Proceedings of FREENIX Track:
2000 USENI X Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

THE GNOME CANVAS: A GENERIC ENGINE
FOR STRUCTURED GRAPHICS

Federico Mena-Quintero and Raph Levien

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The GNOME Canvas: a Generic Engine for Structured Graphics

Federico Mena-Quintero
Helixz Code, Inc.
federico@helixcode.com

Raph Levien

Code Art Studio
raph@gimp.org

Abstract

The GNOME canvas is a generic engine for struc-
tured graphics that offers a rich imaging model, high
performance rendering, and a powerful high-level
APIL. Application programmers can use the canvas
to create interactive graphics displays easily. Many
GNOME applications use the canvas as their main
display engine, some of them using the basic func-
tionality provided by the canvas, and others by ex-
tending it for their particular needs. This paper de-
scribes the architecture of the canvas in detail and
examines the way it is used in several GNOME appli-
cations.

1 Introduction

The GNOME canvas is a generic, high-level engine
for creating structured graphics. A canvas is a win-
dow that contains a collection of graphical items,
including lines, polygons, rectangles, ellipses, and
text. The term structured graphics means that you
can place these graphical items in the canvas and
refer to them later to change their attributes. For
example, a program could place a white rectangle
at some specific position, and later in its execution
it could change the color, position, or any other at-
tribute of the rectangle. The canvas would then take
care of all redrawing operations.

Items inside a canvas can be organized in a tree of
nested groups which are nodes in the tree, and ter-
minal items which are leaves in the tree. The canvas
allows arbitrary affine transformations like rotation,
scaling, and translation to be applied to items and
groups; if a transformation is applied to a canvas

group, then all of its children will be transformed
accordingly. This tree organization makes it easy to
create hierarchical drawings.

The GNOME canvas has an open interface that allows
applications to create their own custom canvas item
types. This means that the canvas can work as a
generic display engine for applications. One of the
following sections in this paper describes case-by-
case examples of the use of the canvas in different
GNOME applications.

The canvas has multiple rendering backends, one
for rendering using GDK to plain X drawables[4],
one for rendering using high-quality antialiasing and
transparency, and one for sending the contents of
the canvas to a printer.

This paper describes the architecture of the canvas
and its high-quality imaging model, and presents
some examples of the use of the canvas in differ-
ent GNOME applications. It also describes some of
the future directions for development of the canvas
display engine.

2 Architecture of the Canvas

The GNOME canvas was originally based on the can-
vas widget in the Tk toolkit[9], which is in turn
based on Joel Bartlett’s ezd program, which pro-
vides structured graphics in a Scheme environment.
The main enhancements that the GNOME canvas
provides to the original Tk design are integration
with the GTK+ object and signal/slot system[5],
nested groups of items, generalized affine transfor-
mations, and a high-quality antialiased rendering
mode. From the standpoint of the user, the can-

vas presents the following characteristics:

e The user is able to create graphical items like
lines, boxes, ellipses, and text, place them on
the canvas, and refer to them later for manip-
ulation. The attributes of an object can be
changed at any time; these include the color
if the item, its line style, and its position.

e Canvas items receive events just as if they were
normal X windows or other GTK+ widgets. Ap-
plications receive these events with the normal
signal/slot system in GTK+. An application
can then connect to the event signals of its can-
vas items and define the particular behavior it
requires. Common actions include moving an
item when the user clicks and drags it with the
mouse, or highlighting an item by changing its
color when the mouse pointer enters the area
occupied by the item.

e Items can be grouped together in canvas item
groups, and these groups can be nested within
each other to form a tree structure. A canvas
has a single root group which does not have a
parent. Operations such as deleting or moving
a group apply to all its items, thus making it
easy to create hierarchical drawings. It also has
performance advantages since the canvas can
use recursive bounding boxes to cull out items
for drawing and hit testing operations.

e Items support arbitrary affine transformations,
so they can be translated, scaled, rotated, and
sheared in any way. Affine transformations ap-
ply to item groups as a whole, so the children
of a group will obtain the same base transfor-
mation as its parent.

e The zooming factor of the canvas can be
changed at any time, and the canvas will handle
all scrolling issues by itself.

e The canvas takes care of all drawing operations
so that it never flickers, and so that the user
does not have to worry about repainting the
items he wants to display.

