Proceedings of FREENIX Track:
2000 USENI X Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

LAP: ALITTLE LANGUAGE FOR OS EMULATION

Donn M. Seeley

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

LAP: alittlelanguage for OS emulation

Donn M. Seeley
Berkeley Software Design, Inc.

ABSTRACT

LAP, the Linux Application Platform, is a Linux emulation package for BSD/OS which uses a “little language”
[Salu98] to describe transformations from Linux data types and values to BSD/OS data types and valiges, and
versa. The little language simplifies and regularizes the specification of transformations, making the emulation eas-
ier to maintain. This paper describes the language and its place in the framework of LAP.

1. Introduction * The operating system assigns numbers to system

The Linux Application Platform is a package of soft- cglls, S|gnal§ and error conditions, and BSD/OS and
ware that allows Linux [Linu00] applications to run Linux use different numbers. o

under BSD/OS [BSDIO0]. Although BSD/OS and ° The POSIX application programming interface
Linux share a common executable file format (the Unix €duires certain abstract data types, which are
ELF format [Unix90]) and a common Unix-like pro- ~ defined using the @ ypedef mechanism. The
gramming interface (based on the IEEBSIX inter- BSD/OS and Linux systems use different real types
face [IEEE96]), they differ in the way that applications ~ fOF these data types for some interfaces. For exam-
communicate to the operating system kernel, and they Pl theuid_t type describes user ID values; in
differ in the sizes and structure of their data types. The BSD/OS, these values are unsigned 32-bit integers,
LAP software dynamically converts Linux data types While in Linux these are unsigned 16-bit integers.
into BSD/OS data types andce versa, and it substi- * The POSIX API also requires certain aggregate data

tutes a BSD/OS kernel interface for the application’s YPes which correspond &1 ruct data types in C.
Linux kernel interface. The order of elements or the types of elements in a

i struct may be different in BSD/OS and Linux.
The LAP software usesansformations to convert data For example, the file status structster uct st at

types, system call numbers and other parameters i, BSp/OS puts the timestamps before the sizes,
:)etvye? Li;ux antgl B|SD/OS. T[ﬁ?siormationsl ari Writ- \vhile in Linux the sizes come first.

en in atransformation language. The language looks a .
lot like C [ANSI89]; the inspiration for its syntax 2.2. Why use atransformation language?
comes fromlex [Lesk75]. The language specification The most important reasons for using a transformation
tries to make the most common transformations also blanguage are reliability and maintainability.

the simplest ones to specify. Many transformations c@kpe transformation language makes transformations
be described by a simple C prototype declaration. reliable by removing opportunities to commit errors in
In the sections below, we’'ll discuss some of the desigispecifications. BSD/OS also has an emulation for SCO
issues that we considered when writing the LAP softUnix SVr3.2; it uses a very primitive transformation
ware, and we'll introduce some of the features andable that required a lot of hand-composed support

describe how they work. code. While the SCO emulation’s transformations were

reasonably well structured, using strict conventions for
2. Motivation naming, parameter types and ordering, errors crept in,
2.1. Why do we need transformations? and the errors were sometimes very difficult to diag-

nose. A transformation compiler makes a lot of the

Here are a few examples of the differences betweeqngchanical” work truly mechanical, reducing a class
BSD/OS and Linux which require transformation: of errors.

* BSD/OS follows the Unix Application Binary Inter- the ransformation language makes transformations
face standard [Unix90] for system calls, using the gintainable by making them familiar and easy to read.
! cal I instruction to 'Fransfer con'trol tp the qperat- The language looks like C and (for the most part) works
ing system kernel. Linux uses thet instruction |ixe C: it's straightforward to read a transformation, and
to transfer to the kernel, which generates a softwarg:g usually obvious what it does. When transforma-
interrupt, more like MS-DOS. tions are composed by hand, they are more difficult to

read and understand, and hence the code is harder to filebugging is simpler, and that it's unlikely that an error
Of course the transformation compiler itself can haven LAP software will cause the operating system to
bugs, but its bugs usually affect groups of system callsrash.

rather than individual system calls, so they are easier to

spot. 3. The LAP software

Other applications have used specialized languages f@efore going into details of the transformation lan-
similar reasons. The original idea for the LAP transfor-guage, let’s briefly look at the big picture - what is LAP
mation language comes from code template languagesd how does it work?

for compilers. The first such code template language Ap changes the execution environment for Linux
that | used appeared n the Ritchie C compiler for 6thyyhjications so that they can satisfy their requests for
Edition Unix [Ritc79]; the Portable C Compiler gonjices using the native BSD/OS kernel, rather than a
[John79] and the GNU C Compiler [Free00] also have iy kerel. LAP's operation is based alynamic

code template languages. One very direct inspiratiorﬁnking [Ging89]. When a Linux application runs, the
was the master system call table in BSD-derived Operabperating system loads it into virtual memory along
ing systems (sys/ kern/ syscal | s. mast er). with a separate program known as the dynamic linker or
.. Id.so. The dynamic linker is responsible for loading
2.3. Design issues shared libraries, which are collections of useful
The principal design goals for LAP were to: executable code that the application needs in order to
communicate to the operating system (among other
things). LAP replaces the Linux dynamic linker with a
lightly modified version that can make native BSD/OS
system calls, and interposes a library namigidnux in
front of unmodified Linux libraries. Thdiblinux
library overrides the Linux libraries and causes the

Keep the specification simple: If we can make the ,npjication to make calls into the native BSD/OS kernel
specifications for most transformations very simple,aiher than into a Linux kernel.

then we are likely to commit fewer errors when writing
transformations. Also, the effort of writing transforma-
tions is reduced.

