Proceedings of FREENIX Track:
2000 USENI X Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

UNIX FILE SYSTEM EXTENSIONS
IN THE GNOME ENVIRONMENT

Ettore Perazzoli

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Unix file system extensions in the GNOME environment

Ettore Perazzoli
Helix Code, Inc.

ettore@helixcode.com, http://primates.helixcode.com/ettore/

1 Introduction

This paper explains how the GNOME
[GNOME] project is extending the function-
ality of the Unix file system for use in both
the desktop and applications, by using a user-
level library called the GNOME Virtual File
System.

There are various reasons for extending the
Unix file system and its API, as explained in
the following sections.

1.1 Uniform file access

In a modern desktop environment, users
have to deal with files that are available in
different ways. For example, files can be re-
motely available from a Web or FTP site.
Sometimes they are stored locally, but are
contained in tar or zip files. Sometimes they
are stored in a compressed form.

Each of these cases usually requires the
user to use a different tool; using different
tools means that users have to learn the user
interface for each of them, and have to manu-
ally make these tools talk to the applications,
for example by using temporary files.

To avoid this problem, there should be a
global file system namespace that all applica-
tions can use to access these different kinds
of files. Users should not need to install and
use different programs to access files available
through different methods, and all the appli-
cations should be able to access this global
file system namespace.

So basically we need a consistent API that
all the applications can use to access these

files in a simple way.

1.2 Representing special non-file
objects

Current Unix desktop environments lack a
unified file system -like representation of the
system resources. In the Windows operat-
ing system, users can access all the system
resources from the “My Computer” folder
which acts as the root of the operating system
shell’s “namespace”. This means that the
control panel, the printer’s spool, the trash-
can, the removeable devices and so on are all
accessible through the same simple “point-
and-click” mechanism within the same appli-
cation (Explorer.exe). Unlike the current
Unix desktop environments, users don’t need
to deal with different applications for the var-
ious objects that are in their computer: they
can just use the desktop shell.

To implement similiar functionality on
Unix, we would need to have an extensible
mechanism for providing the contents to these
virtual folders and implementing operations
that can be performed on them.

1.3 Asynchronous operation

On Unix, there is no API to let applica-
tions do fully asynchronous I/O in an easy
and portable way.

The reason why this is so important is that
GUT applications need to be responsive all the
time. If a GUI application is blocked during
a long synchronous file operation, the user
cannot stop the operation, nor perform any
other task with the same application. This

is especially important for a file manager,
which needs to be able to perform multiple
I/O tasks in parallel without taking control
away from the user.

One of the ways of dealing with asyn-
chronous I/0, i.e. using the select() sys-
tem call, does not work with all the opera-
tions; for example, there is no way to make
an asynchronous gethostbyname (), open()
or stat () without complicated hacks.

Unix programmers could also use POSIX
threads for performing asynchronous opera-
tions, but thread programming is very error-
prone and can easily lead to problems. Writ-
ing a threaded application requires more pro-
gramming skills writing a non-threaded one,
and in the free software world it is very im-
portant to make things easy for programmers.

Moreover, POSIX threads are not fully
portable across different platforms, as not all
implementations are reliable and efficient.

Finally, although a POSIX API for asyn-
chronous I/0O exist, it is not implemented on
all systems and does not work with all system
calls. For example, you cannot execute the
open() nsystem call in an asynchronous fash-
ion. Moreover, this API does not fit nicely in
the event-based model of GUI systems; con-
sequently, it is not suitable for rapid develop-
ment of GUI applications.

What we need for asynchronous operation
is an easy to use API that hides most of the
details from the programmer and integrates
nicely with the existing GUI toolkits. The
API should give a better abstraction for doing
async I/0, in the most simple way possible.

2 Existing User Space Virtual
File Systems

In the past, there have been other attempts
to implement extensions to the Unix file sys-
tem in the free software world, none of which
completely fulfilled the needs of the GNOME
project.

2.1 The GNU Midnight Comman-
der

The GNU Midnight Commander is the file
manager of choice for the GNOME project
at the time of writing. It implements a user-
space Virtual File System library that solves
the problem of accessing files within archive
files or on remote Internet sites through an
extended URI system which is explained in
greater detail in section 4.

Although the VFS library source code
could be made independent of the GNU Mid-
night Commander and thus its functionality
could be used by all the applications, it suf-
fers a few design problems:

e It does not support asynchronous oper-
ation: if you perform an operation on a
remote system, the Midnight Comman-
der will be blocked until the operation is
complete, and the user is not even able
to stop the operation.

e The library is hidden under a Unix API
that is not very extensible.

