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Abstract 
 

Recent highly publicized benchmarks have suggested that Linux systems do not 
scale as well as other systems, such as Windows NT, when used as network servers. 
Windows NT contains features such as I/O completion ports that help boost network 
server performance and scalability. In this paper we focus on improving the Linux 
implementation of poll() to reduce the expense of managing large numbers of 
network connections. We also explore the newer POSIX RT signal API that will help 
network servers scale into the next decade. A comparison between the two inter-
faces shows that a server using our /dev/poll interface scales better than a server 
using RT signals. 

 
 
 

 
1. Introduction 

Many traditional web server benchmarks have focused 
on improving throughput for clients attached to the 
server via a high-speed local area network [13]. Recent 
studies have shown, however, that the difference be-
tween 32 high performance clients connected via giga-
bit Ethernet, and 32,000 high latency, low bandwidth 
connections from across the Internet, is extremely im-
portant to server scalability [8]. Connections that last 
only seconds do not place the same load on a server that 
slow error-prone connections do, due to resources con-
sumed by error recovery, and the expense of managing 
many connections at once, most of which are idle. 

Experts on server architecture have argued that servers 
making use of a combination of asynchronous events 
and poll() are significantly more scalable than to-
day’s servers in these environments [2, 3, 5]. In Linux, 
signals can deliver I/O-completion events. Unlike tradi-
tional UNIX signals, POSIX Real-Time (RT) signals 
carry a data payload, such as a specific file descriptor 
that recently changed state. Signals with a payload en-
able network server applications to respond immedi-
ately to network requests, as if they were event driven. 
An added benefit of RT signals is that they can be 
queued in the kernel and delivered to an application one 
at a time, in order, leaving an application free to collect 
and process events when convenient. 

The RT signal queue is a limited resource. When it is 
exhausted, the kernel signals a server to switch to poll-
ing, which delivers multiple completion events at once. 
Normally in a server like this, polling is simply an error 
recovery mechanism. However, the size of the RT sig-
nal queue might also be used as a load threshold to help 
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network servers determine whether RT signals or the 
poll() interface is more efficient. 

We have identified two areas of study. First, we demon-
strate several modifications that improve poll()’s 
scalability and performance when a large proportion of 
a server’s connections are inactive. Second, finding the 
right combination of RT signals and polling might al-
low network servers to leverage the latency advantages 
of completion notification against the throughput boosts 
of using poll(). 

In this paper, we outline several improvements to the 
poll() interface, and measure the performance change 
of application using the improved poll(). We describe 
a test harness that simulates loads consisting of many 
inactive connections. We use this test harness to meas-
ure changes in application throughput as we vary the 
server’s event model. Finally we report on our experi-
ences using the new POSIX RT signals. 

2. Using POSIX RT Signals: Introducing 
phhttpd 

Phhttpd is a static-content caching front end for full-
service web servers such as Apache [2, 10]. Brown cre-
ated phhttpd to demonstrate the POSIX RT signal 
mechanism added to the Linux kernel starting in the 
late 2.1.x kernel development series, and completed 
during the 2.3.x series. POSIX RT signals provide an 
event delivery system by allowing an application to 
assign unique signal numbers to each open file descrip-
tor using fcntl(fd, F_SETSIG, signum). The ker-
nel raises the assigned signal whenever a read(), 
write(), or close() operation completes. 

struct pollfd { 
int fd; 
short events; 
short revents; 

}; 

Figure 1. Standard pollfd struct 

struct siginfo { 
 int si_signo; 
 int si_errno; 
 int si_code; 
 union { 
  /* other members elided */ 
  struct { 
   int _band; 
   int _fd; 
  } _sigpoll; 
 } _sifields; 
} siginfo_t; 

Figure 2. Simplified siginfo struct. 

To avoid complexity and race conditions, the chosen 
RT signals are masked during normal server operation. 

An application uses sigwaitinfo() to pick up pend-
ing signals from the RT signal queue. Sigwaitinfo() 
returns a siginfo struct (see FIG. 2) for a single event. 
The _fd and _band fields in this struct contain the 
same information as the fd and revents fields in a 
pollfd struct (see FIG. 1). 

The kernel raises SIGIO if the RT signal queue over-
flows. An application then flushes pending signals by 
changing their signal handler to SIG_DFL, and to re-
cover, it uses poll() to discover any remaining pend-
ing activity. 