« keep the specification simple

« keep the implementation simple

* make few modifications to Linux code

« maintain efficiency

« avoid burdening the operating system kernel

Both the modifiedld.so and liblinux are built from
source code written in C, assembly language and the
])) transformation language. A separatmnsformation
Keep the implementation smple: The code usesyBcC compiler converts the transformation language into C,
parser [John75] ano! Bex scanner to implement the \hich is in turn compiled by the native C compiler.
transformation compiler. The output of the transforma+ ap goes not create or interpret transformations at run-
tion compiler is more-or-less readable C, which we thegjpe. Apart from its own libraries, LAP does not use
compile using GCC. We use Berkeley DB [Ols099] 10 5y native BSD/OS libraries - all other shared libraries
hold symbol databases. By using tools and keeping thg, the | AP environment are unmodified Linux libraries.
code simple, we leave fewer opportunities for mistakes

and spend less time on maintenance. 4. Thetransformation language

Make few modifications to Linux code: - By interposing The transformation language resembles C, with inspira-
a relatively small number of low-level interfaces in tjon from lex. Source code in the transformation lan-
front of actual Linux shared libraries, we reduce theguage is translated into C by theansform program.
chances that we will interfere with interactions betweerBy convention, source code files for transformations
the application and the libraries, and we reduce thenq in the suffix x, while headers for transformation
amount of work that we set for ourselves. sources end inxh. Transformations describe how to
Maintain efficiency: We try to avoid design decisions convert between Linux data types and system calls, and
that would cause us to add overhead by requiring us 8SD/OS data types and system calls.

block signals to protect internal data structures or makgg gn example, here is a transformation forghat ()
other expensive accommodations. system call:

Avoid bUrdening the Operating system kernel: We want int stat(const char *nane, struct stat *buf);

to avoid changes to the BSD/OS kernel to support

Linux emulation. This means that extra kernelGiven the appropriatet at. xh header, this transfor-
resources don't need to be tied down for Linux emulamation causebblinux to do the following:

tion. It also means that installing new LAP software

does not require an update to the kernel. It means that

e Execute anl cal |l instruction to perform the declaration is also treated as C. This C text is included
BSD/OSst at () service, placing the resulting data in the output from théransform program without sig-
in a buffer on the stack. nificant alteration.

* Convert the BSD/OSt at structure into a LinUX comments andwhitespace are basically the same as C:
stat structure in memory belonging to the applica-ey; inside slash-star and star-slash ... */ is

tion. ignored, and comments, spaces, tabs and newlines serve

* If there is an error, convert the BSD/OS error codey, pyreak input into tokens, but are otherwise collapsed
into a Linux error code and store it in the Linux together and ignored.

er r no location.

The following sections provide a more detailed descrip4.2. Syntax

tion of the transformation language. The syntax of the transformation language is organized

. into statements. The transformation language itself pro-
4.1. Lexical structure vides only declarative statements. Any imperative state-
The basic elements of the transformation language aments must be coded in C inside C escapes. Here is a
similar to C. Unlike C, there is no macro preprocessorsummary of the statements. Literal text appears in
however, it is possible to “escape” to C code and writef i xed wi dt h font, while text that varies appears in

C preprocessor code in that context. sl anted fixed w dt hfont.

The language definekeywords that introduce state- Includ
ments or qualify declarations. All C keywords are ncluge
reserved. Several keywords that are specific to thenclude "header”

transformation language are introduced in the syntaui.hei ncl ude statement causes text from the named

section below , along with the statements that us : : .
. . eader file to be inserted into the program text at the
them. Thet ypedef statement provides a mechanism . . .
current location. Note that there is n@t" character at

for defining new keywords, analogous to the ¢pe- the beginning of the line. If a program needs to include

def statement. a C header so that text in C escapes can use the header
There arenames andnumbers that work much like they information, then that C header must be included using
do in C. Names are introduced in C-like contexts sucty C escape too; for examplencl ude includes a

as function names, parameter names, structure taggansformation language header, witile #i ncl ude
structure members, and so on. Names follow the usug C header.

C rules - they must begin with a letter or an underscore,

and may contain letters, digits or underscores. NumTypedef

bers also follow C rules; theansform program simply

' " . ” . typedef type-specifiers ... nang;
passes numbers into its C output without interpretation.ypedef type-specifiers ... nane {
in(name) { ... }

The transformation language treats specially those
names that begin withfareign or native prefix. Names 4,
that start withLI NUX_, | i nux_ or __bsdi _ cause

the transform program to place restrictions on the The first form of thet ypedef statement looks much
automatic mapping between Linux names and BSD/O$ke a Ct ypedef . It declaresname as a type name.
names. See below for more information on this featurelf nane begins withl i nux_, then the type is foreign
The transformation language also recognizes the specigipe with no BSD/OS equivalent; otherwise, thans-

prefix __kernel _ on function names; more on that form program creates a mapping between the given
below as well. type name in Linux and the type with the same name in

. . . BSD/OS. In the latter case, there really are two types,
Srings in the transformation language are used only tQDut the difference is hidden by the mapping feature.

give the names of header files. They are surrounded qY]Side C escapes, the BSD/OS type has the usual name

double quotes and they don't follow C rules for escapes .o the Linux version of the type is prefixed with
(yes, very crude).

I i nux_. Note that the transformation language does
Various punctuation marks and “syntactic sugar” are not define the BSD/OS version of a type name; you
recognized, including parentheses, commas, semicolofgust provide that yourself in a C escape, either by
and braces. Certain punctuation implies an escape to ¢xcluding the appropriate header file or by writing an
As in lex, text that appears inside percent-brace pairgxplicit Ct ypedef statement.

% ... 9% is treated as literal C, and text that

appears between simple braces following a function

out(name) { ... }

As an example, the statemdntpedef unsi gned LI NUX . If acooki e member's name is given with a
short wuid_t; in the transformation language says LIl NUX_ prefix, thetransform program assumes that
that there is a Linux type named d_t that corre- there is no equivalent BSD/OS value; if theoki e
sponds to a BSD/OS type d_t, and that it is equiv- type name itself is prefixed withi nux_, transform
alent to the basic C typmsi gned short in Linux. assumes that none of the members have corresponding
Whenui d_t is used in a parameter list or a structureBSD/OS names (and it omits th& NUX prefixes in C
definition, the Linux value is automatically copied (as ifescapes). If a value of a giverooki e type fails to

by assignment) into the corresponding BSD/OS valuenatch any of the listed numbers, the value is assigned
on input (which has a type corresponding towithout conversion - that means that you don’t have to
unsi gned i nt), and the BSD/OS value is automati- list names that have the same value in both Linux and
cally converted into the Linux value on output. ForBSD/OS. However, if there is ann() or out ()
example, the transformationnt setuid(uid_t function, it applies to unmatched values. This lets you
ui d); converts the Linui d value into a BSD/OS take care of values that have no exact equivalent in
ui d value before calling the BSD/OS system call. Linux or BSD/OS. Note that you are responsible for
supplying the BSD/OS cookie member definitions, usu-
ally by including the appropriate C header file inside a
C escape.