2.1 Canvas Items and the ¢TK+ Object
System

Canvas items are GTK+ objects derived from an
abstract GnomeCanvasItem class, which defines sev-
eral methods that all items must implement. These

methods are used to perform drawing, hit testing,
and updating of items when their attributes change.

Using the GTK+ object system for canvas items pro-
vides several advantages:

e No extra work is involved in wrapping them
for different language bindings, since GTK+ ob-
jects and their attributes are wrapped automat-
ically by most bindings.

e Canvas items use the usual signal/slot mech-
anism to emit events, making it easy for the
programmer to define behavior for the items.

e One can associate arbitrary data items to can-
vas items, via the GTK+ dataset mechanism.

All the attributes of canvas items, like color, posi-
tion, and line style, are configured and queried using
the GTK+ object argument system. Canvas items
may have many configurable attributes, so using the
argument system allows us to minimize the number
of API entry points, and also makes it easy to write
language bindings for the canvas and its items —
all canvas item attributes can be configured using a
single function call.

2.2 Grouping of Items

Items in the canvas are organized in a tree hierar-
chy. Items can be groups, which are nodes in the
tree, or terminal items, which are leaves in the tree.
Groups can contain any number of children, which
can in turn be terminal items or other groups. Items
can thus be nested to an arbitrary depth inside the
canvas, making it easy to create hierarchical draw-
ings.

A canvas has a single root group. For very simple
drawings or diagrams, the programmer may want
to put all items directly under the root group. For
more complicated, structured drawings, it will be
convenient to create a hierarchical organization —
a circuit editor may want to represent an adder as
a group of basic logic gates, which in can in turn
be groups of primitive canvas items like lines and
rectangles.

The bounding box of a canvas group surrounds all of
its children, so drawing and hit testing operations

can be made more efficient by recursive culling of
items.

Items inside a group are stacked on top of each
other, and items that are higher up in the stack
obscure the items below them. The canvas provides
functions to change the stacking order of items by
raising or lowering them within their parent group’s
stack.

2.3 Behavior of Items

The canvas does not have any predefined behavior
for items. Instead, the programmer will connect to
the event signals of the different canvas items, cap-
ture events from the user, and define whatever be-
havior is appropriate to the application.

When an event signal is emitted for an item, it is
propagated up the item hierarchy and re-emitted for
its parent groups until one event handler marks the
event as ‘handled’. This allows the user to treat a
group of items as a single meta-item; only a single
signal connection is required to receive events from
any of the items in a group.

Items can receive the following events: button
presses and releases, pointer motion events, key
presses and releases, focus in/out events, and mouse
enter /leave notifications. Thus, items are very simi-
lar to normal GTK+ widgets or X windows from the
programmer’s point of view.

2.4 Delayed Update/Redraw Model

One of the goals of the canvas is to eliminate flicker
when drawing items. Flicker is caused when an area
is repainted multiple times with different colors; for
example, a stack of colored rectangles would flicker if
it were painted directly to the screen, one rectangle
after another.

The canvas solves this problem by using a special
form of double-buffering. When an area of the can-
vas needs to be repainted, the following actions take
place:

1. The canvas creates a temporary, offscreen
pixmap with the same size as the area that
needs to be repainted.

2. If an item’s bounding box intersects the area
that needs to be repainted, the canvas asks the
item to paint itself to the pixmap created in
(1). The canvas thus walks the tree of items in
the normal Z-order.

3. The canvas does a bitblt of the pixmap to the
screen and destroys the pixmap.

The visual effect is that the whole area is painted
simultaneously, eliminating all flicker.