Events queued before an application closes a connec-
tion will remain on the RT signal queue, and must be 
processed and/or ignored by applications. For instance, 
when a socket closes, a server application may receive 
and try to process previously queued read or write 
events before it picks up the close event, causing it to 
attempt inappropriate operations on the closed socket. 

3. poll() Optimizations 

There are two motivations for improving poll(). First, 
many legacy applications can benefit, with little or no 
modification, from performance and scalability im-
provements in poll(). While the changes necessary to 
take advantage of a new interface might be few, an 
overall architectural update for legacy applications is 
usually unnecessary. Yet updating an application to use 
POSIX RT signals is a major overhaul with a concomi-
tant increase in complexity. A second purpose for im-
proving poll() is that even with POSIX RT signals, 
poll() is still required to handle special cases such as 
RT signal queue overflows. An efficient poll() im-
plementation helps performance and scalability of the 
new paradigm. 

For the poll() interface to maintain performance 
comparable to the newer POSIX RT signal interfaces, it 
needs a face lift. We’ve enhanced poll() by making 
the following optimizations: 

• We provide an interface that maintains state in the 
kernel, so state doesn’t have to be passed in during 
every poll() invocation 

• We allow device drivers to post completion events 
to poll(), reducing the need to invoke device-
specific poll operations when scanning for events 

• We eliminate result copying when poll() returns 
by creating a special address space mapping that is 
shared between the kernel and the application 

In this section we describe these changes and evaluate 
their respective performance implications. 



3.1 Maintaining State in the Kernel 

To invoke poll() an application must build a set of 
interests, where an interest is a file descriptor that may 
have I/O ready, then notify the kernel of all interests by 
passing it the complete set of interests via poll(). As 
the number of interests increases, this mechanism be-
comes unwieldy and inefficient. The entire set must be 
copied into the kernel upon system call entry. The ker-
nel must parse the entire interest set to carry out the 
request. Then each interest must be checked individu-
ally to assess its readiness. 

Banga, Druschel, and Mogul have described new oper-
ating system features to mitigate these overheads [4]. 
They suggest that the poll() interface itself can be 
broken into one interface used to incrementally build an 
application’s interest set within the kernel, and another 
interface used to wait for the next event. They refer to 
the first interface as declare_interest(), while the 
second is much like today’s poll(). Using de-
clare_interest(), an application can build its inter-
est set inside the kernel as connections are set up and 
torn down. The complete interest set is never copied 
between user space and kernel space, completely elimi-
nating unnecessary data copies (for instance, when 
there is no change in the interest set between two 
poll() invocations). 

Recent versions of Solaris include a similar interface 
called /dev/poll [6]. This character device allows an 
application to notify the kernel of event interests and to 
build a (potentially) very large set of interests while 
reducing data copying between user space and kernel 
space. As far as we know this is the first real implemen-
tation of declare_interest(). We chose to imple-
ment this because, if it is effective, it will allow easier 
portability of high-performance network applications 
between Solaris and Linux. 

An application opens /dev/poll and receives a file 
descriptor. The kernel associates an interest set with this 
file descriptor. A process may open /dev/poll more 
than once to build multiple independent interest sets. 
An application uses write() operations on 
/dev/poll to maintain each interest set. 

Writing to /dev/poll allows an application to add, 
modify, and remove interests from an interest set. Ap-
plications construct an array of standard pollfd 
structs, one for each file descriptor in which it is inter-
ested (see Figure 1). Enabling the POLLREMOVE flag in 
the events field indicates the removal of an interest. 
Specifying a file descriptor the kernel already knows 
about allows an application to modify its interest. The 
contents of the events field replace the previous inter-
est, unlike the Solaris implementation, where the 

events field is OR’d with the current interest. If com-
plete Solaris compatibility is desired, this behavior can 
be adjusted with a minor modification to the device 
driver. 

struct dvpoll { 
struct pollfd* dp_fds; 
int dp_nfds; 
int dp_timeout; 

} 

Figure 3. dvpoll struct 

To wait for I/O events, an application issues an 
ioctl() with a dvpoll struct (see FIG. 3). This struct 
indicates how long to wait, and specifies a return area 
for the results of the poll operation. In general, only a 
small subset of an application’s interest set becomes 
ready for I/O during a given poll request, so this inter-
face tends to scale well. 