The latter problem is the most important
one: as a Virtual File System has to deal
with kinds of files that can be quite different
from the standard Unix files, it needs some
API extensions to support this functionality.
Moreover, it needs some API extensions to
deal with asynchronous operations. Unfortu-
nately, it is not possible to add functionality
to the API in a clean way without breaking
Unix compat- ibility, so this makes the GNU
Midnight Commander’s Virtual File System
unsuitable as a generic library for GNOME.

2.2 KDE’s kio

The K Desktop Environment [KDE] pro-
vides a completely asynchronous virtual file
system library called kio.

kio uses the same extended URI syntax
that the GNU Midnight Commander uses;
but unlike the Midnight Commander, all the

file operations are performed through exter-
nal helper processes (kioslaves) in an asyn-
chronous fashion. The helper process commu-
nicates with the master process using Unix
domain sockets and custom protocols; the
library performs encoding/decoding of such
protocols automatically and notifies the pro-
grammer using the Qt [Qt] signal system.

Although this system is closer to the re-
quirements that we have listed at the begin-
ning of this paper, it is still suboptimal, for
the following reasons:

e Operations are very simple: the API
allows the programmer to down-
load/upload a whole file and perform
some simple file operations, but it does
not provide all the versatility of the
Unix API.

e Each file operation requires an external
process: kio does not take advantage of
threads.

e There is no API to perform operations in
a synchronous fashion, so the program-
mer needs to spawn a process, request
an operation and then wait for the result
from it.

3 The GNOME Virtual
System

File

The solution we gave to these issues in the
GNOME project is in the form of a new li-
brary, designed from scratch to meet all the
requirements. This library (the GNOME Vir-
tual File System, or GNOME VFS for short)
takes advantage of the existing GNOME de-
velopment libraries, such as GLIB and GTK—+
[GTK].

The following design ideas were kept in
mind while implementing the GNOME VFS:

e Like the rest of GNOME, the API should
be C-based and follow the standard
GNOME programming style.

e The implementation should be portable,
so that making GNOME VFS a core
component of GNOME would not re-
strict the availabilty of GNOME on var-
ious Unix platforms.

e Using GNOME VEFS should not make
the programmer’s life harder.

e The asynchronous API should be simple
to use, and be nicely integrated with the
standard GLIB main loop that is central
to GNOME applications. (The GLIB
main loop is the main event-handling
loop in GTK+ and GNOME applica-
tions. The X main loop is nicely wrapped
by the GLIB loop.)

e Adding new access methods should be
possible, and programmers should not
need to care about too many of the
details, such as asynchronous behavior.
(By “access method”, we mean the im-
plementation of a protocol, of a file for-
mat, or any other way to retrieve, create
or modify a GNOME VEFS file. For ex-
ample, there should be an HTTP access
method, a ZIP file access method and so
on.)

4 Extended URIs

The GNOME VFS uses an extension of the
traditional web Uniform Resource Identifiers
(URIs) to access files, instead of the standard
Unix file paths. This enables us to access dif-
ferent kinds of resources in a way that is both
generic and easy to understand for users.

GNOME VFS extended URIs are reminis-
cent of the GNU Midnight Commander’s URI
syntax, and consequently use the # character
to stack access methods on top of each other.

In the simplest form, a GNOME VFS URI
looks exactly like a normal Web URI, that is:

method://user:password
@some.host/path/to/file

As in normal Web URIs, user and password

are optional; in that case, the @ character will
be omitted as well.

For example, the URI

http://www.gnome.org/index.html

will refer to the file index.html from the
host www.gnome . org through the http access
method, which is an implementation of the
HTTP protocol.

The access method for the local file sys-
tem is called file, so, for example, the file
/etc/passwd is accessed through the URI

file:/etc/passwd

Unlike normal Web URIs, though,
GNOME VFS URIs let you “stack” access
methods on top of each other. GNOME
VES, in fact, supports two kinds of access
methods: “toplevel” access methods, that
access files directly, and “archive” access
methods, that access files within other files.

For example, there is a zip access method
that lets you access files contained in a .zip
archive file: the .zip access needs a “parent”
access method to access the archive in which
the file is contained.