This process actually takes place during the idle
loop of the application. Repainting the canvas in
the idle loop means that at that point all interac-
tion between the application and canvas items is
finished, i.e. the application literally has nothing
else to do, so it is appropriate to flush all pending
redraws.

2.4.1 Delayed Updates

We have not explained how the canvas actually fig-
ures out the area that needs to be repainted. Let us
consider a few simple cases:

1. A solid-colored rectangle with dimensions
(w,h) is translated with offsets (dz,dy) such
that |dz| < w and |dy| < h. In this case, the
minimal redraw area consists of two L-shaped
regions that are the symmetric difference be-
tween the old and the new rectangles (see Fig-
ure 1).

Figure 1: When a solid-colored rectangle moves, the
redraw area consists of two L-shaped regions.

2. A solid-colored rectangle changes color. In this
case, the whole area occupied by the rectangle
needs to be redrawn.

3. A solid-colored circle changes radius. The min-
imal redraw area thus consists of the donut-
shaped region which is, again, the symmetric
difference between the old and new circles.

4. Some characters in a string of text are changed,
for example, when the user is editing a label. If
the string is drawn using a monospaced font,
the minimal redraw area consists of the area
occupied by the characters that changed. If
the string is drawn using a proportional font,
the redraw area will be more complicated.

One of the goals of the canvas is to compute the
minimal redraw area for each operation. This is
important because we wish to make the final bitblt
operations as small as possible; experiments have
shown that memory bandwidth tends to be a bigger
problem than CPU speed.

Canvas items have two important methods,
::update() and ::draw()!. The former is repon-
sible for calculating the area that needs to be re-
drawn when the item’s attributes change, and the
latter gets called when the final redraw area has
been computed by the canvas and an item needs to
paint itself.

The full sequence of operations that starts when an
item’s attributes are changed and ends when the
canvas paints to the screen is as follows:

1. A state change happens in a canvas item, usu-
ally from direct manipulation through the user
interface. An item may thus change attributes
like color or position.

2. The canvas item stores an iternal flag saying
that it needs to change one of its attributes, and
also stores the necessary information to change
that attribute. For example, an item may store
“I need to change my fill color to blue”, or “my
radius changed to 7.5 units”.

3. The canvas item then queues an update from
the canvas using the gnome_canvas_item_-
request_update() function. The canvas in-
stalls an idle handler on the GTK+ main loop.

4. The application keeps running, possibly re-
questing attribute changes from other items,
until it finishes its work and all its interaction-
related tasks, and gets back to the idle loop.

tems actually have ::draw() for canvases in GDK mode,
and ::render() for canvases in antialiased mode. However,
both methods are responsible for drawing the item, so we will
refer to them generically as “::draw()”.

5. The idle handler for the canvas is run. The can-
vas calls the : :update() method of each item
that requested an update.

6. The ::update() method for an item flags the
item as no longer needing an update. It should
recalculate the item’s internal state based on
the flags set in step 2, for example, by chang-
ing colors or line styles in an X graphics con-
text (GC). This method is also responsible for
recomputing the item’s bounding box if the
item’s bounds changed. Then, it should queue
a redraw from the canvas based on its new
state. We will later describe how this area is
represented.

7. After all items that need it have been updated,
and as such they have recomputed their bound-
ing boxes and queued the appropriate redraws,
the canvas calls the ::draw() or ::render()
method of items that need it. This method is
passed a temporary pixmap in the case of a
canvas in GDK mode, or an RGB pixel buffer in
the case of an antialiased canvas.

8. The canvas is now fully updated and redrawn,
and the application continues to run.

As we have seen, the : :update () method is respon-
sible for doing housekeeping work like changing GC
colors and line styles, recomputing an item’s bound-
ing box, and queueing the proper redraws. This
method is called from the canvas’ idle handler. The
reason for delaying GC updates and the like to the
idle loop is that an application may change many
attributes of a canvas item before getting back to
the idle loop; if the item changed GCs or recom-
puted its bounding box for every time an attribute
was changed, this could turn into a performance
problem, since many such operations are expensive.
Delaying all the updating work until the idle loop
means that the application’s interaction with items
has finished, so the items know their final state at
that point and can compute the most efficient way
to do their respective updates.