A hash table contains each interest set within the kernel. 
On average, hash tables provide fast lookup, insertion, 
and deletion. For simplicity, when the average bucket 
size is two, the number of buckets in the hash table is 
doubled. The hash table is never shrunk. 

3.2 Device Driver Hints 

When an application registers interest in events on file 
descriptors with the poll() system call, the kernel 
passes this information to device drivers and puts the 
process to sleep until a relevant event occurs. When an 
application process wakes up, the kernel must scan all 
file descriptors in which the application has registered 
interest to check for status changes. This is the case 
even though the status of only one file descriptor in 
hundreds or thousands might have changed. 

Now that we have an efficient mechanism for applica-
tions to indicate their interests, it would be useful if 
device drivers could indicate efficiently which file de-
scriptors changed their status. We extend the 
/dev/poll implementation to make file descriptor 
information available to device drivers. The 
/dev/poll implementation maintains this information 
in a backmapping list. When an event occurs, the driver 
marks the appropriate file descriptor for each process in 
its backmapping list. When poll() scans an interest 
set to pick up new work, it uses this hint to avoid an 
expensive call to the device driver’s poll callback. 
When managing a large number of high latency connec-
tions, this greatly reduces the number of driver poll 
operations that show that nothing has changed. 

Hints allow poll() to determine if a cached result 
from a previous poll call is still valid. Specifically, a 
hint indicates a change in the socket’s status, so it is 
time to invoke the device driver’s poll callback. This 
also erases the current hint. We cache the result re-



turned by the device driver, in the hope that we can 
reuse it without having to invoke the poll callback again 
soon. We do not receive hints that indicate the change 
from ready to not-ready, however. This means that a 
cached result indicating readiness has to be reevaluated 
each time. 

To prevent the hinting system from requiring every 
device driver to be modified, device drivers indicate 
whether they support hinting. In this way, only essential 
drivers must be modified, e.g. network device drivers. 

At this point, all backmapping lists are protected by a 
single read-write lock. Hints require only a read lock, 
so the lock itself is generally not contended. The lock is 
held for writing only when the interest set is modified. 
Each socket gets its own backmap, so ideally the back-
map lock should be added in a per-socket structure to 
reduce lock contention and improve cache line sharing 
characteristics on SMP hardware. Each per-socket lock 
requires an extra 8 bytes. 

3.3 Reducing Result Copy Operations 

As the list of file descriptors passed to poll() grows, 
the overhead to copy out and parse the results also in-
creases. To reduce this overhead, we need to improve 
the way the kernel reports the results of a poll() op-
eration. The safest and most efficient way to do this is 
to create a memory map shared between the application 
and kernel where the kernel may deposit the results of 
the poll() operation. 

We added this feature to our /dev/poll implementa-
tion. The application invokes mmap() on /dev/poll 
to create the mapping. Results from poll() for that 
process are reported in that area until it is munmap()’d 
by the application. Usually, the size of the result set is 
small compared to the size of the entire interest set, so 
we do not expect this modification to make as signifi-
cant an impact as /dev/poll and device driver hints. 

To create the result area, an application invokes 
ioctl(DP_ALLOC) to allocate room for a specific 
number of file descriptor results. This is followed by an 
mmap() call on a previously opened /dev/poll file 
descriptor to share the mapping between the kernel and 
the application. When polling, an application uses 
ioctl(DP_POLL) and specifies a NULL in the dp_fds 
field (see FIG. 2). When the application is finished, it 
uses munmap() to deallocate the area, then it closes 
/dev/poll normally. 

4. POSIX Real-Time Signals v. poll() 

A fundamental question is how great a server workload 
is required before polling is a more efficient way to 
gather requests. Are there any times when polling is a 

better choice? In this section we address the following 
questions: 

• How big is the difference in performance between 
POSIX RT signals and poll(). Naturally this de-
pends on the application implementation, but 
something as crude as an order of magnitude num-
ber would still be useful. What are the factors that 
determine this difference in performance— ineffi-
ciencies in poll() itself, argument copying, and 
so on? 

• How important is an efficient poll() implementa-
tion for good overall performance of an implemen-
tation based on POSIX RT signals? 