The second form of thieypedef statement allows you
to specifytransformation functions for the given inte-
gral type. The n() function is automatically called to
convert Linux types into BSD/OS types, while the As an example,

out () function is automatically called to convert cookie int reboot t {

BSD/OS types into Linux types. The parameatane RB_AUTOBOOT 0x01234567;

represents the value to be transformed. The body of the RB_HALT Oxcdef 0123;

function is given in C inside braces. One or both transs . LINUX_RB_ENABLE_CAD Ox89abcdet;

formation functions may be omitted, in which case the ’

value is transformed by assignment. As an examplesays (among other things) tHa8_AUTOBOOT has the

the statement value0x01234567 in Linux and that there is no direct

typedef unsigned short dev_t { BSD/OS equivalent for the Linux name
in(dev) { RB_ENABLE_CAD. An object of typereboot _t,
return (makedev(dev >> 8, dev & Oxff); presumably the argument toeboot (), with value

b } 0x01234567 would be converted to the BSD/OS

value ofRB_ AUTOBQOOT, which happens to b& (Yes,
specifies an input transformation fdev_t that con- Linux uses enumerated values rather than flags as argu-
verts Linuxdev_t values into BSD/O$lev_t values ments ta eboot () .)
using the BSD/OSrakedev() macro. Note that a
t ypedef ’s transformation functions may be accessed~lag

directly inside C escapes by appendingn() or fjag type-specifiers ... name {
_out () to the type name; this is true of transformation nanme nunber;
functions in general. name;]
in(foreign, native) { ... }
. out (native, foreign
Cookie }: (o }
cooki e type-specifiers ... nane { . .
name nunber : A f 1 ag works very much like @ooki e but for flag
in(name) { ... } bits rather than enumerated valudd.ag values are
out(name) { ... } tested for matches by logicallgnd- ing against the

b appropriate Linux (on input) or BSD/OS (on output)
The cooki e statement is an enumeration statementalue. If a match occurs, the corresponding BSD/OS
that creates a type liketaypedef and lists members (0N input) or Linux (on output) value is logicalty -ed

of that type along with their Linux values. When anin. Bits that aren’t matched are copied unchanged, so
object of the given integral type appears in an inpuyou don’'t need to list flag values that are identical on
context and its value matches one of the enumeratdepth Linux and BSD/OS. A given input can match more
values, that value is converted to the value with the cothan one flag value. If you provide a transformation
responding name in BSD/OS. This is a fancy way offunction, it gets both the raw value and the converted
saying that cookies convettdefi ne macros from value, so that you can use a complicated rule to add (or
Linux values to BSD/OS values and back. Inside csubtract) bits from the converted value after all of the
escapes, the Linux member names are prefixed withPecific conversions are made. If you specify a flag

name without a valuetransform assumes that the because structure member names have a scope local to
name is a BSD/OS name with no equivalent Linuxthe given structure.)

value. If a member name has BNUX_ prefix, trans- \yhen converting structures, each member is converted

form assumes that the name is a Linux name with no,qing 5 transformation that is appropriate for the type of
equivalent BSD/OS value. Bits that have no equivalen,, member, or if no transformation for that type is

are not copied by default; this is a handy way t0 cleagijaple, it is copied by assignment. Arrays are always
bits that aren’t supported and don't significantly aﬁethopied by assignment (actually, byrercpy() call).

the semantics. Inside C escapes, the Linux flag membgfis jmnortant to note thatansform doesn't transform
names are prefixed withl NUX_. structures, but rather structupeinters; the direction

Here’s an example: and size of the transformation are derived from context.
flag unsigned int cflag_t { After the specific members have been converted, any
LI NUX_CSI ZE 0_000060; transformation functions are applied. The parameters to
HUPCL 0002000
CRTS_IFLON the transformation functions are a pointer to the source
in(f, n) { structure, a pointer to the destination structure and the
return (n | (f & LINUX_CSIZE) << 4); length of the destination structure. If the last member
iwt(n’ £y 1 in a structure is an arragt ansform assumes that the_
return (f | (n & CSIZE) >> 4); structure has variable length and it copies everything
} from the start of the array to the end of the structure as
H determined by the length parameter. Structure transfor-

mation functions have void type, since the parameters

Thisf | ag encodes the flag bits for tlee cf | ag field are passed by reference.

of aterm os structure. It says that thlUPCL bit
under Linux has the valu@2000 rather tharox4000 Here is an example ofst r uct statement:
as it does under BSD/OS. The BSD/OSTS | FLON struct sockaddr {
bit has no equivalent under Linux, and we clear it by fanilycookie_t sa fanily;
default in any conversion. THd NUX_CSI ZE field is char sa_data[14]; -
B . in(f, n, len) { n->sa_len = len; }
also cleared by default, but the transformation functions,
copy it to and from the BSD/OESI ZE field, so the
information isn't lost. Notice how the transformation The f ami | ycooki e_t type is acooki e type that
functions must be careful to preserve the bits that wereonverts socket family values from Linux numbers to

already converted when returning a value. BSD/OS numbers and back. Because the structure ends
with an array, it is considered a variable-length structure
Struct and thesa_dat a field fills out the structure to the
struct name { given lengthl en. The input transformation fills in the
type-specifiers ... naneg; BSD/OSsa_| en field usingl en, whose value was
type-specifiers ... name[nunber]; supplied elsewhere.
in(foreign, native, length) { ... }
. out(native, foreign, length) { ... } Function
type-specifiers ... name(paraneters, ...);
A struct statement in the transformation languagetype-specifiers ... name(paraneters, ...) =

declares a Linux structure and guides its transformation syscal | - nane;

into a BSD/OS structure (or the reverse). Structuréypi'rsra%‘ficgoiriSe,' -+ name(parameters, ...) =
members are declared Iikg they are in C A Structur@ype-specifiers ... name(paraneters, ...) =
member whose name begins withnux_ is assumed nunber ;

to have no BSD/OS equivalent, and it doesn’'t get contype-specifiers ... name(parameters, ...)
verted automatically. Unlikef | ags or cooki es, KRR

st ruct s have no defaults - all of the members must
be listed, and if the BSD/OS version of the structuravherepar anet er s can be:
contains a member that is not present ingheuct

