
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

L AP : A L I T TL E L A N G U A G E F O R O S E M U L AT I O N

Donn M. Seeley

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

LAP: a little language for OS emulation

Donn M. Seeley
Berkeley Software Design, Inc.

ABSTRACT
LAP, the Linux Application Platform, is a Linux emulation package for BSD/OS which uses a ‘‘little language’’
[Salu98] to describe transformations from Linux data types and values to BSD/OS data types and values, andvice
versa. The little language simplifies and regularizes the specification of transformations, making the emulation eas-
ier to maintain. This paper describes the language and its place in the framework of LAP.

1. Introduction
The Linux Application Platform is a package of soft-
ware that allows Linux [Linu00] applications to run
under BSD/OS [BSDI00]. Although BSD/OS and
Linux share a common executable file format (the Unix
ELF format [Unix90]) and a common Unix-like pro-
gramming interface (based on the IEEEPOSIX inter-
face [IEEE96]), they differ in the way that applications
communicate to the operating system kernel, and they
differ in the sizes and structure of their data types. The
LAP software dynamically converts Linux data types
into BSD/OS data types andvice versa, and it substi-
tutes a BSD/OS kernel interface for the application’s
Linux kernel interface.

The LAP software usestransformations to convert data
types, system call numbers and other parameters
between Linux and BSD/OS. Transformations are writ-
ten in atransformation language. The language looks a
lot like C [ANSI89]; the inspiration for its syntax
comes fromlex [Lesk75]. The language specification
tries to make the most common transformations also be
the simplest ones to specify. Many transformations can
be described by a simple C prototype declaration.

In the sections below, we’ll discuss some of the design
issues that we considered when writing the LAP soft-
ware, and we’ll introduce some of the features and
describe how they work.

2. Motivation
2.1. Why do we need transformations?
Here are a few examples of the differences between
BSD/OS and Linux which require transformation:

• BSD/OS follows the Unix Application Binary Inter-
face standard [Unix90] for system calls, using the
lcall instruction to transfer control to the operat-
ing system kernel. Linux uses theint instruction
to transfer to the kernel, which generates a software
interrupt, more like MS-DOS.

• The operating system assigns numbers to system
calls, signals and error conditions, and BSD/OS and
Linux use different numbers.

• The POSIX application programming interface
requires certain abstract data types, which are
defined using the Ctypedef mechanism. The
BSD/OS and Linux systems use different real types
for these data types for some interfaces. For exam-
ple, theuid_t type describes user ID values; in
BSD/OS, these values are unsigned 32-bit integers,
while in Linux these are unsigned 16-bit integers.

• The POSIX API also requires certain aggregate data
types which correspond tostruct data types in C.
The order of elements or the types of elements in a
struct may be different in BSD/OS and Linux.
For example, the file status structurestruct stat
in BSD/OS puts the timestamps before the sizes,
while in Linux the sizes come first.

2.2. Why use a transformation language?
The most important reasons for using a transformation
language are reliability and maintainability.

The transformation language makes transformations
reliable by removing opportunities to commit errors in
specifications. BSD/OS also has an emulation for SCO
Unix SVr3.2; it uses a very primitive transformation
table that required a lot of hand-composed support
code. While the SCO emulation’s transformations were
reasonably well structured, using strict conventions for
naming, parameter types and ordering, errors crept in,
and the errors were sometimes very difficult to diag-
nose. A transformation compiler makes a lot of the
‘‘mechanical’’ work truly mechanical, reducing a class
of errors.

The transformation language makes transformations
maintainable by making them familiar and easy to read.
The language looks like C and (for the most part) works
like C; it’s straightforward to read a transformation, and
it’s usually obvious what it does. When transforma-
tions are composed by hand, they are more difficult to

read and understand, and hence the code is harder to fix.
Of course the transformation compiler itself can have
bugs, but its bugs usually affect groups of system calls
rather than individual system calls, so they are easier to
spot.