• How complete is the POSIX RT signal interface and 
implementation? Is it easy to use? Are there races 
or performance issues? Is it easy to use in combina-
tion with threads and black-box libraries? 

To study these questions, we compare the performance 
of polling and event-driven architectures with a bench-
mark. The benchmark indicates which parts of the per-
formance curve are served better by a particular event 
model. Imagine a hybrid server that can switch between 
polling and processing incoming requests via RT sig-
nals. 

• To reduce the latencies of polling models, the 
server uses RT signals to process incoming re-
quests and to handle them as soon as they arrive. 

• To manage resource exhaustion in the kernel, the 
server uses RT signals until the signal queue 
reaches its maximum length. 

• To overcome the inefficiencies of one-at-a-time 
event handling, the server uses polling after its 
workload becomes heavy. 

Such a server might use the RT signal queue maximum 
as a crossover point for two reasons. First, it is built 
into the RT signal interface. When the signal queue 
overflows, the application receives a signal indicating 
that the overflow occurred. A poll() is necessary at 
this point to make sure that no requests are dropped. 
Second, the queue length tracks server workload fairly 
well. As server workload increases, so does the RT sig-
nal queue length. Thus it becomes an obvious indicator 
to cause a workload-triggered switch between event-
driven and polling modes. 

By studying the behavior and performance at the cross-
over point between RT signals and polling in a hybrid 
server, we gain an understanding of each design’s rela-
tive advantages. Before creating such an imaginary 
hybrid, we can run specific tests that show whether 
each model has appropriate complementary perform-
ance and scalability characteristics. 



Additionally, in real servers using the RT signal queue, 
we’d like to be sure that queue overload recovery 
mechanisms (i.e. invoking poll() to clean up) do not 
make the overload situation worse due to poor perform-
ance. Even better, perhaps poll() can perform well 
enough relative to POSIX RT signals that we don’t have 
to relegate it to managing overloads. Note that the RT 
signal queue maximum length is normally set high 
enough (1024 by default) that it is never exceeded in 
today’s implementations. 

5. Benchmark 

Our test harness consists of two machines running 
Linux connected via a 100 Mbit/s Ethernet switch. The 
workload is driven by an Intel SC450NX with four 
500MHZ Xeon Pentium III processors (512Kb of L2 
cache each), 512Mb of RAM, and a pair of SYMBIOS 
53C896 SCSI controllers managing several LVD 
10KRPM drives. Our web server runs on custom-built 
hardware equipped with a single 400MHZ AMD K6-2 
processor, 64Mb of RAM, and a single 8G 7.2KRPM 
IDE drive. The server hardware is small so that we can 
easily drive the server into overload. We also want to 
eliminate any SMP effects on our server, so it is has 
only a single CPU. 

The benchmark clients are driven by httperf running 
on the four-way Pentium III [7]. The web servers are 
thttpd, a simple single-process event-driven web 
server that is easy to modify, and phhttpd, an experi-
mental server created to demonstrate the POSIX RT sig-
nal interface [9, 2]. 

The httperf benchmark client provides repeatable 
server workloads. We vary the server implementation 
and try each new idea with fixed workloads. We are 
most interested in static content delivery as that exer-
cises the system components we are interested in im-
proving. A side benefit of these improvements is better 
dynamic content service. 

Scalability is especially critical to modern network ser-
vice when serving many high-latency connections. 
Most clients are connected to the Internet via high-
latency connections, such as modems, whereas servers 
are usually connected to the Internet via a few high 
bandwidth low-latency connections. This creates re-
source contention on servers because connections to 
high-latency clients are relatively long-lived, tying up 
server resources, and they induce a bursty and unpre-
dictable interrupt load on the server [8]. 

Most web server benchmarks don’t simulate high-
latency connections, which appear to cause difficult-to-
handle load on real-world servers [5]. We’ve modified 
the httperf benchmark to simulate these slower con-
nections to examine the effects of our improvements on 

more realistic server workloads. We add client pro-
grams that do not complete an http request. To keep the 
number of high-latency clients constant, these clients 
reopen their connection if the server times them out. 