Stacking is achieved in GNOME VFS URIs
by using the special character #. The generic
syntax is:

uri#method[/sub_uri]

When this syntax is used, it specifies
that sub_uri must be accessed within the
file available through uri using the specified
method.

For example, imagine you have a foo.zip
archive containing a file called bar.c. Also
suppose that bar. c is contained in a directory
called baz within foo.zip, and that foo.zip
is in your home directory /home/joe. The
URI to specify foo.zip is:

file:/home/joe/foo.zip\#zip/baz/bar.c

If the file was available through FTP in-
stead, the URI would be something like:

ftp://joe:passwd@ftp.site.net
/home/joe/foo.zip#zip/baz/bar.c

Some access methods don’t require a sub-
path; for example, this is the case with the
gzip access method that can be used to read
and create compressed files in .gzip format.

If you wanted to read the contents of a com-
pressed foo.gz file in your home directory,
you would simply have to specify the follow-
ing URI:

file:/home/joe/foo.gz{\tt \#}gzip

By combining the gzip access method with
the tar access method, it is possible to access
files contained in tar.gz archives:

file:/home/ettore/download
/gnome-vfs-0.1.tar.gz#gzip
#tar/gnome-vfs-0.1/AUTHORS

There is no limitation in the amount of
stacking that can be performed. Every access
method in GNOME VFS is implemented as
a dynamically loaded plug-in, as described in
section 10: anyone can extend the VFS with
new access modules.

5 GNOME VFS API basics

Almost all the standard Unix file opera-
tions have conterparts in GNOME VFS. In
the following sections, we will give a brief
overview of the GNOME VFS API.

5.1 The GnomeVFSURI object

A GNOME VFS URI is represented
by a special GNOME VFS object called
GnomeVFSURI. GnomeVFSURI objects are the

preferred way to specify files: users of the li-
brary can use GnomeVFSURISs to store and ma-
nipulate URIs, and the interface between the
library and its plug-ins uses GnomeVFSURI ob-
jects.

A GnomeVFSURI object is created by using
the call

GnomeVFSURI *
gnome_vfs_uri_new (const char *s)

GnomeVFSURIs also have a reference count
that can be controlled by using the calls:

void gnome_vfs_uri_ref (GnomeVFSURI *uri)

void gnome_vfs_uri_unref (GnomeVFSURI *uri)

A GnomeVFSURI can be also converted into
a printable string by using the following call:

char *gnome_vfs_uri_to_string
(const GnomeVFSURI *uri,
GnomeVFSURIHideOptions hopt)

It is also possible to extract the host, user
name and password information from it, as
well as compare and combine them. Virtu-
ally any path operation that the programmer
might need is supported directly through the
GnomeVFSURI API.

5.2 The GnomeVFSResult enumera-
tion

All the GNOME VEFS operations return
a result value of type GnomeVFSResult
that represents the result of the operation.
GnomeVFSURI is a numeric enumeration:

enum _GnomeVFSResult {
GNOME_VFS_OK,
GNOME_VFS_ERROR_NOTFOUND,
GNOME_VFS_ERROR_GENERIC,
GNOME_VFS_ERROR_INTERNAL,
GNOME_VFS_ERROR_BADPARAMS,
GNOME_VFS_ERROR_NOTSUPPORTED,
GNOME_VFS_ERROR_IO,

GNOME_VFS_ERROR_CORRUPTEDDATA,
VALY
GNOME_VFS_NUM_ERRORS
};
typedef enum _GnomeVFSResult
GnomeVFSResult;

Just like the Unix errno variable, you can
get a string description from a GnomeVF-
SURI value by using the following function:

const gchar *gnome_vfs_result_to_string
(GnomeVFSResult result)

6 Synchronous API

In GNOME VFS, both a synchronous and
asynchronous API call exist most file oper-
ations. The synchronous versions work like
normal Unix calls: they perform the opera-
tion, then return and report success/failure
using a GnomeVFSResult value.

6.1 The GnomeVFSHandle object

As in the Unix API, files need to be “open”
before being ready to be read or written. But
while the Unix API returns a simple inte-
ger to represent a “file handle”, the GNOME
VFES API provides a special object type for
that, called GnomeVFSHandle.