- . . type-specifiers ... nane
specification in the transformation languaty@nsform const type-specifiers ... name
assumes that no such member appears in the Linux vel atile type-specifiers ... nane

sion of the structure. Inside C escapes, the memb@"Oki e- menber - name
| ag- nenber - nane
names look exactly the way that they are declared - no

prefixes are automatically prepended. (We can do this

A function statement is a transformation that converts & the parameter and return value transformations are
Linux function call into a BSD/OS function call. Func- sufficient to handle the transformation for the function,
tion statements look similar to prototype function declathen you can generally omit the function body; this is
rations and function definitions in C, but they have dif-the simplest and most common definition in the trans-

ferent meanings.
All of the function statement formats require a return

formation language. If you need to do more work, you
can write your own function body. Inside the function

type, a function name and a parameter list. The returf0dY there are a few rules that you must follow, which
type doesn't have to be a transformable type; it may bénfortunately) are not enforced yansform, which

any C type, including a pointer, as long as all of the

does not process the C code in the body. Functions must

type names have been declared. The function nanf€ re-entrant; if they need to allocate memory dynami-

should match a name in the Linux C librarfrans-

cally, they should do it on the stack using stack vari-

form uses a database of library symbols to generate £A°/€S_and/or theal | oca() function. To make a

of the aliases for a known symbol, so the simplest ve
sion of the symbol name is usually the right one.
name is identical to the name of a BSD/OS system call,
the body of the function may be omitted, in which cas

BSD/OS system call inside a function body, you must
If thedo an indirect call through the bsdi _syscal |l ()
function. The__bsdi _syscal I () function works
dust like the BSD/OSyscal | () function - it takes a

transform arranges to call the BSD/OS system callSyScall number fronxsys/ syscal I . h and a list of

automatically. There may be zero or more parameters?.

Each parameter is either a declaration for a name, or¥

cooki e orfl ag member name. Declared parameters

stem call.
C escapes must have names that use thedi _ pre-

arameters, and it performs the corresponding BSD/OS

Any helper functions that you provide in

look much like they do in C, except that the name of thd!X SO that they do not collide with Linux function

parameter is mandatory even when the function statdl@mes. The bsdi _ _
__bsdi _errno variable, not the errno variable,

which is a Linux variable. Transform generates code
to translate__bsdi _errno to er r no automatically,

so
__bsdi _errno explicitly.

ment has no body and looksdila C declaration. Here
is a simple example:
ssize_t read(int fd,

void *buf, size_t nbytes);

This definition creates a mapping for thead() func-

_syscal | () function sets the

in general it isnt necessary to refer to

tion. It replaces the definitions for the Linux namesThere are several interesting features of parameters

read, readand__|ibc_read. Itcalls BSD/OS
system call number 3 $YS read) with the given
parameters and returns the result. If the return value is,
-1, it converts the error number in bsdi _errno

into a Linux error number iar r no.

The parameter list may optionally be followed by an
assignment or a C escape. An assignment is a short-
hand for certain common function bodies. An assign-
ment from a system call name tditensform to make

a call to the given BSD/OS system call rather than
using the name of the function as the name of the sys-
tem call. An assignment from a&m r no cookie says to
return an error condition (-1 for integer valued func-
tions, NULL for pointer valued functions) and set the .
Linux er r no variable to the given value (translated to

a Linux value). An assignment from a number tells
transform to make the function return that constant
value; it's useful for turning functions into no-ops.
Finally, if you provide a C escape, it will be used as the
body of the function in CTransform will still look for .
error returns and translageg r no unless you mark the
function definition with the type qualifieroer r no.

The basic point of the transformation language is to
allow you to specify transformations of function param-

eters and return values using transformable type names.

beyond the obvious ones.
pointers are quite special in many ways:

Transformable structure

The const keyword means something in addition
to the usual C semantics when it is applied to a
transformable structure pointer. Aonst trans-
formable structure pointer is an input-only parame-
ter - the structure gets converted from a Linux struc-
ture into a BSD/OS structure, copying it from the
application’s memory space onto the stack; however,
no copying or condition is performed on return.

A vol ati | e transformable structure pointer is a
read/write parameter - that is, it is transformed both
on input and on output, unless there is an error.

A transformable structure pointer parameter that
doesn’'t have aonst or vol ati | e qualifier is
output-only. The BSD/OS system call places its
data in a BSD/OS structure allocated on the stack,
and that structure is automatically converted on
return into the corresponding Linux structure.

If a structure definition ends with an array and a
function definition contains both a transformable
structure pointerand an integral parameter with
whose name consists of the prefigngt h_ plus

the name of the structure pointer parameter, then the
structure is considered to be variable length and it is
assumed to have the number of bytes indicated by

the length parameter. The length parameter maynode flags into BSD/OS mode flags before we call the
also be a pointer to an integral type, in which case iBSD/OSf cnt | () system call. The third, fourth and

is dereferenced before it is used. The value of thdifth definitions show how a transformable structure
length parameter is used when converting the arragointer parameter is converted on output (third) and
member (as described @k)and it is also passed input (fourth and fifth, respectively). The generic func-
to the structure’s transformation functions, if it hastion definition causes all remainirfgcnt | () cookie
any. values to be passed unchanged to the BSD/OS
fcntl () system call; this is appropriate when the