Other applications have used specialized languages for
similar reasons. The original idea for the LAP transfor-
mation language comes from code template languages
for compilers. The first such code template language
that I used appeared in the Ritchie C compiler for 6th
Edition Unix [Ritc79]; the Portable C Compiler
[John79] and the GNU C Compiler [Free00] also have
code template languages. One very direct inspiration
was the master system call table in BSD-derived operat-
ing systems (/sys/kern/syscalls.master).

2.3. Design issues
The principal design goals for LAP were to:

• keep the specification simple
• keep the implementation simple
• make few modifications to Linux code
• maintain efficiency
• avoid burdening the operating system kernel

Keep the specification simple: If we can make the
specifications for most transformations very simple,
then we are likely to commit fewer errors when writing
transformations. Also, the effort of writing transforma-
tions is reduced.

Keep the implementation simple: The code uses ayacc
parser [John75] and alex scanner to implement the
transformation compiler. The output of the transforma-
tion compiler is more-or-less readable C, which we then
compile using GCC. We use Berkeley DB [Olso99] to
hold symbol databases. By using tools and keeping the
code simple, we leave fewer opportunities for mistakes
and spend less time on maintenance.

Make few modifications to Linux code: By interposing
a relatively small number of low-level interfaces in
front of actual Linux shared libraries, we reduce the
chances that we will interfere with interactions between
the application and the libraries, and we reduce the
amount of work that we set for ourselves.

Maintain efficiency: We try to avoid design decisions
that would cause us to add overhead by requiring us to
block signals to protect internal data structures or make
other expensive accommodations.

Avoid burdening the operating system kernel: We want
to avoid changes to the BSD/OS kernel to support
Linux emulation. This means that extra kernel
resources don’t need to be tied down for Linux emula-
tion. It also means that installing new LAP software
does not require an update to the kernel. It means that

debugging is simpler, and that it’s unlikely that an error
in LAP software will cause the operating system to
crash.

3. The LAP software
Before going into details of the transformation lan-
guage, let’s briefly look at the big picture - what is LAP
and how does it work?

LAP changes the execution environment for Linux
applications so that they can satisfy their requests for
services using the native BSD/OS kernel, rather than a
Linux kernel. LAP’s operation is based ondynamic
linking [Ging89]. When a Linux application runs, the
operating system loads it into virtual memory along
with a separate program known as the dynamic linker or
ld.so. The dynamic linker is responsible for loading
shared libraries, which are collections of useful
executable code that the application needs in order to
communicate to the operating system (among other
things). LAP replaces the Linux dynamic linker with a
lightly modified version that can make native BSD/OS
system calls, and interposes a library namedliblinux in
front of unmodified Linux libraries. Theliblinux
library overrides the Linux libraries and causes the
application to make calls into the native BSD/OS kernel
rather than into a Linux kernel.

Both the modifiedld.so and liblinux are built from
source code written in C, assembly language and the
transformation language. A separatetransformation
compiler converts the transformation language into C,
which is in turn compiled by the native C compiler.
LAP does not create or interpret transformations at run-
time. Apart from its own libraries, LAP does not use
any native BSD/OS libraries - all other shared libraries
in the LAP environment are unmodified Linux libraries.

4. The transformation language
The transformation language resembles C, with inspira-
tion from lex. Source code in the transformation lan-
guage is translated into C by thetransform program.
By convention, source code files for transformations
end in the suffix.x, while headers for transformation
sources end in.xh. Transformations describe how to
convert between Linux data types and system calls, and
BSD/OS data types and system calls.

As an example, here is a transformation for thestat()
system call:
int stat(const char *name, struct stat *buf);

Given the appropriatestat.xh header, this transfor-
mation causesliblinux to do the following:

• Execute anlcall instruction to perform the
BSD/OSstat() service, placing the resulting data
in a buffer on the stack.

• Convert the BSD/OSstat structure into a Linux
stat structure in memory belonging to the applica-
tion.

• If there is an error, convert the BSD/OS error code
into a Linux error code and store it in the Linux
errno location.

The following sections provide a more detailed descrip-
tion of the transformation language.

4.1. Lexical structure
The basic elements of the transformation language are
similar to C. Unlike C, there is no macro preprocessor;
however, it is possible to ‘‘escape’’ to C code and write
C preprocessor code in that context.