There are several system limitations that influence our 
benchmark procedures. There are only a limited number 
of file descriptors available for single processes; 
httperf assumes that the maximum is 1024. We 
modified httperf to cope dynamically with a large 
number of file descriptors. Additionally, we can have 
only about 60000 open sockets at a single point in time. 
When a socket closes it enters the TIMEWAIT state for 
sixty seconds, so we must avoid reaching the port num-
ber limitation. We therefore run each benchmark for 
35,000 connections, and then wait for all sockets to 
leave the TIMEWAIT state before we continue with the 
next benchmark run. 

Our benchmark configuration contains only a single 
client host and a single server host, which makes the 
simulated workload less realistic. However, our bench-
mark results are strictly for comparing relative per-
formance among our implementations. We believe the 
results also give an indication of real-world server per-
formance. 

A web server’s static performance depends on the size 
distribution of requested documents. Larger documents 
cause sockets and their corresponding file descriptors to 
remain active over a longer time period. As a result the 
web server and kernel have to examine a larger set of 
descriptors, making the amortized cost of polling on a 
single file descriptor larger. In our tests, we request a 6 
Kbyte document, a typical index.html file from the 
CITI web site. 

5.1 /dev/poll benchmark results 

Our first series of benchmarks measures the scalability 
of using /dev/poll instead of the stock version of 
poll(). We use httperf to drive a uniprocessor web 
server running thttpd. 

We run two series of tests. First, we test stock thttpd 
running on stock Linux 2.2.14, varying the load offered 
by httperf by adjusting the number of inactive con-
nections. The second test is the same, but replaces the 
kernel with a 2.2.14 kernel that supports /dev/poll, 
and replaces thttpd with a version modified to use 
/dev/poll instead of poll(). A subset of the results 
of these two series of tests is shown in FIGS. 4 through 
10. Each of these graphs represents data from a single 
run of the benchmark. 
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FIGURE 4. Normal thttpd using normal poll(), with one extra 
inactive connection. As expected, the server performs well when 
processing only active connections. After reaching a high enough 
request rate however, server performance breaks down as processing 
latency begins to exceed request rate. 
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FIGURE 5. thttpd modified to use /dev/poll, with one extra 
inactive connection. With no inactive connections, the modified 
server performs well at all request rates. Unlike stock thttpd, there 
does not appear to be any point where processing latency exceeds 
request rate. 

 

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y 
ra

te

targeted request rate with load 251

Average
Min
Max

 
FIGURE 6. Normal thttpd using normal poll(), with 251 extra 
inactive connections. As load caused by inactive connections in-
creases, processing latencies likewise increase. Server performance 
breaks down sooner, causing minimum response rates of zero in 
several places. 
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FIGURE 7. thttpd modified to use /dev/poll, with 251 extra 
inactive connections. With some inactive connections, the modified 
server performs almost as well as a server with no inactive connec-
tions. 
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FIGURE 8. Normal thttpd using normal poll(), with 501 extra 
inactive connections. Latency due to processing inactive connections 
dominates server performance for all request rates, causing poor 
performance and high error rates. 
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FIGURE 9. thttpd modified to use /dev/poll, with 501 extra 
inactive connections. Despite some response rate anomalies, the 
modified server manages a high inactive connection load with ease. 
Performance begins to break down at extreme high request rates. 
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FIGURE 10. Error rate reported by httperf for stock thttpd 
and for thttpd modified to use /dev/poll. httperf main-
tains 251 inactive connections during the test shown in the top graph, 
and 501 inactive connections during the test shown in the bottom 
graph. thttpd using /dev/poll runs the test with 251 inactive 
connections with no errors whatsoever. 

To simulate more realistic load on the server, we use an 
extra program to create inactive server connections. 
FIGS. 4 through 9 show the results of the benchmark for 
stock and modified thttpd with 1, 251 and 501 inac-
tive connections. The graphs on the left show the results 
for stock thttpd using normal poll(). The graphs on 
the right the results for thttpd modified to use 
/dev/poll. Each graph plots the average response rate 
with error bars showing standard deviation against the 
request rate generated by the benchmark client. Ideally 
the generated request rate should match the server’s 
response rate. The minimum and the maximum re-
sponse rate for each run are also provided for compari-
son. 