change their parameter types or their return typegSD/OS cookie value is identical to the Linux cookie
depending on the value of a “command” or flag param-v&lué and the parameters and return value do not
eter. The transformation language allows you to defin&€dUiré transformation, or when the application supplies
each of these variants separately. You simply specify 81 illegal cookie value that the BSD/®8nt | () call
cooki eorf | ag member name for a particular param- €0 reject. Note that there is really just érent | ()

eter, and if the function is called with that parametefunction in theliblinux library - all thef cnt1 () defi-
matching that value, then the body of that function defilitions are merged into a single function.
nition is executed. The first matching definition
applies. You must always supply generic function The__kernel_feature

definition that uses the appropriateoki e or f | ag Function names that begin with_kernel _ are
type for that parameter, and the body of that functiorireated specially. LAP has support for raw Linux sys-
definition is executed when tlo®oki e orf | ag value tem call traps. By default, when it detects a Linux sys-
fails to match any of the specific values in other functem call trap, LAP marshals its arguments and transfers
tion definitions for the same function. The feature iscontrol to the function with the same name as the Linux
hard to describe in words but easy to show in examplegkernel call. Sometimes it isn’t appropriate to do this -

Some system calls likd octl () and fcntl ()

here’s one: for example, the kernel system call may have a different
cookie int |inux_pers_t { PERS LINUX O; }: name from the function in the Linux C library, or it may
int personality(PERS _LINUX) = 0; treat its parameters differently. In that case, you may
int personality(linux_pers_t p) = EINVAL; define a function with the_ker nel _ prefix to handle

This code defines aooki e that lists “personality” Just system call traps.

values for the Linuxper sonality() system call. For example, the Linuk | seek() system call has a
We only support the Linux personality, so only the different kernel interface from the Linux C library inter-
PERS_LI NUX member is interesting. If the application face:

callsper sonal i t y(0), the definition forper son- linux_loff_t Ilseek(int fd, linux_loff_t offset,
al i ty(PERS_LI NUX) matches, and the system call ~ int whence) { ... } _ _
appears to return 0. If the application callsr son- int __kernel __Ilseek(int fd, unsigned Iong o_high,

. . . i gned | low, Ii loff_t * I't,
ality() with any other value for the personality i“ﬂf'g;gnce;’”? ?_—_ 0\}N P TOTT L Tresd

parameter, the system call will appear to return -1 and
er r no will be set to the Linux equivalent & NVAL. The kernel version of this function swaps the high and
low words of the offset and returns its value using a ref-

Here is a somewhat more complex example: X) ,
erence parameter, unlike the C library version.

flag int openflags_t { ... };
cookie int fcntl _t ...} . .

openflags_t fentl(int fd, F_GETFL, int ignore); ; ;
int fcntl(int fd, F_SETFL, openflags_t oflags); 5.1. Thetransformation Compller

int fentl(int fd, F_GETLK, struct flock *fl); The transform program compiles transformation

tnt fentl(int fd, F_SETLK, sources and creates C output files. The program is
const struct flock *fl); .

int fentl(int fd, F_SETLKW abo'u.t 3,300 lines of C, Yacc and !_ex source code. An
const struct flock *fl); additional program nameedfdb builds databases for

int fentl(int fd, fentl_t cnd, int arg); transform:; it's about 250 lines of C.

In this example, if the second parameter matchedhe transform program is a single-pass compiler. It
F_GETFL, then the first cnt | () definition applies; it —Parses statements and then emits most code in place,
converts the BSD/O®pen() mode flags into Linux including C escapesTypedef andstruct declara-
mode flags on return. If the second parameter i§ons are converted into Gypedef andstruct dec-

F_SETFL, the third parameter is converted from Linux larations, respectively, whileooki e andf | ag mem-
bers become C#define directives. I n() and

out () transformation functions become static inline complicated because Linudi r ent structures have
functions with names that begin with the type name (foseek-offset members that are not in BSDADS ent

t ypedef types), with the type name plusief aul t structures, and because the different sizes of the Linux
(for cooki e or f | ag types) or with the tag name (for and BSD/OSdi r ent structures require code to re-
structures); the function names end inn() and pack them. A similar issue with re-packing applies to
_out (), respectively.Cooki e andf | ag transforma- get gr oups() andset gr oups(), which require a
tions turn intoswi t ch statements or sequencesi f separate kernel implementation because the Linux ker-
statements (respectively), inside inline functions, with anel gi d_t data type is a 16-bit integer while the
call to thet ype_default_in() ort ype_default out() BSD/OS type is a 32-bit integer. (The problem doesn't
function at the end, as appropriate. Function statementgrike the C library API foget gr oups() andset -
become C inline functions with numeric suffixes to dis-gr oups() because the GNU C library that Linux uses
tinguish the different alternatives. At the end of pro-has a 32-bitii d_t type like BSD/OS. There are a few
cessing, the compiler emits static functions which testases like this where the GNU C library API is closer to
incoming arguments and call the appropriate functiorthe BSD/OS API than to the Linux kernel APl and we
alternatives. The compiler also generates assemblyy to take advantage of this when we can.)

escapes that serve to map the static container functions

onto the names that the Linux C library uses. (Théb.3. Thelibraries

inline .function and assembly escape syntax are exteRye puild three shared library objects: the dynamic
sions in the GNU C compiler.) linker, the emulation library and a dummy C library.
The afdb program processes the dynamic symbol table,, dynamic linker is built from the GNU C library

from the Linux C library and produces Berkeley DB g ;rce code and linked with transformation language

btree files that map addresses to function names angice code so that it can make native BSD/OS system
function names to addresses. When the transformatiod:h”& We configure the dynamic linker slightly differ-

compiler sees a function name, it looks the name up iBnyy from Linux so that it looks for itsd. so. cache
the database, locates all of the aliases, then generais i/ | i nux/ et c rather thar et c. which causes it
assembly escapes that duplicate the Linux aliases in tl?g use different libraries from the native BSD/OS
emulation library. dynamic linker.

