting
layer, especially as regards performance. Our new buffer
layer has addressed many of the performance issues and
generally extended Linux functionality. XFS on Linux is
evolving and will meet the demands of applications
moving from traditional UNIX platforms to Linux.

7. Availability
We have completed our initial port of XFS to Linux and
the open source process for that port and we are cur-
rently in the process of finishing the work on the code.
The current version of XFS for Linux is available for
downloading at http://oss.sgi.com/projects/xfs.

References
[1] Adam Sweeney, Doug Doucette, Wei Hu, Curtis
Anderson, Mike Nishimoto and Geoff Peck. Scalability
in the XFS File System. http://www.usenix.org/publica-
tions/library/proceedings/sd96/sweeney.html, January
1996.

[2] S. R. Kleiman. Vnodes: An Architecture for Multi-
ple File System Types in Sun UNIX. In Proceedings of
the Summer 1986 USENIX Technical Conference, pp.
238–247, June 1986.

[3] Jim Mostek, William Earl, Dan Koren, Russell Cat-
telan, Kenneth Preslan, and Matthew O’Keefe. Porting
the SGI XFS File System to Linux. http://oss.sgi.com/
projects/xfs/papers/als/als.ps, October 1999.