We observe a decrease in the average response rate as 
the number of inactive connections increases for both 
versions of thttpd. Some graphs show jumps in the 
maximum measured response rate while the minimum 
rate approaches zero, indicating that the server starves 
some connections. 

thttpd using /dev/poll fully or partially achieves 
the desired response rate for all offered loads, as indi-
cated by the data points showing maximum achieved 
response rate. On the other hand, the unmodified server 
is unable to maintain its throughput with increasing 
inactive connection load or increasing request rate. Its 
average response rate is smaller in all cases compared 
to /dev/poll. Banga and Drushel obtain a similar 
result [8]. 

FIG. 10 plots the percentage of connections aborted due 
to errors during runs with 251 and 501 inactive connec-
tions. Connection errors can result when the client runs 
out of file descriptors, when connections time out, or 
when the server refuses connections for some reason. 
For stock thttpd, the error rate increases slowly to 
60% of all connections. thttpd using /dev/poll 
experiences only sporadic errors. In fact, when using 
/dev/poll, we measured no connection errors for 
benchmarks with fewer than 501 inactive connections. 

Both the effective reply rate and the percent of connec-
tion errors demonstrate that thttpd using /dev/poll 
scales better than the unmodified version using 
poll(). 

5.2 Comparing event models 

Our second series of benchmarks is designed to com-
pare the benefits of an RT signal-based event core with 
an event core designed around poll(). If they scale 
complementarily, it makes sense to try a hybrid server 
that switches between the two, triggered by server load. 

FIGS. 11 through 13 illustrate the scalability of an un-
modified single-threaded phhttpd server running on 
custom-built hardware equipped with a single 400MHZ 
AMD K6-2 processor, 64Mb of RAM, and a single 8G 
7.2KRPM IDE drive. Our modified httperf client 
runs on an Intel SC450NX with four 500MHZ Xeon 
Pentium III processors (512Kb of L2 cache each), 
512Mb of RAM, and a pair of SYMBIOS 53C896 
SCSI controllers managing several LVD 10KRPM 
drives. Both machines are attached to a 100 Mbit/s 
Ethernet switch. The web server runs Linux 2.2.14 with 
complete support for RT signals back-ported from the 
2.3 kernel series. The benchmark client runs stock 
Linux 2.2.14. Both machines are loaded with the Red 
Hat 6.1 distribution. 
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FIGURE 11. phhttpd with 1 extra inactive connection. Perform-
ance at lower request rates compares with the best performance of 
other servers. Very high request rates cause the server to falter, how-
ever. We believe this is due to the system call overhead of processing 
RT signals. During high loads, this overhead slows the server’s ability 
to process requests. 
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FIGURE 12. phhttpd with 251 extra inactive connections. With 
some inactive connections present, the server reaches its performance 
knee sooner. Inactive connections appear to increase the overhead of 
handling active connections, something that we didn’t expect to find 
in a signals-based server implementation. This may be a problem with 
RT signals or with the phhttpd implementation itself. 

As with the earlier /dev/poll benchmarks, we vary 
offered load by fixing the number of inactive connec-
tions, then we gradually increase the client request rate 
and record the corresponding server response rate. We 
compare a single-threaded phhttpd configuration 
against thttpd, a single process web server. Compar-
ing FIGS. 11 through 13 with FIGS. 4, 6, and 8, clearly 
phhttpd outperforms the stock version of thttpd. 
However, comparing FIG. 11 to FIG. 5, we see that on 
the same hardware with few inactive connections, 
thttpd using /dev/poll responds more scalably to a 
higher load of active connections than does phhttpd. 
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FIGURE 13. phhttpd with 501 extra inactive connections. In this 
test, load due to inactive connections appears to affect server 
throughput at all request rate levels. Compared to the throughput of 
thttpd using /dev/poll, this server scales less well. 

The disparity between request and response rate in-
creases markedly as more inactive connections are 
added to phhttpd’s load. 

As FIG. 13 demonstrates, a heavy load of inactive con-
nections causes phhttpd to perform worse than 
thttpd using /dev/poll, even at low request rates. 
Because phhttpd is unfinished and experimental, we 
believe that further refinements to phhttpd can im-
prove its performance and scalability, but it is not clear 
whether it will perform better than thttpd based on 
/dev/poll. 

An important benefit of using /dev/poll is that it 
scales well when a large number of inactive connec-
tions is present. However, even without any inactive 
connections /dev/poll scales better for high request 
rates compared to either stock thttpd or phhttpd 
using RT signals. 