5.2. Thetransformations We make theemulation library from the transformation

,) . sources plus some assembly and C code. We supply
Currently there_are about 3250 lines of code written iNode to do call tracing at the Linux API level. We add
the transformation language. code to implement BSD/OS system call stubs without
Most of the transformations are straightforward. Manypolluting the Linux C library namespace. We add ini-
functions require only the default transformation, withtialization code that programs the hardware interrupt
no transformable parameters or transformable result ardkscriptor table so that Linux system call interrupts are
no function body; in that case we just make the equivdispatched to an address in the emulation library, and
alent BSD/OS system call, and transform the BSD/OSve generate a dispatch table that sends system call
errno value if there is an error. A number of functions interrupts to the appropriate handler. The transforma-
apply very simple transformations on parameterstion compiler itself generates stub code for each system
Some functions perform minor API changes; for exam-call that marshals arguments and calls the C transforma-
ple, Linux has two kernel interfaces for thel ect () tion function; the dispatch table jumps to the stubs. We
function, one of which takes different parameters fronbuild the dispatch table using awk script that pro-
the standard API, and one of which has a differentesses the Linux header file that defines Linux system
name, and the transformation language serves to magall numbers.

parameters correctly. The dummy C library replaces the Linux C library in

A few transformations are more complex. Thethe Linux library path. The purpose of the dummy C
ioctl () transformations are large because Linuxlibrary is to load the emulation library ahead of the real
ioctl () cookies and erm o/t er mi os structures Linux C library in the symbol search path, so that no
are different from BSD/OS, even though the semanticsnatter how an application tries to load the Linux C
are very similar. For socket functions, the Linux kernellibrary, it will always get the emulation library too. We

provides a single system call that multiplexes all of theuse theELF DT_AUXI LI ARY feature to implement

BSD-style socket calls using cookies, so the socket suphis trick. The dummy C library would not have any
port is a little bit complicated. Theet di r en- code of its own if it were not for a peculiar rule about
tries() and getdents() transformations are library initialization. It seems that the dynamic linker

initializes libraries in reverse order of their loading; thatemulation library. This code pushes the parameters on
means that it initializes the emulation library after it ini- the stack and calls the sameat () emulation func-
tializes the real Linux C library. But we have to arrangetion that the application used in the example above. On
to dispatch Linux system call interrupts before we cameturn, if there was an error, the stub code copies the
execute any code from the real Linux C library, so thenegatecer r no value back into the result register.

emulation library needs to run its initialization first. i example oversimplifies the specific situation with
The dummy C library initialization is performed before stat () slightly - see the appendix for more details.)

both the real Linux C library initialization and the emu-
lation library initialization, however, so we get around 6.
this problem by arranging for the dummy C library to
call an initialization function in the emulation library.

Conclusions

6.1. Comparisonsto other work

Of course there are many ways to emulate other operat-

5.4. How doesit really work?

ing systems and Linux on other Unix-like systems in

It's hard to tell how the emulation really works just by particular. | want to mention a couple other emulations

reading descriptions of its pieces.
description of what happens when you actually run ae
program.

When a Linux application starts up on BSD/OS, the
normal ELF loader in the operating system loads it
with the modified Linux dynamic linker. The applica-
tion uses the dynamic linker to load the shared libraries
that it needs. All of the shared libraries that it sees are
real Linux shared libraries, with one exception: when
the application asks for the Linux C library, it also gets
an emulation library.

Let's say the application needs a service from the Linux
C library; for example, it does st at () call to find

out the size of a file. The application doesn’t define
stat () itself, so the dynamic linker looks for an
implementation ofst at (). Because of the way the
libraries were loaded, the dynamic linker looks in the
emulation library before it looks in the Linux C library,
and it uses the emulation libraryst at () function.
The emulation function allocates room on the stack for
a BSD/OS st at structure and calls the BSD/OS
st at () function with the stack buffer as an argument.
If the BSD/OSst at () call succeeds, the emulation
function copies and converts the elements of the buffer,
into the Linuxst at structure that was passed in and
returns O for success. If thet at () call failed, the
emulation function converts the BSD/OS error number
into a Linux error number and stores the result in the
Linux er r no location.

Current Linux shared C libraries are statically linked
internally, so ast at () call inside the C library works

a little differently. The Linux C library moves the sys-
tem call number (106) and the two parameters into reg-
isters and executes the Inteit $0x80 instruction to
generate a software interrupt. The Intel hardware trans-
fers control directly to a dispatch routine in the emula-
tion library. The dispatch code performs a computed

Here's a Dbriefdone in a different style, and compare them to LAP.

The Skunkworks folks aBCO have a very neat
emulator that they calkrun. Lxrun is a program
that loads a Linux program into its address space
and catches th8l GSEGV signal that the SCO Unix
operating system sends to the program when the
Linux code executes a software interrupt instruction
(int $0x80). This is analogous to the way that
LAP redirects the hardware interrupt descriptor
table, but it uses unprivileged software instead, so it
requires no changes to the kernel at all, although it's
a little slower. Lxrun can handle statically linked
programs as well as the obsolete Linaout
executable format, unlike LAP, and it requires no
changes at all to the dynamic linker and no futzing
with libraries. It's a really lightweight implementa-
tion. LAP improves on it by reducing the overhead
of software interrupts, reducing overhead again by
interposing the library interface to system calls
when possible, and by loading itself automatically
rather than requiring a separate loader program (at
the expense of modifying the dynamic linker to use
BSD/OS system calls). LAP’s transformation lan-
guage should also make it easier to maintain.