3 The Libart Imaging Model

Up to now we have discussed the way the GNOME
canvas operates internally. In this section we will
describe the imaging model the canvas supports.

Libart is a library that provides a superset of the
PostScript imaging model[2], and it extends it with
support for antialiasing and alpha transparency.
This means that the edges of graphics primitives
such as Bézier paths are smoothed out to elimi-
nate jaggies. Also, such primitives and images can
be rendered and composited together using trans-
parency information.

Libart is quite similar in design and scope to
such “next-generation” imaging models as Adobe’s
Bravo[l], the Java 2D API[10], Adobe’s Preci-
sion Graphics Markup Language (PGML)[11], and
the W3C’s Scalable Vector Graphics Specification
(SVG)[12].

The GNOME canvas uses Libart to render its prim-
itives when it is in antialiased mode. Also, it uses
Libart’s microtile arrays, described below, to repre-
sent the areas that need redrawing.

The following sections describe the main features of
libart.

3.1 Vector Paths

Libart’s vector paths are built from the familiar
PostScript opcodes such as moveto, lineto, and
curveto. Paths can be composed of multiple closed
sets of segments and thus have holes in them. Paths
can also cross themselves any number of times.

3.2 Sorted Vector Paths

A sorted vector path, or SVP, is a processed version
of a normal vector path such that it satisfies the
‘nocross’ property, that is, it does not have cross-
ing segments and retains the same winding number
as the original vector path. Also, its segments are
sorted so that they have monotonically-increasing y
coordinates. This allows for very efficient render-
ing, since the segments can be traversed in scanline
order.

3.3 Antialiased Rendering

Sorted vector paths can be rendered using “perfect
resolution”, as opposed to the common technique

of rendering a higher resolution bitmap and averag-
ing down. The SVP precomputation step is impor-
tant because it allows a vector path to be rendered
multiple times very quickly; canvas items compute
their vector paths in the ::update() method, con-
vert them to SVPs, and store these so that they can
re-render the SVPs quickly if needed.

3.4 Outline Stroking

This is the computation of stroke outlines for vec-
tor paths. The standard PostScript technique is to
render each segment of the stroke separately, using
small “miter joints” added at each corner. However,
this technique is not ideal for antialiased rendering
because the resulting number of polygons is large,
and the adjoining polygons can produce seams and
other artifacts.

Libart creates stroke outlines by computing inner
and outer contours around the original vector path,
and then performing a boolean union on them. This
union operation cleans up any intersections or over-
laps of the stroke. The result is a pure vector path
that can be efficiently rendered with the usual algo-
rithm. This is faster and visually more precise than
rendering each segment of the stroke separately.

The stroking algorithm supports the same line join
and cap options as PostScript.

3.5 Vector Path Operations

Libart can perform intersection (clipping), union,
difference, and symmetric difference of vector paths.
The latter is especially important for exact compu-
tation of redraw areas in the canvas.

3.6 Raster Images

Libart supports affine transformations for raster im-
ages, so they can be scaled, rotated, and sheared in
any way. It also supports full alpha transparency for
images and special gamma correction for opacity.

3.7 Microtile Arrays

An important requirement for the canvas is to have
an efficient representation of the area that needs to
be redrawn. This area can be disjoint and poten-
tially very complex, since items can be scattered
across the canvas area and one would wish to avoid
painting a single large bounding box for all of them.

Microtile arrays are a simple data structure for rep-
resenting 2D regions, suited to representing redraw
areas.

The array divides the area into a grid aligned on
32-pixel boundaries. Within each grid square is a
bounding rectangle, the microtile. Since all coordi-
nates in the microtile are in the range [0, 32], 8 bits
are more than sufficient for each coordinate. Since
each microtile requires four coordinates to represent
its bounding rectangle, each microtile can be conve-
niently represented with a 32-bit value.