The language defineskeywords that introduce state-
ments or qualify declarations. All C keywords are
reserved. Several keywords that are specific to the
transformation language are introduced in the syntax
section below , along with the statements that use
them. Thetypedef statement provides a mechanism
for defining new keywords, analogous to the Ctype-
def statement.

There arenames andnumbers that work much like they
do in C. Names are introduced in C-like contexts such
as function names, parameter names, structure tags,
structure members, and so on. Names follow the usual
C rules - they must begin with a letter or an underscore,
and may contain letters, digits or underscores. Num-
bers also follow C rules; thetransform program simply
passes numbers into its C output without interpretation.

The transformation language treats specially those
names that begin with aforeign or native prefix. Names
that start withLINUX_, linux_ or __bsdi_ cause
the transform program to place restrictions on the
automatic mapping between Linux names and BSD/OS
names. See below for more information on this feature.
The transformation language also recognizes the special
prefix __kernel_ on function names; more on that
below as well.

Strings in the transformation language are used only to
give the names of header files. They are surrounded by
double quotes and they don’t follow C rules for escapes
(yes, very crude).

Various punctuation marks and ‘‘syntactic sugar’’ are
recognized, including parentheses, commas, semicolons
and braces. Certain punctuation implies an escape to C.
As in lex, text that appears inside percent-brace pairs
%{ ... %} is treated as literal C, and text that
appears between simple braces following a function

declaration is also treated as C. This C text is included
in the output from thetransform program without sig-
nificant alteration.

Comments andwhitespace are basically the same as C:
text inside slash-star and star-slash/* ... */ is
ignored, and comments, spaces, tabs and newlines serve
to break input into tokens, but are otherwise collapsed
together and ignored.

4.2. Syntax
The syntax of the transformation language is organized
into statements. The transformation language itself pro-
vides only declarative statements. Any imperative state-
ments must be coded in C inside C escapes. Here is a
summary of the statements. Literal text appears in
fixed width font, while text that varies appears in
slanted fixed width font.

Include
include "header"

The include statement causes text from the named
header file to be inserted into the program text at the
current location. Note that there is no ‘‘#’’ character at
the beginning of the line. If a program needs to include
a C header so that text in C escapes can use the header
information, then that C header must be included using
a C escape too; for example,include includes a
transformation language header, while%{ #include
a C header.

Typedef
typedef type-specifiers ... name;
typedef type-specifiers ... name {

in(name) { ... }
out(name) { ... }

};

The first form of thetypedef statement looks much
like a Ctypedef. It declaresname as a type name.
If name begins withlinux_, then the type is aforeign
type with no BSD/OS equivalent; otherwise, thetrans-
form program creates a mapping between the given
type name in Linux and the type with the same name in
BSD/OS. In the latter case, there really are two types,
but the difference is hidden by the mapping feature.
Inside C escapes, the BSD/OS type has the usual name
while the Linux version of the type is prefixed with
linux_. Note that the transformation language does
not define the BSD/OS version of a type name; you
must provide that yourself in a C escape, either by
including the appropriate header file or by writing an
explicit Ctypedef statement.

As an example, the statementtypedef unsigned
short uid_t; in the transformation language says
that there is a Linux type nameduid_t that corre-
sponds to a BSD/OS typeuid_t, and that it is equiv-
alent to the basic C typeunsigned short in Linux.
Whenuid_t is used in a parameter list or a structure
definition, the Linux value is automatically copied (as if
by assignment) into the corresponding BSD/OS value
on input (which has a type corresponding to
unsigned int), and the BSD/OS value is automati-
cally converted into the Linux value on output. For
example, the transformationint setuid(uid_t
uid); converts the Linuxuid value into a BSD/OS
uid value before calling the BSD/OS system call.