The FreeBSD project decided to implement Linux
emulation in its kernel. All of the transformations
are performed in privileged mode, and the memory
for the emulation is dedicated. This is a heavy-
weight implementation in terms of the amount of
code required and its effect on the kernel, but it does
permit precise emulation of (for example) signal
semantics. While this is nice, | feel that operating
system kernels are already absurdly fat, and given
that LAP can be reasonably complete and efficient
operating outside the kernel, that's a virtue. Cer-
tainly the transformation-driven approach to emula-
tion could be applied to an in-kernel emulation if we
felt that it would be useful.

goto using the system call number, resulting in a brancl¬her out-of-kernel approach that we could have

to the automatically generated stub &trat () in the

taken was the microkernel plus OS server approach that

was used in Mach 3 and later versions of Mach6.3. Bugs, omissionsand other niceties

[Golu90]. In Mach, not just the libraries but entire \ot 41 | jinux system calls are currently emulated. The
machine-independent part of the operating system rungg, that a system call hasn't been emulated is that your
outside the kernel, and the emulation communicategyjication prints a message and aborts. Almost all of
with the kernel using IPC calls. That strategy wouldy,e missing system calls are administrative calls, how-
clearly be overkill for a Linux emulation on a BSD gyer 5o we suspect that we won't encounter them in
Unix system, however, since Linux and BSD are SQyjrq party applications. (For example, we don't sup-
similar at the API level. port Linux NFS daemons; the BSD/OS native NFS dae-
It's worth pointing out that while the transformation mons work just fine.)

compiler was written in such a way to make it éasy 9gy {5 the biggest user-visible omission is the lack of
retarget for (say) FreeBSD, | would not consider it a0t for the Linuxcl one() system call and related
flaw if it were never retargeted. It's nice to be able to ¢ thread support. | am working actively on this issue

generalize tools, but LAP bene.fit.s from using a little | hope to have news to report at the conference.
language regardless of whether it is general. .))
We don't support statically linked Linux programs. If

6.2. General results we wanted to support statically linked Linux programs,

we would adopt the SCO emulation technology. The

The emulation is quite successful. We can run a nUMgernel would load a statically-linked version of the
ber of interesting Linux applications, and they run quitegm ation library into every statically linked Linux pro-

efficiently. Among the programs we have tested are thg . The emulation library would not interpose itself
Adobe Acrobat Reader v4, Netscape Communicatof, font of Linux C library functions, but it would stil

v4.7, and WordPerfect v8. (In fact, this document wag.atch software interrupts and process them in the same
composed using Netscape Composer for Linux runningay that LAP currently does. Statically linked Linux

under BSD/OS.) Only very minor BSD/OS kernel noqrams are sufficiently rare that we have not seen a
modifications were required, and the kernel contains NBeed for this feature yet.

emulation code itself, so we avoided any significant ker-]
nel bloat. The implementation is remarkably robust sd-urrently LAP does not do any mapping of data types

far; we have had to make very few bug fixes after théhat have narrower widths on Linux. If a UID on BSD
initial coding and testing. | attribute this to the smalliS greater than 65,536, a LAP program may see a trun-
size and the simplicity of the specification. cated value for that UID instead of the full 32-bit value

in some situations.
As far as performance goes, LAP seems to be more

than adequate, but the impact is difficult to measure in hhave not described the LAP support for older Linux
meaningful way. | thought about trying to measureELF programs that use the 5th version of the Linux C
some application running under native Linux and com/ibrary (sometimes calletibcS). We do support those
paring it to the same application running under LAP orPrograms and théibcs emulation shares most of its
native BSD/OS on the same hardware, but the differertource code with the rest of LAP. It works a little dif-
kernels, filesystems and other factors would surely corférently from the scheme described in this document,
found the result - it would be more of a measure ofUt 'm not going to explain it here. LAP does not (and
Linux versus BSD than the overhead of LAP. HoweverProbably will never) support Linua.out programs.

| can provide a vague idea of how much time is spent iThe code for LAP is available on the BSD/OS con-
LAP when running a program. | ran an instructiontributed software CD-ROM. Like all software on that
tracer on the Linuxs program runnind s -1 under CD-ROM, it is freely redistributable. Feel free to use it
LAP and counted the number of instructions that wereand modify it as you please with the usual understand-
executed in the range of addresses occupied by LARg that if it doesn’'t work for you or causes problems
For an 8-item directory listing, LAP used 3423 instruc-for you, BSDI doesn’t take any responsibility.

tions out of 714797 total, or about 0.5%. Because of

the way that LAP interposes itself in front of the Linux

C library, the impact is actually a bit less than it seems,

because LAP replaced code that would have been

executed in thés program under Linux. When running

an X-based program under LAP such as Netscape (as |

am doing right now), the overhead is not perceptible.

Appendix - an extended example
types.xh:

/)\'

/

* %k ok ok Ok Rk k% 3k ok Ok

A

BSDI $ld: types.xh,v 1.2 1999/04/14 22:42:57 prb Exp $ */

Li nux has an awkward probl em which we have to worry about here...

The GNU C library defines basic types that don’t match Linux kernel types.
The library applies transformations to these types when passing them

to and fromthe Linux kernel. By convention, the transfornation routines
call stubs named __syscall_*() to performthe syscall using Linux

kernel data types. It's stupid to transformthese data types twi ce,
especially when the GNU C data types are generally w der and hence

closer to BSD types, so we interpose our transformation routines over

the G\U C library routines rather than the Linux __syscall_() routines.

#i ncl ude <sys/types. h>

%
/)\'

*/

Here are the GNU C library types.

typedef unsigned |ong |ong dev_t {

b

in(dev) { return (nmakedev(dev>> 8, dev & Oxff)); }
out(dev) { return (major(dev) << 8 | mnor(dev)); }

typedef char *caddr_t;
typedef long clock_t;

typedef unsigned int gid_t;
typedef unsigned long ino_t;
typedef int key_t;

typedef long long linux_loff_t;
typedef unsigned int node_t;
typedef unsigned int nlink_t;
typedef long of f_t;

typedef int pid_t;

typedef int ptrdiff_t;
typedef unsigned int size_t;
typedef int ssize_t;

typedef long tine_t;

typedef unsigned int uid_t;

/)\'

*

*/

For docunentation purposes, here are the actual Linux internal types,
where they differ fromthe GN\U C library types.

typedef unsigned short |inux_kernel _dev_t;
typedef unsigned short |inux_kernel _gid_t;
typedef unsigned short |inux_kernel _node_t;
typedef unsigned short |inux_kernel _nlink_t;
typedef unsigned short |inux_kernel _uid_t;

typedef unsigned int u_int;
typedef unsigned short u_short;
typedef unsigned |ong u_Il ong;

stat.xh:

/*
/*
*

*/

BSDI $ld: stat.xh,v 1.2 1999/04/14 22:38:59 prb Exp $ */

Transforns for stat.h.