Figure 2 presents the microtile representation of a
complex area. The polygon defines the covered area.
The shaded region represents the individual mi-
crotiles; each microtile is the bounding box within a
grid square that surrounds the covered area. For the
final redrawing operation, adjacent microtiles are
combined together into bigger rectangles, shown as
thicker outlines in the diagram. Each of these rect-
angles is then calculated and drawn to the screen.

Microtile arrays have many advantages which make
them ideal for the canvas widget. First, the data
structure is compact; a microtile array for a 640 x
480 window requires only 1200 bytes. Second, it can
be manipulated very quickly; the sample polygon in
Figure 2 is calculated in about 1.2 ms on a 233 MHz
PII. Third, the resulting microtile array is easily
decomposed into rectangles.

Rectangle decomposition has several desirable prop-
erties, including a bounded number of rectangles —
no more than 300 for that 640 x480 image, no matter
the complexity of the area. Also, rectangles tend to
align on 32-pixel boundaries, which can speed things
down the rendering pipeline.

In the context of the GNOME canvas, items can
queue their redraw areas in any of three ways: they
can specify an explicit microtile array, in which case
it is added to the canvas’ current redraw area; they
can request that a rectangular area be redrawn, and

Figure 2: Microtile array that represents the area
occupied by a complex polygon. Each little bound-
ing box, or microtile, fits within a grid square. Mi-
crotiles are later coalesced into bigger rectangles
suitable for redrawing.

so the canvas converts that rectangle to a microtile
array; or they can specify a sorted vector path as the
redraw area, which is again converted to a microtile
array.

3.8 Miscellaneous Utilities

Libart provides miscellaneous functions to han-
dle affine transformations, points, and rectangles.
Affine transformations can be applied to vector
paths or raster images. Rectangles are used to rep-
resent bounding boxes and other things that are use-
ful to the canvas and applications in general.

3.9 The Updating
Pipeline

and Rendering

Figure 3 presents an illustration of the updating and
rendering pipeline of the canvas. The steps are as
follows:

1. The first step is to cause a state change in a
canvas item, usually from direct manipulation
through the user interface.

2. Identify the deltas, or the parts of the display
that have actually changed. This is done in the
: :update () method of canvas items.

3. Represent the deltas as a microtile array. Each
microtile is a small rectangle that needs updat-
ing.

4. The microtile array is decomposed into bigger
rectangles for more efficient redrawing.

5. Fifth and sixth, repeated for each rectangle
from (4), canvas items are rendered in their
normal stacking order, culling them against the
bounding boxes defined in (4), and are dis-
played in the canvas window.

4 Applications that Use the GNOME
Canvas

This section describes how different GNOME appli-
cations use the canvas as their display engine.

4.1 Gnumeric

Gnumeric is the GNOME spreadsheet program[7]. It
uses the canvas as its main display engine to allow
for easy event handling, extensibility through com-
ponents, and flicker-free display.

Gnumeric defines several custom canvas item types:

e An TtemGrid item which takes care of display-
ing all the cells in the spreadsheet. This draws
the actual grid and the cell contents, with sup-
port for different fonts and colors.

e An TtemCursor item that takes care of dis-
playing the specialized selection and active cell
combo ‘cursor’, as well as its decorations. The
selection has a thick outline which the user can
drag to move cells around, and it also has a lit-
tle rectangle that can be used for the auto-fill
function.

e An ItemBar item that displays row and col-
umn headings for the spreadsheet. The user
can drag the edges of the “buttons” that repre-
sent rows and columns to resize these. The user

can also click and drag on the buttons them-
selves to select whole rows or columns in the
spreadsheet.

In addition, Gnumeric uses some of the primitive
canvas item types such as rectangles, ellipses, and
lines to display miscellaneous elements of the user
interface.

4.2 Gnome-PIM

Gnome-PIM is the GNOME personal information
manager, which consists of a calendar and a con-
tact manager or addressbook.