GnomeVFSHandle objects are created us-
ing the “open” or “create” calls

GnomeVFSResult

gnome_vfs_open_uri
(GnomeVFSHandle **handle return,
GnomeVFSURI *uri,
GnomeVFSOpenMode open mode)

GnomeVFSResult
gnome_vfs_create_uri
(GnomeVFSHandle **handle return,
GnomeVFSURI *uri,
GnomeVFSOpenMode open mode,
gboolean exclusive,
guint perm)

and destroyed by using the “close” call:

GnomeVFSResult
gnome_vfs_close (GnomeVFSHandle *handle)

6.2 Synchronous I/O Example

Here is a simple example demonstrating
synchronous operation in GNOME VFS. This
subroutine will read a file and output its con-
tents to stdout. The code should be rather
self-explanatory.

gboolean vfs_cat (const char *uri)
{
GnomeVFSURI *vfs_uri;
GnomeVFSHandle *handle;
GnomeVFSResult result;

vis_uri = gnome_vfs_uri_new (uri);
if (vfs_uri == NULL) {
printf ("‘%s’ is not a valid URI.\n",
uri);
return FALSE;
}

result = gnome_vfs_open_uri
(&handle, vfs_uri, GNOME_VFS_OPEN_READ);

if (result != GNOME_VFS_OK) {
printf ("Error opening ‘Ys’: %s\n",
uri,
gnome_vfs_result_to_string (result));
return FALSE;
}

while (1) {
GnomeVFSFileSize bytes_read;
GnomeVFSFileSize ij;
char buffer[4096];

result = gnome_vfs_read
(handle,
buffer,
sizeof (buffer),
&bytes_read) ;
if (result !'= GNOME_VFS_OK) {
printf ("%s: %s\n", uri,
gnome_vfs_result_to_string
(result));
return FALSE;
}

if (bytes_read == 0)
break;
for (i = 0; i < bytes_read; i++)
putchar (buffer[il);
}

gnome_vfs_close (handle);
gnome_vfs_uri_unref (vfs_uri);
return TRUE;

7 Asynchronous API

In the asynchronous API calls, instead, the
operation requested is started in a separate
thread of execution and control returns to the
caller immediately. The caller will have to
specify a callback function that will be called
when the operation is completed. If the op-
eration is long to perform (such as a “copy”
operation), the callback might be called more
than once to report progress.

All the syncrhonous API calls have asyn-
chronous counterparts; their name is the
same as the synchronous one, but use the
gnome vfs async prefix, instead of just gnome
vfs.

Callbacks for asynchronous operations are
triggered in the normal GLib/GTK+ event
loop. This means that the application will
be able to handle GUI events and GNOME
VFS events simultaneously and transpar-
ently. The programmer just needs to set
up the callback functions and make sure the
event loop is running all the time. This makes
usage of GNOME VFS in GUI applications
very convenient and easy to use.

7.1 The GnomeVFSAsyncHandle ob-
ject

If an asynchronous operation is started suc-
cessfully, the caller is given back a GnomeVF-
SAsyncHandle object that can be used to
stop the operation after it has been started,
by using the following call:

GnomeVFSResult gnome_vfs_async_cancel
(GnomeVFSAsyncHandle *handle)

In the case of file “open” and “create” oper-
ations, the GnomeVFSAsyncHandle object can
also be used to request read/write operations
on the file after it has been opened or created.

7.2 Opening a file as a GLib I/O
channel

A common application case is when the
program needs to get data from a file stream
as soon as it becomes available from the
transport layer. In the case of Unix, this is
achieved through the select() system call.

GLib abstracts this mechanism by merg-
ing it with the event handling loop, through
objects known as GIOChannels. With
GIOChannels, it is possible to attach callbacks
to a file descriptor, and have functions called
as soon as data becomes available on it.

Special GNOME VFS API functions allow
the programmer to open and read (or write)
a file through a GIOChannel. For example,
a file can be opened by using the following
function:

GnomeVFSResult
gnome_vfs_open_as_channel
(GnomeVFSAsyncHandle **handle return,
const gchar *text uri,
GnomeVFSOpenMode open_mode,
guint advised_block_size,
GnomeVFSAsyncOpenAsChannelCallback
callback,
gpointer closure);

Notice that, unlike the normal Unix
select () call, this is reliable with local files
too: the application will never be blocked af-
ter reading from a file for which the “data
available” callback has been called.

This is possible because of the GNOME
VFS asynchronous engine described in sec-
tion 11.

7.3 Asynchronous API example

The following function reads a file asyn-
crhonously, with the output sent to stdout.