Another assumed advantage of RT signals is low la-
tency. FIG. 14 shows median server response latency, in 
milliseconds. Median response latency evenly divides 
all measured responses at that load into half that are 
slower than the indicated result, and half that are faster. 
This measurement is a good reflection of a client’s ex-
perience of a server’s responsiveness. We see in FIG. 14 
that phhttpd indeed serves requests with a median 
latency 1-3 milliseconds faster than the /dev/poll-
based thttpd server across a wide range of offered 
load. After sufficiently high load, however, phhttpd’s 
median response latency leaps to over 120ms per re-
quest, while thttpd’s response increases only slightly. 
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FIGURE 14. Median latency results of phhttpd with 251 extra 
inactive connections. For loads up to 900 concurrent httperf 
connections, phhttpd responds slightly faster than thttpd using 
/dev/poll. Above 900 concurrent connections, phhttpd’s con-
nection latency jumps to over 120ms, whereas thttpd’s latency 
remains fairly steady. This is another indication that thttpd scales 
better than phhttpd. 

6. Discussion and Future work 

Originally we intended to modify phhttpd to use 
/dev/poll for these tests. After examining phhttpd, 
however, we saw that it completely rebuilds its poll 
interest set when recovering from RT signal queue 
overflow, negating any benefit to maintaining interest 
set state in the kernel rather than at the application 
level. Each thread that manages an RT signal queue for 
a listener socket has a partner thread that waits to han-
dle RT signal queue overflow. When an overflow signal 
is raised, the thread managing the RT signal queue 
passes all of its current connections, including its lis-
tener socket, to its poll sibling, via a special UNIX do-
main socket. Considering that the server load is heavy 
enough to cause a queue overflow, the added work and 
inefficiency of transferring each connection one at a 
time and building a pollfd array from scratch will 
probably result in server meltdown. 

When load subsides, the current phhttpd server does 
not switch from polling mode back to RT signal queue 
mode. Brown never implemented this logic [11]. 

To use either poll() or /dev/poll efficiently in 
phhttpd, we need to re-architect it. The RT signal 
queue overflow recovery mechanism should operate in 
the same thread as the RT signal queue handler. Addi-
tionally, RT signal queue processing should maintain its 
pollfd array (or corresponding kernel state) concur-
rently with RT signal queue activity. This would allow 
switching between polling and signal queue mode with 
very little overhead. Using /dev/poll without re-
architecting this server won’t help it scale unless it 
maintains its interest set concurrently with RT signal 
queue activity. Completely re-architecting phhttpd is 

beyond the scope of this paper. Future work may in-
clude a reworked server based on RT signals and 
/dev/poll. 

Thus, modifying applications to use the /dev/poll 
interface efficiently requires more extensive changes to 
legacy applications than we had hoped. Applications of 
this type often entirely rebuild their pollfd array each 
time they invoke poll(), as phhttpd does. 

Application developers may be tempted to treat POSIX 
RT signals like an interrupt delivery system. When used 
with signal handlers, signal delivery is immediate and 
asynchronous. However, when they are left masked and 
are picked up via sigwaitinfo(), POSIX RT signals 
behave much like poll(). The information delivered 
by a siginfo struct is the same as that in a pollfd 
struct, and, like poll(), it is provided synchronously 
when the application asks for it. 

With poll(), however, the amount of data stored in 
the kernel is always bounded, because information 
about current activity on a file descriptor replaces pre-
vious information. However, managing this data in the 
kernel can become complex and inefficient as an appli-
cation’s interest set increases in size. 

The POSIX RT signal queue receives a new item for any 
connection state change in a given interest set, and this 
item is simply added to the end of a queue. This neces-
sitates a maximum queue limit and a special mechanism 
for recovering from queue overflow. Quite a bit of time 
can pass between when the kernel queues an RT signal 
and when an application finally picks it up. Sources of 
latency are varied: the kernel may need to swap in a 
stack frame to deliver a signal, lock contention can de-
lay an application’s response, or an application may be 
busy filling other requests. This means that a server 
picking up a signal must be prepared to find the corre-
sponding connection in a different state. Later state 
changes that reflect the current state of the connection 
may be farther down the queue. 

So, like the information contained in pollfd structs, 
events generated by sigwaitinfo() can be treated 
only as hints. Several connection state changes can oc-
cur before an application gets the first queued event 
indicating activity on a connection. Signals dequeue in 
order of their assigned signal number, thus activity on 
lower-numbered connections can cause longer delays 
for activity reports on higher-numbered connections. 