The calendar program needs to present many in-
teractive graphics displays, such as monthly calen-
dars with captions for appointments, yearly calen-
dars with marked busy days, and other views for
weeks and days.

The contact manager program needs to display a
familiar representation for “business cards”, or the
data that describes a personal contact.

Instead of drawing all of these displays by hand,
Gnome-PIM uses the canvas to create these displays
out of primitive canvas items such as lines and rect-
angles. This allows the application to invest more
effort in event handling to give the best possible
experience to the user, while leaving all the tricky
display issues to the canvas.

4.3 Evolution

Evolution is the next-generation mail and group-
ware program for GNOME. The mailer requires many
complex displays such as a hierarchical view of mail
folders with previews of the first few lines of mail
messages; the rest of the PIM-related modules re-
quire calendar and business card displays.

Evolution defines an ETable canvas item that imple-
ments a model/view/controller abstraction for the
display of tabular data. Custom cell renderers can
be plugged into this item, turning it into a general-
purpose grid display. The canvas allows this com-
plex item to do flicker-free display easily.

Some of the information displays used in Evolution

€y

1. State change to item 2. Calculate region changed

3. Microtile repaint area 4. Decompose into rectangles

iterate for each rectangle in the decomposition

| |

5. Render each item into rectangle, bottom up

Oeanvas [=]a]

)

6. Display in window

Figure 3: The updating and rendering process

are very complex, as they need to present the user’s
personal information in a convenient way. The can-
vas allows Evolution to concentrate on presentation
and user interface issues rather than mundane tasks
such as redrawing and event handling.

4.4 Eye of Gnome

The Eye of Gnome program is the GNOME image
viewing and cataloging program. It uses the canvas
for its main image display, and it defines a custom
canvas item that can do extremely fast scaling of
images suitable for an image viewer.

EOG also defines a model/view/controller abstrac-
tion for “wrapped lists”, and in turn implements an
icon or thumbnail view for large sets of images. It
uses special techniques so that only the icons and
captions that fit in the canvas window actually ex-
ist as canvas items; these are created and destroyed
on the fly as the icon list is scrolled and updated.

The canvas allows for easy event handling, and with

the delayed update model, also allows for on-the-fly
loading and generation of thumbnails.

4.5 Gnome-print

Gnome-print is the GNOME printing framework. It
uses the Libart imaging model so that applications

can enjoy the same rich imaging model as the can-
vas’ for printing.

In addition, there is a special printer driver for
Gnome-print that takes in all the PostScript-like
commands and creates canvas primitives for them
instead of sending them directly to a printer de-
vice. Thus, whatever the application prints is trans-
formed to Bézier paths that appear as items in a
canvas. This can be used as a simple “print pre-
view” widget by applications. The canvas allows
automatic zooming and scrolling, so applications do
not have to be modified at all to support a high-
quality print preview.

4.6 Illustration programs

Sodipodi is a powerful illustration program that uses
the antialiased canvas for its display. It uses many
Libart operations to do computations on Bézier
paths.

Gill is a testbed for illustration-related tasks. It
parses SVG files and creates the corresponding
Bézier, image, text items in the canvas. One of its
goals is to support external manipulation of objects
via the DOM.

4.7 BEAST

BEAST is a music program that uses BSE, the Be-
deviled Sound Engine. It uses the canvas to dis-
play filter pipeline graphs and envelope functions
for waveforms.

4.8 Gnoghurt

Gnoghurt is a toy program to create video filter
pipelines. It uses the canvas to let the user edit
these pipelines in an easy way. Gnoghurt provides
fruit at the bottom, and must be stirred before eat-
ing.

5 Future Work

The canvas has some room for improvement. Here
are some of the possible directions in which it may
be extended in the future:

e The W3C’s Scalable Vector Graphics Specifica-
tion, or SVG, supports fully hierarchical clip-
ping and opacity adjustment. For example, a
whole group of items may be clipped by the
result of performing boolean operations on an-
other group of items. Also, the alpha trans-
parency value for a whole group can be changed
simultaneously.