The second form of thetypedef statement allows you
to specify transformation functions for the given inte-
gral type. Thein() function is automatically called to
convert Linux types into BSD/OS types, while the
out() function is automatically called to convert
BSD/OS types into Linux types. The parametername
represents the value to be transformed. The body of the
function is given in C inside braces. One or both trans-
formation functions may be omitted, in which case the
value is transformed by assignment. As an example,
the statement
typedef unsigned short dev_t {

in(dev) {
return (makedev(dev >> 8, dev & 0xff);

}
};

specifies an input transformation fordev_t that con-
verts Linuxdev_t values into BSD/OSdev_t values
using the BSD/OSmakedev() macro. Note that a
typedef’s transformation functions may be accessed
directly inside C escapes by appending_in() or
_out() to the type name; this is true of transformation
functions in general.

Cookie
cookie type-specifiers ... name {

name number;
in(name) { ... }
out(name) { ... }

};

The cookie statement is an enumeration statement
that creates a type like atypedef and lists members
of that type along with their Linux values. When an
object of the given integral type appears in an input
context and its value matches one of the enumerated
values, that value is converted to the value with the cor-
responding name in BSD/OS. This is a fancy way of
saying that cookies convert#define macros from
Linux values to BSD/OS values and back. Inside C
escapes, the Linux member names are prefixed with

LINUX_. If a cookie member’s name is given with a
LINUX_ prefix, thetransform program assumes that
there is no equivalent BSD/OS value; if thecookie
type name itself is prefixed withlinux_, transform
assumes that none of the members have corresponding
BSD/OS names (and it omits theLINUX_ prefixes in C
escapes). If a value of a givencookie type fails to
match any of the listed numbers, the value is assigned
without conversion - that means that you don’t hav e to
list names that have the same value in both Linux and
BSD/OS. However, if there is anin() or out()
function, it applies to unmatched values. This lets you
take care of values that have no exact equivalent in
Linux or BSD/OS. Note that you are responsible for
supplying the BSD/OS cookie member definitions, usu-
ally by including the appropriate C header file inside a
C escape.

As an example,
cookie int reboot_t {

RB_AUTOBOOT 0x01234567;
RB_HALT 0xcdef0123;
LINUX_RB_ENABLE_CAD 0x89abcdef;

};

says (among other things) thatRB_AUTOBOOT has the
value0x01234567 in Linux and that there is no direct
BSD/OS equivalent for the Linux name
RB_ENABLE_CAD. An object of typereboot_t,
presumably the argument toreboot(), with value
0x01234567 would be converted to the BSD/OS
value ofRB_AUTOBOOT, which happens to be0. (Yes,
Linux uses enumerated values rather than flags as argu-
ments toreboot().)

Flag
flag type-specifiers ... name {

name number;
name;
in(foreign, native) { ... }
out(native, foreign) { ... }

};

A flag works very much like acookie but for flag
bits rather than enumerated values.Flag values are
tested for matches by logicallyand-ing against the
appropriate Linux (on input) or BSD/OS (on output)
value. If a match occurs, the corresponding BSD/OS
(on input) or Linux (on output) value is logicallyor-ed
in. Bits that aren’t matched are copied unchanged, so
you don’t need to list flag values that are identical on
both Linux and BSD/OS. A given input can match more
than one flag value. If you provide a transformation
function, it gets both the raw value and the converted
value, so that you can use a complicated rule to add (or
subtract) bits from the converted value after all of the
specific conversions are made. If you specify a flag

name without a value,transform assumes that the
name is a BSD/OS name with no equivalent Linux
value. If a member name has aLINUX_ prefix, trans-
form assumes that the name is a Linux name with no
equivalent BSD/OS value. Bits that have no equivalent
are not copied by default; this is a handy way to clear
bits that aren’t supported and don’t significantly affect
the semantics. Inside C escapes, the Linux flag member
names are prefixed withLINUX_.

Here’s an example:
flag unsigned int cflag_t {

LINUX_CSIZE 0000060;
HUPCL 0002000;
CRTS_IFLOW;
in(f, n) {

return (n | (f & LINUX_CSIZE) << 4);
}
out(n, f) {

return (f | (n & CSIZE) >> 4);
}

};

Thisflag encodes the flag bits for thec_cflag field
of a termios structure. It says that theHUPCL bit
under Linux has the value02000 rather than0x4000
as it does under BSD/OS. The BSD/OSCRTS_IFLOW
bit has no equivalent under Linux, and we clear it by
default in any conversion. TheLINUX_CSIZE field is
also cleared by default, but the transformation functions
copy it to and from the BSD/OSCSIZE field, so the
information isn’t lost. Notice how the transformation
functions must be careful to preserve the bits that were
already converted when returning a value.