Another difficulty arises from the fact that the Linux 
threading model is incompatible with POSIX threads 
when it comes to catching signals. POSIX threads run 
together in the same process and catch the same signals, 
whereas Linux threads are each mapped to their own 
pid, and receive their own resources, such as signals. It 



is not clear how RT signal queuing should behave in a 
non-Linux pthread implementation. Certainly there 
are some interesting portability issues here. 

Several developers have observed that it is difficult to 
share a thread’s POSIX RT signal queue among non-
cooperative or black-box libraries [10, 11]. For in-
stance, glibc’s pthread implementation uses signal 32. 
If an application starts using pthreads after it has as-
signed signal 32 to a file descriptor via fcntl(), appli-
cation behavior is undetermined. There appears to be no 
standard externalized function available to allocate sig-
nal numbers atomically in a non-cooperative environ-
ment. 

Even when no signal queue overflow happens, the RT 
signal model may have an inherent inefficiency due to 
the number of system calls needed to handle an event 
on a single connection. This number may not be critical 
while server workload is easily handled. When the 
server becomes loaded, system call overhead may 
dominate server processing and cause enough latency 
that events wait a long time in the signal queue. To op-
timize signal handling, the kernel and the application 
can dequeue signals in groups instead of singly (similar 
to poll() today). We plan to implement a sigtimed-
wait4() system call which would allow the kernel to 
return more than one siginfo struct per invocation.  

Future work in this area includes the addition of support 
in phhttpd for efficiently recovering from RT signal 
queue overflow to the signal worker thread. A closer 
look at phhttpd’s overall design may reveal weak-
nesses that could account for its performance in our 
tests. The use of specialized system calls such as send-
file() might also be interesting to study in combina-
tion with the new RT signal model. 

There are several possible improvements to 
/dev/poll. Applications wishing to update their inter-
est set and immediately poll on that set must use a pair 
of system calls, write() followed by ioctl(). A 
single ioctl() that handles both operations at once 
could improve efficiency. Our backmap scheme could 
benefit from finer grained locking, as described earlier 
in this paper. Sharing the result map among several 
threads may make a shared work queue possible. Also, 
improving hint caching can reduce even further the 
number of device driver poll operations required to 
obtain accurate poll() results. 

A careful review of the current poll wait_queue 
mechanism might reveal areas for improved perform-
ance and scalability. Brown postulates that expensive 
wait_queue manipulation is where POSIX RT signals 
have an advantage over poll() [11]. The wait_queue 
mechanism is only invoked while no internal poll op-

eration returns an event that would cause the process to 
wake up. Once such an event is found and it is known 
that the process will be awakened, the wait_queue is 
not manipulated further. To avoid wait_queue opera-
tions, file descriptors that have events pending should 
be polled first. We plan to modify our hinting system so 
that active connections are checked first during a poll 
operation. Managing each interest set with more effi-
cient data structures in the kernel could improve 
performance even further. It may also help to provide 
the option of waking only one thread, instead of all of 
them. 

7. Conclusion 

Because of the amount of work required to poll effi-
ciently in phhttpd, we were unable to directly test our 
theories about hybrid web servers for this paper. How-
ever, it is clear that, for our benchmark, thttpd using 
/dev/poll scales better than single-threaded phhttpd 
using RT signals at both low and high inactive connec-
tion loads. Once the number of inactive connections 
becomes large relative to the number of active connec-
tions, the difference in performance between polling 
and signaling exposes itself across all request rates. 
Latency results at lower loads favor phhttpd. As load 
increases, however, thttpd using /dev/poll main-
tains stable median response time, while phhttpd me-
dian response time increases by more than an order of 
magnitute. Surprisingly, it may never be better to use 
RT signals over a properly architected server using 
/dev/poll. 

The POSIX RT signal interface is young, and still evolv-
ing. Today’s signals-based servers are complicated by 
extra processing that may be unnecessary once devel-
opers understand RT signals better, and when OS im-
plementations have improved. We expect further work 
in this area will improve their ease of use, performance, 
and scalability. 

Software enhancements described herein are freely 
available. Please contact the authors for more informa-
tion. 
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