A

/* Don’t use tinespecs. */
#define _PQOSI X_SOURCE 1
#include <sys/stat.h

#undef _POSI X_SOQURCE

#define ol d_stat st at

%

cookie int linux_stat_ver_t {
_STAT_VER LI NUX_OLD 1;
_STAT_VER SVR4 2;
_STAT_VER_LI NUX 3;

b

struct stat {
dev_t st_dev;
unsi gned short |inux_padl;
ino_t st_ino;
node_t st_node;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
unsi gned short |inux_pad2;
of f _t st_size;
unsi gned | ong st_bl ksi ze;
unsi gned | ong st _bl ocks;
time_t st_atine;
I ong |inux_unusedl;
time_t st_ntine;
I ong |inux_unused?2;
time_t st_ctine;
I ong |inux_unused3;
I ong |inux_unused4;
I ong |inux_unuseds5;

b

struct old_stat {
unsi gned short int st_dev;
unsi gned short int |inux_padl;
unsigned long int st_ino;
unsi gned short int st_node;
unsi gned short int st_nlink;
unsi gned short int st_uid,;
unsi gned short int st_gid,;
unsi gned short int st_rdev;
unsi gned short int |inux_pad2;
unsigned long int st_size;
unsi gned long int st_blksize;
unsi gned | ong int st_blocks;
unsigned long int st_atine;
unsi gned long int |inux_unusedl;
unsigned long int st_ntine;
unsi gned long int |inux_unused2;
unsigned long int st_ctine;
unsi gned long int |inux_unused3;
unsi gned |ong int |inux_unused4;
unsi gned | ong int |inux_unused5;

H
stat.x:
/* BSDI $ld: stat.x,v 1.2 1999/04/14 22:47:01 prb Exp $ */

/*
* Transformation rules for <sys/stat.h> syscalls.
*/

i ncl ude "types. xh"
i ncl ude "stat.xh"

/
Li nux’s kernel types don't match its user types.

The GNU C library perfornms transformati ons fromthe kernel types
to the user types. W interpose the GNU C library stubs rather
than the Linux kernel stubs, so that we don’t transformtw ce.

/

int _ syscall_stat(const char *nanme, struct old_stat *buf)

* ok ok Ok % F

{ return (__bsdi _syscal | (SYS_stat, nane, buf));

}

int _xstat(_STAT_VER LINUX OLD, const char *nanme, struct old_stat *buf)
{ return (__bsdi _syscal | (SYS_stat, nane, buf));

i}nt _xstat (_STAT_VER LI NUX, const char *nane, struct stat *buf)

i return (__bsdi _syscal | (SYS_stat, nane, buf));

int _xstat(linux_stat_ver_t v, const char *name, struct stat *buf) = El NVAL;

int _fxstat(_STAT_VER LINUX OLD, int fd, struct old_stat *buf)

{
return (__bsdi _syscal |l (SYS fstat, fd, buf));
}
int _fxstat(_STAT_VER LINUX, int fd, struct stat *buf)
{
return (__bsdi _syscal |l (SYS fstat, fd, buf));
}

int _fxstat(linux_stat_ver_t v, int fd, struct stat *buf) = El NVAL;

int _|xstat(_STAT_VER LINUX OLD, const char *nanme, struct old_stat *buf)

{ return (__bsdi _syscal |l (SYS_|stat, nanme, buf));

i}nt _I'xstat (_STAT_VER LI NUX, const char *nane, struct stat *buf)

{ return (__bsdi _syscal | (SYS_|stat, nanme, buf));

i}nt _Ixstat(linux_stat_ver_t v, const char *nanme, struct stat *buf) = El NVAL;
| *

* The other stat.h calls...

*/

int chnod(const char *path, node_t node);
int fchnod(int fd, node_t node);

int nkdir(const char *path, node_t node);
int umask(rmode_t m;

References

[ANSI89] American National Standard for Information SysteRregramming Language - C, ANSI X3.159-1989.
[BSDIOQ] http://www.bsdi.com/

[Free00] Using and Porting GNU CC, for Version 2.95, R. Stallman, Free Software Foundation, 2000.

[Ging89] “Shared Libraries in SunOS,” R. Gingell, M. Lee, X. Dang, M. Week®rimceedings of the Summer
1989 Usenix Conference, 1989.

[Golu90] “Unix as an application program,” D. Golub, R. Dean, A. Forin, R. Rashiérdoeedings of the Summer
1990 Usenix Conference, June 1990.

[[EEE96] IEEE Std 1003.1, 1996 EditioRortable Operating System Interface (POSX), Part 1. System Applica-
tion Program Interface (API) [C language], Institute for Electrical and Electronics Engineers, 1996.

[John75] “Yacc - Yet Another Compiler Compiler,” S. Johns@umputing Science Technical Report 32, AT&T
Bell Laboratories, Murray Hill NJ, 1975.

[John79] “A Tour through the Portable C Compiler,” S. Johnddnix Programmer’s Manual, 7th Edition, volume
2b, AT&T Bell Laboratories, Murray Hill NJ, 1979.

[Lesk75] “Lex - a lexical analyzer generator,” M. Leskomputing Science Technical Report 39, AT&T Bell Lab-
oratories, Murray Hill NJ, 1975.

[Linu00] http://www.linux.org/

[Ols099] “Berkeley DB,” M. Olson, K. Bostic, M. Seltzer, iffroceedings of the Freenix Track, 1999 Usenix
Annual Technical Conference, June 1999.

[Reco98] “Linux Emulation for SCO,” R. Record, M. Hopkirk, S. Ginzburg, in Proceedings ofJfisrix 1998
Annual Technical Conference: Invited Talks and Freenix Track, June 1998.

[Ritc79] “A Tour through the UNIX C Compiler,” D. RitchidJnix Programmer’s Manual, 7th Edition, volume 2b,
AT&T Bell Laboratories, Murray Hill NJ, 1979.

[Salu98] Handbook of Programming Languages, Volume 111: Little Languages and Tools.P. Salus, ed. Macmillan
Technical Publishing, 1998.

[Unix90] System V Application Binary Interface, Unix Software Operation, Prentice-Hall, 1990.