Struct
struct name {

type-specifiers ... name;
type-specifiers ... name[number];
in(foreign, native, length) { ... }
out(native, foreign, length) { ... }

};

A struct statement in the transformation language
declares a Linux structure and guides its transformation
into a BSD/OS structure (or the reverse). Structure
members are declared like they are in C. A structure
member whose name begins withlinux_ is assumed
to have no BSD/OS equivalent, and it doesn’t get con-
verted automatically. Unlikeflags or cookies,
structs have no defaults - all of the members must
be listed, and if the BSD/OS version of the structure
contains a member that is not present in thestruct
specification in the transformation language,transform
assumes that no such member appears in the Linux ver-
sion of the structure. Inside C escapes, the member
names look exactly the way that they are declared - no
prefixes are automatically prepended. (We can do this

because structure member names have a scope local to
the given structure.)

When converting structures, each member is converted
using a transformation that is appropriate for the type of
the member, or if no transformation for that type is
available, it is copied by assignment. Arrays are always
copied by assignment (actually, by amemcpy() call).
It is important to note thattransform doesn’t transform
structures, but rather structurepointers; the direction
and size of the transformation are derived from context.

After the specific members have been converted, any
transformation functions are applied. The parameters to
the transformation functions are a pointer to the source
structure, a pointer to the destination structure and the
length of the destination structure. If the last member
in a structure is an array,transform assumes that the
structure has variable length and it copies everything
from the start of the array to the end of the structure as
determined by the length parameter. Structure transfor-
mation functions have void type, since the parameters
are passed by reference.

Here is an example of astruct statement:
struct sockaddr {

familycookie_t sa_family;
char sa_data[14];
in(f, n, len) { n->sa_len = len; }

};

The familycookie_t type is acookie type that
converts socket family values from Linux numbers to
BSD/OS numbers and back. Because the structure ends
with an array, it is considered a variable-length structure
and thesa_data field fills out the structure to the
given lengthlen. The input transformation fills in the
BSD/OSsa_len field usinglen, whose value was
supplied elsewhere.

Function
type-specifiers ... name(parameters, ...);
type-specifiers ... name(parameters, ...) =

syscall-name;
type-specifiers ... name(parameters, ...) =

errno-cookie;
type-specifiers ... name(parameters, ...) =

number;
type-specifiers ... name(parameters, ...)

{ ... }

whereparameters can be:
type-specifiers ... name
const type-specifiers ... name
volatile type-specifiers ... name
cookie-member-name
flag-member-name

A function statement is a transformation that converts a
Linux function call into a BSD/OS function call. Func-
tion statements look similar to prototype function decla-
rations and function definitions in C, but they hav e dif-
ferent meanings.

All of the function statement formats require a return
type, a function name and a parameter list. The return
type doesn’t hav e to be a transformable type; it may be
any C type, including a pointer, as long as all of the
type names have been declared. The function name
should match a name in the Linux C library.Trans-
form uses a database of library symbols to generate all
of the aliases for a known symbol, so the simplest ver-
sion of the symbol name is usually the right one. If the
name is identical to the name of a BSD/OS system call,
the body of the function may be omitted, in which case
transform arranges to call the BSD/OS system call
automatically. There may be zero or more parameters.
Each parameter is either a declaration for a name, or a
cookie or flag member name. Declared parameters
look much like they do in C, except that the name of the
parameter is mandatory even when the function state-
ment has no body and looks like a C declaration. Here
is a simple example:
ssize_t read(int fd, void *buf, size_t nbytes);

This definition creates a mapping for theread() func-
tion. It replaces the definitions for the Linux names
read, __read and__libc_read. It calls BSD/OS
system call number 3 (SYS_read) with the given
parameters and returns the result. If the return value is
-1, it converts the error number in__bsdi_errno
into a Linux error number inerrno.