#define BUFFER_SIZE 4096

/* This is the callback that
will be called whenever
something happens on the

I/0 channel associated
with the file. */

static gboolean

io_channel_callback
(GIOChannel *source,
GIOCondition conditionm,
gpointer data)

char buffer [BUFFER_SIZE + 1];
unsigned int bytes_read;
unsigned int i;

if (condition & G_IO_IN) {
/* Data is available. */
g_io_channel_read
(source, buffer,
sizeof (buffer),
&bytes_read) ;

for (i = 0; i < bytes_read; i++)
putchar (buffer[il);

fflush (stdout);
}

/* An error happened while reading
the file. */

if (condition & G_IO_NVAL)
return FALSE;

/* We have reached the end of the
file. */

if (condition & G_IO_HUP) {
g_io_channel_close (source);
return FALSE;

}

/* Returning TRUE will make sure
the callback remains associated
to the channel. */

return TRUE;
}

static void

open_callback (GnomeVFSAsyncHandle *handle,
GIOChannel *channel,
GnomeVFSResult result,
gpointer data)

if (result != GNOME_VFS_OK) {
printf ("Error: ¥%s.\n",
gnome_vfs_result_to_string
(result));
return;
}
printf ("Open: ‘%s’.\n",
(char *) data);
g_io_add_watch_full
(channel, G_PRIORITY_HIGH,
G_IO_IN | G_IO_NVAL | G_IO_HUP,
io_channel_callback,
handle, NULL);

void
start_cat (const char *uri)

{
GnomeVFSAsyncHandle *handle;

/* Start the ‘read’ operation. */

gnome_vfs_async_open_as_channel
(&handle, uri, GNOME_VFS_OPEN_READ,
BUFFER_SIZE, open_callback, "data");

8 File attributes

GNOME VFS also provides a
GnomeVFSFileInfo object that works as
an extension of struct stat in Unix. In
addition to the standard attributes that
struct stat provides, GnomeVFSFileInfo
also gives access to:

o MIME type information. GNOME VFS
is able to take advantage of plug-ins for
which the MIME type is part of the infor-
matin that the access method provides.
For example, in the case of the HTTP
back-end, GNOME VFS can provide the
MIME type as returned by the HTTP
server.

e Metadata. Arbitrary value/key pairs can
be associated with files, for generic pur-
poses. For example, you can use an
“icon” value for specifying a file’s icon,
or a “description” value for a verbose de-
scription of the file.

As some kind of information might not be
supported by certain plug-ins (for example, it
is not possible to know the number of phys-
ical blocks occupied by a file via HTTP),
GnomeVFSFileInfo provides a bitmask speci-
fying which fields are actually valid and which
are not.

GNOME VEFS also provides a simple API
for loading directory information in a progres-
sive way, calling an asynchronous callback as
data is copied into memory. This function-
ality is particularly useful for a file manager,
as the directory view can be updated with-
out blocking the user interface and thus giv-
ing the user effective visual feedback of what

is going on, even with those slow back-ends
for which reading a directory is an expensive
operation (such as a tar file access method,
that requires a sequential scan of the whole
.tar file).

9 File transfer support

In GNOME VFS there is a special API call
for copying and moving files, while providing
the caller with progress information while the
operation is being performed. GNOME VFS
is able to automatically optimize the case in
which a file is moved through two different
locations on the same physical file system, by
using the information provided by the source
and destination plug-ins.

When this API call is used, all the file
transfer is performed in a separate thread or
process, which dispatches the progress infor-
mation to the main thread/process using the
same mechanism that is used by the other
asynchronous calls.

In order to reduce the impact of dis-
patching progress information across pro-
cess/thread boundaries, the actual calls take
place periodically, at a rate specified by the
programmer. In the case of a file manager, for
example, this will be done only a few times in
a second, just enough to make sure the GUI
is updated the way the user would expect.

10 Implementation of access

plug-ins

As explained in 4, access methods are im-
plemented as dynamically loaded plug-ins.
Even the file plug-in that accesses local files
is implemented as a plug-in.

Dynamic loading of plug-ins happens dur-
ing GnomeVFSURI parsing (see section 5.1):
the URI is split into its #-separated subparts,
the library looks up the access method names
(such as file, http and so on), and tries to lo-
cate the corresponding plug-in library, by us-

ing both a system-wide and a user-wide con-
figuration file called gnome-vfs.conf. If the
library is located, it gets linked in dynami-
cally; otherwise, a return code is returned,
reporting that the URI is invalid.