The canvas could be extended to support these
operations. Groups are already rendered re-
cursively, so controlling the alpha value for a
group would be a matter passing the parent’s
alpha value to its children The result would
later be composited onto the group’s parent’s
buffer, and so on recursively. Clipping with the
result of boolean operations on other groups is
more complex, but can be represented in a hi-
erarchical fashion similar to the canvas’ current
organization.

e Right now the Bonobo component system][3]
can be used to proxy canvas items to remote
components. This allows for embedding of non-
rectangular components in documents. How-
ever, this is not as efficient as it could be.

The delayed update/redraw model of the
GNOME canvas assumes synchronous updating

and redrawing of individual canvas items, so
this is not very efficient for a distributed setting
where multiple components may be running on
different machines or even on a single multi-
processing machine. The canvas could be ex-
tended to support fully asynchronous updates
and redraws, asking items to draw themselves
in parallel to temporary buffers which would
be composited on the fly as they arrive to the
parent canvas.

This would allow components running on dif-
ferent processors to draw themselves in paral-
lel and notify the toplevel canvas when they
are finished; the canvas would then composite
their buffers to form the final result that would
be displayed on the screen.

6 Acknowledgments

The GNOME canvas is a collaborative effort. The
original version of the canvas was based on the Tk
canvas widget. Federico Mena adapted it to the
GTK+ object system and extended it with hierar-
chical groups. Raph Levien wrote the Libart engine
and extended the original, GDK-only canvas to sup-
port it.

Many people have contributed with ideas and bug
fixes to the canvas. The Gnumeric hackers provided
excellent bug reports, and coped with our delays
in fixing them. Tim Janik pointed out the most
bizarre bugs in the antialiased canvas. Owen Taylor
provided the scrolling backend for the canvas and
was always knowledgeable and helpful with the in-
tricacies of the X window system.

Red Hat, Inc. funded a large part of the develop-
ment of the canvas, and provided a fun work en-
vironment and knowledgeable people. Helix Code,
Inc. funded mainteinance work of the canvas.

7 Availability

The GNOME canvas is part of the standard gnome-
libs package, which consists of the core libraries in
GNOME. It can be obtained from ftp.gnome.orgor
from the GNOME CVS repository at cvs.gnome.org.

Documentation for the canvas is available at
http://developer.gnome.org.

References

1]

2]

[10]

[11]

[12]

Adobe Systems, Inc., Bravo Technology An-
nouncement.

Adobe Systems, Inc., PostScript Language
Reference Manual, third edition, Addison-
Wesley, 1999.

The Bonobo Component, Framework,
http://developer.gnome.org/arch/-
component/bonobo.html,
http://developer.gnome.org/doc/-
guides/corba/bookl.html.

The ¢iMP Drawing Kit (GDK),
http://www.gtk.org,
http://developer.gnome.org/arch/gtk/-
gdk.html.

The c¢imp Toolkit (GTK+),
http://wuw.gtk.org,
http://developer.gnome.org/arch/gtk.

GNU Network Object Model Environment
(GNOME), http://wuw.gnome.org.

Miguel de Icaza, The Gnumeric Spreadsheet:
a Test-Bed for Component Programming, Pro-
ceedings of Linux Expo 1999,
http://www.gnome.org/gnumeric.

Raph Levien, GtkCaanvas and the Next Gen-
eration of User Interfaces, Proceedings of
Linux Expo 1999.

John Ousterhout, Tecl and the Tk Toolkit,
Addiwon-Wesley, 1994.

Sun Microsystems, Java 2D API,
http://www. javasoft.com/products/-
java-media/2D/index.html.

World Wide Web Consortium, Precision
Graphics Markup Language Specification
(PGML),
http://wuw.w3.org/TR/1998/NOTE-PGML.

World Wide Web Consortium, Scalable Vector
Graphics Specification (SVG),
http://www.w3.org/Graphics/SVG.