The parameter list may optionally be followed by an
assignment or a C escape. An assignment is a short-
hand for certain common function bodies. An assign-
ment from a system call name tellstransform to make
a call to the given BSD/OS system call rather than
using the name of the function as the name of the sys-
tem call. An assignment from anerrno cookie says to
return an error condition (-1 for integer valued func-
tions, NULL for pointer valued functions) and set the
Linux errno variable to the given value (translated to
a Linux value). An assignment from a number tells
transform to make the function return that constant
value; it’s useful for turning functions into no-ops.
Finally, if you provide a C escape, it will be used as the
body of the function in C.Transform will still look for
error returns and translateerrno unless you mark the
function definition with the type qualifiernoerrno.

The basic point of the transformation language is to
allow you to specify transformations of function param-
eters and return values using transformable type names.

If the parameter and return value transformations are
sufficient to handle the transformation for the function,
then you can generally omit the function body; this is
the simplest and most common definition in the trans-
formation language. If you need to do more work, you
can write your own function body. Inside the function
body there are a few rules that you must follow, which
(unfortunately) are not enforced bytransform, which
does not process the C code in the body. Functions must
be re-entrant; if they need to allocate memory dynami-
cally, they should do it on the stack using stack vari-
ables and/or thealloca() function. To make a
BSD/OS system call inside a function body, you must
do an indirect call through the__bsdi_syscall()
function. The__bsdi_syscall() function works
just like the BSD/OSsyscall() function - it takes a
syscall number from<sys/syscall.h and a list of
parameters, and it performs the corresponding BSD/OS
system call. Any helper functions that you provide in
C escapes must have names that use the__bsdi_ pre-
fix so that they do not collide with Linux function
names. The__bsdi_syscall() function sets the
__bsdi_errno variable, not the errno variable,
which is a Linux variable.Transform generates code
to translate__bsdi_errno to errno automatically,
so in general it isn’t necessary to refer to
__bsdi_errno explicitly.

There are several interesting features of parameters
beyond the obvious ones. Transformable structure
pointers are quite special in many ways:

• The const keyword means something in addition
to the usual C semantics when it is applied to a
transformable structure pointer. Aconst trans-
formable structure pointer is an input-only parame-
ter - the structure gets converted from a Linux struc-
ture into a BSD/OS structure, copying it from the
application’s memory space onto the stack; however,
no copying or condition is performed on return.

• A volatile transformable structure pointer is a
read/write parameter - that is, it is transformed both
on input and on output, unless there is an error.

• A transformable structure pointer parameter that
doesn’t hav e aconst or volatile qualifier is
output-only. The BSD/OS system call places its
data in a BSD/OS structure allocated on the stack,
and that structure is automatically converted on
return into the corresponding Linux structure.

• If a structure definition ends with an array and a
function definition contains both a transformable
structure pointerand an integral parameter with
whose name consists of the prefixlength_ plus
the name of the structure pointer parameter, then the
structure is considered to be variable length and it is
assumed to have the number of bytes indicated by

the length parameter. The length parameter may
also be a pointer to an integral type, in which case it
is dereferenced before it is used. The value of the
length parameter is used when converting the array
member (as described above) and it is also passed
to the structure’s transformation functions, if it has
any.

Some system calls likeioctl() and fcntl()
change their parameter types or their return types
depending on the value of a ‘‘command’’ or flag param-
eter. The transformation language allows you to define
each of these variants separately. You simply specify a
cookieor flag member name for a particular param-
eter, and if the function is called with that parameter
matching that value, then the body of that function defi-
nition is executed. The first matching definition
applies. You must always supply ageneric function
definition that uses the appropriatecookie or flag
type for that parameter, and the body of that function
definition is executed when thecookie or flag value
fails to match any of the specific values in other func-
tion definitions for the same function. The feature is
hard to describe in words but easy to show in examples;
here’s one:
cookie int linux_pers_t { PERS_LINUX 0; };
int personality(PERS_LINUX) = 0;
int personality(linux_pers_t p) = EINVAL;

This code defines acookie that lists ‘‘personality’’
values for the Linuxpersonality() system call.
We only support the Linux personality, so only the
PERS_LINUX member is interesting. If the application
callspersonality(0), the definition forperson-
ality(PERS_LINUX) matches, and the system call
appears to return 0. If the application callsperson-
ality() with any other value for the personality
parameter, the system call will appear to return -1 and
errno will be set to the Linux equivalent ofEINVAL.