Every access method module must pro-
vide an initialization function; the initializa-
tion function returns a simple vtable con-
taining pointers to the implementations of
the GNOME VFS operations for that ac-
cess method. Pointers to these vtables are
stored directly into the GnomeVFSURI ob-
ject, ready for the first operation to be in-
voked on it.

At the time of writing, the following mod-
ules have been implemented:

e A bzip2 module, for files that are com-
pressed with the bzip program.

e A gzip module, for files that are com-
pressed with the gzip program.

e An ftp method for accessing remote sites
through the Internet FTP protocol.

e An http method for accessing remote
sites through the HTTP 1.1 protocol.
This module also supports WebDAV.

e An extfs module, supporting Midnight
Commander’s generic archive file sup-
port based on simple shell scripts. This
multipurpose module makes GNOME
VES able to deal with zip, zoo, rpm,
deb, arj and other formats.

e A gconf protocol to access the new
GNOME configuration database, called
GConf.

Other modules, including a tar one, are
being developed.

While this is not supported at the time
of writing yet, there are also plans to sup-
port CORBA-based access method plug-ins,
possibly using the Bonobo component model.
[CORBA]

This will have important consequences:

e It will become possible to write plug-ins
in any CORBA-aware language. For ex-
ample, you could have plug-ins written
in Perl, Python, or other scripting lan-
guages for which CORBA support exists.
This will make it extremely simple for
people to come up with their own spe-
cial scripts for special directories or file
systems.

e [t will become possible to make GNOME
VFS see file systems that are imple-
mented in a different process. The ex-
ternal process might be running all the
time, and would be contacted through
CORBA. For example, you see the list
of active print jobs in the print spooler
as a normal GNOME VFS directory.

11 Implementation of
chronous operations

asyn-

To make operations totally asynchronous,
we need to be able to perform them indepen-
dently of the code that wants them to be exe-
cuted. This can be done using either external
helper processes or helper threads.

The thread-based solution has a number of
advantages:

e It requires less memory to work.

e It is faster, as no data needs to be trans-
ferred from the helper to the master.

Unfortunately, it is not fully portable, as
many systems don’t have a suitable thread
support. For this reason, GNOME VFS
implements asynchronous operation in both
ways. This is done by splitting the library
in two parts: the basic file access library,
and the asynchronous wrapper library. While
there is one single version of the former, there
are two versions of the latter: one that is
based on POSIX threads, and one that uses
external processes.

At run time, GNOME VFS applications
are dynamically linked to either of the two

wrapper libraries. This makes it possible to
use either method without changes in the
source code. In the case of helper pro-
cesses, the GNOME Virtual File System uses
CORBA to communicate with them.

Using CORBA has the advantage of not re-
quiring the creation of a custom inter-process
communication protocol; moreover, adding
new operations is very simple (you just need
to extend the IDL). GNOME comes with its
own ORB by default, so this does not add any
further constraints to the applications willing
to use GNOME VFS.

12 GNOME VFS and GNOME

GNOME VFS is a core component of the
upcoming GNOME 2.0 platform. When
GNOME 2.0 is released, GNOME VFS will
be available for all applications (GUT or non-
GUI) to use. GNOME VFS is also a central
component of the new GNOME file manager
and shell, which is called Nautilus [Nautilus]
and is currently being developed by Eazel,
Inc. [Eazel]. Nautilus makes extensive use
of asynchronous operations and file system
abstractions to improve the usability of the
GNOME desktop. The first public release of
Nautilus is expected in Summer 2000.

13 Availability

GNOME VFS is available from the
GNOME FTP repository:

ftp://ftp.gnome.org
/pub/GNOME/unstable/sources/gnome-vfs

It is also possible to access the source code
through the GNOME anonymous CVS sys-
tem anoncvs.gnome.org, as explained at the

URL

http://developer.gnome.org/tools/cvs.html

The name of the module is gnome-vfs.

The GNOME CVS has a web front-end
available at the URL

http://cvs.gnome.org

References

[GNOME] The GNOME home page,
http://www.gnome.org

[HelixCode] Helix Code, Inc.
http://www.helixcode.com

[KDE] The KDE home page,
http://www.kde.org

[Qt] Q¢

http://www.troll.no

[GTK] GTK+
http://www.gtk.org

[Nautilus] Nautilus
http://nautilus.eazel.com

[CORBA] CORBA
http://www.corba.org

[Eazel] Eazel, Inc.
http://www.eazel.com