Here is a somewhat more complex example:
flag int openflags_t { ... };
cookie int fcntl_t { ... };
struct flock { ... };
openflags_t fcntl(int fd, F_GETFL, int ignore);
int fcntl(int fd, F_SETFL, openflags_t oflags);
int fcntl(int fd, F_GETLK, struct flock *fl);
int fcntl(int fd, F_SETLK,

const struct flock *fl);
int fcntl(int fd, F_SETLKW,

const struct flock *fl);
int fcntl(int fd, fcntl_t cmd, int arg);

In this example, if the second parameter matches
F_GETFL, then the firstfcntl() definition applies; it
converts the BSD/OSopen() mode flags into Linux
mode flags on return. If the second parameter is
F_SETFL, the third parameter is converted from Linux

mode flags into BSD/OS mode flags before we call the
BSD/OSfcntl() system call. The third, fourth and
fifth definitions show how a transformable structure
pointer parameter is converted on output (third) and
input (fourth and fifth, respectively). The generic func-
tion definition causes all remainingfcntl() cookie
values to be passed unchanged to the BSD/OS
fcntl() system call; this is appropriate when the
BSD/OS cookie value is identical to the Linux cookie
value and the parameters and return value do not
require transformation, or when the application supplies
an illegal cookie value that the BSD/OSfcntl() call
can reject. Note that there is really just onefcntl()
function in theliblinux library - all thefcntl() defi-
nitions are merged into a single function.

The __kernel_ feature
Function names that begin with__kernel_ are
treated specially. LAP has support for raw Linux sys-
tem call traps. By default, when it detects a Linux sys-
tem call trap, LAP marshals its arguments and transfers
control to the function with the same name as the Linux
kernel call. Sometimes it isn’t appropriate to do this -
for example, the kernel system call may have a different
name from the function in the Linux C library, or it may
treat its parameters differently. In that case, you may
define a function with the__kernel_ prefix to handle
just system call traps.

For example, the Linuxllseek() system call has a
different kernel interface from the Linux C library inter-
face:
linux_loff_t llseek(int fd, linux_loff_t offset,

int whence) { ... }
int __kernel__llseek(int fd, unsigned long o_high,

unsigned long o_low, linux_loff_t *result,
int whence) { ... }

The kernel version of this function swaps the high and
low words of the offset and returns its value using a ref-
erence parameter, unlike the C library version.

5. The implementation
5.1. The transformation compiler
The transform program compiles transformation
sources and creates C output files. The program is
about 3,300 lines of C, Yacc and Lex source code. An
additional program namedafdb builds databases for
transform; it’s about 250 lines of C.

The transform program is a single-pass compiler. It
parses statements and then emits most code in place,
including C escapes.Typedef andstruct declara-
tions are converted into Ctypedef andstruct dec-
larations, respectively, whilecookie andflag mem-
bers become C#define directives. In() and

out() transformation functions become static inline
functions with names that begin with the type name (for
typedef types), with the type name plus_default
(for cookie or flag types) or with the tag name (for
structures); the function names end in_in() and
_out(), respectively.Cookie andflag transforma-
tions turn intoswitch statements or sequences ofif
statements (respectively), inside inline functions, with a
call to thetype_default_in() ortype_default_out()
function at the end, as appropriate. Function statements
become C inline functions with numeric suffixes to dis-
tinguish the different alternatives. At the end of pro-
cessing, the compiler emits static functions which test
incoming arguments and call the appropriate function
alternatives. The compiler also generates assembly
escapes that serve to map the static container functions
onto the names that the Linux C library uses. (The
inline function and assembly escape syntax are exten-
sions in the GNU C compiler.)

The afdb program processes the dynamic symbol table
from the Linux C library and produces Berkeley DB
btree files that map addresses to function names and
function names to addresses. When the transformation
compiler sees a function name, it looks the name up in
the database, locates all of the aliases, then generates
assembly escapes that duplicate the Linux aliases in the
emulation library.

5.2. The transformations
Currently there are about 3250 lines of code written in
the transformation language.

Most of the transformations are straightforward. Many
functions require only the default transformation, with
no transformable parameters or transformable result and
no function body; in that case we just make the equiv-
alent BSD/OS system call, and transform the BSD/OS
errno value if there is an error. A number of functions
apply very simple transformations on parameters.
Some functions perform minor API changes; for exam-
ple, Linux has two kernel interfaces for theselect()
function, one of which takes different parameters from
the standard API, and one of which has a different
name, and the transformation language serves to map
parameters correctly.

A few transformations are more complex. The
ioctl() transformations are large because Linux
ioctl() cookies andtermio/termios structures
are different from BSD/OS, even though the semantics
are very similar. For socket functions, the Linux kernel
provides a single system call that multiplexes all of the
BSD-style socket calls using cookies, so the socket sup-
port is a little bit complicated. Thegetdiren-
tries() and getdents() transformations are

complicated because Linuxdirent structures have
seek-offset members that are not in BSD/OSdirent
structures, and because the different sizes of the Linux
and BSD/OSdirent structures require code to re-
pack them. A similar issue with re-packing applies to
getgroups() andsetgroups(), which require a
separate kernel implementation because the Linux ker-
nel gid_t data type is a 16-bit integer while the
BSD/OS type is a 32-bit integer. (The problem doesn’t
strike the C library API forgetgroups() andset-
groups() because the GNU C library that Linux uses
has a 32-bituid_t type like BSD/OS. There are a few
cases like this where the GNU C library API is closer to
the BSD/OS API than to the Linux kernel API and we
try to take advantage of this when we can.)

5.3. The libraries
We build three shared library objects: the dynamic
linker, the emulation library and a dummy C library.

The dynamic linker is built from the GNU C library
source code and linked with transformation language
source code so that it can make native BSD/OS system
calls. We configure the dynamic linker slightly differ-
ently from Linux so that it looks for itsld.so.cache
file in /linux/etc rather than/etc, which causes it
to use different libraries from the native BSD/OS
dynamic linker.

We make theemulation library from the transformation
sources plus some assembly and C code. We supply
code to do call tracing at the Linux API level. We add
code to implement BSD/OS system call stubs without
polluting the Linux C library namespace. We add ini-
tialization code that programs the hardware interrupt
descriptor table so that Linux system call interrupts are
dispatched to an address in the emulation library, and
we generate a dispatch table that sends system call
interrupts to the appropriate handler. The transforma-
tion compiler itself generates stub code for each system
call that marshals arguments and calls the C transforma-
tion function; the dispatch table jumps to the stubs. We
build the dispatch table using anawk script that pro-
cesses the Linux header file that defines Linux system
call numbers.

The dummy C library replaces the Linux C library in
the Linux library path. The purpose of the dummy C
library is to load the emulation library ahead of the real
Linux C library in the symbol search path, so that no
matter how an application tries to load the Linux C
library, it will always get the emulation library too. We
use theELF DT_AUXILIARY feature to implement
this trick. The dummy C library would not have any
code of its own if it were not for a peculiar rule about
library initialization. It seems that the dynamic linker

initializes libraries in reverse order of their loading; that
means that it initializes the emulation library after it ini-
tializes the real Linux C library. But we have to arrange
to dispatch Linux system call interrupts before we can
execute any code from the real Linux C library, so the
emulation library needs to run its initialization first.
The dummy C library initialization is performed before
both the real Linux C library initialization and the emu-
lation library initialization, however, so we get around
this problem by arranging for the dummy C library to
call an initialization function in the emulation library.

5.4. How does it really work?
It’s hard to tell how the emulation really works just by
reading descriptions of its pieces. Here’s a brief
description of what happens when you actually run a
program.

When a Linux application starts up on BSD/OS, the
normal ELF loader in the operating system loads it
with the modified Linux dynamic linker. The applica-
tion uses the dynamic linker to load the shared libraries
that it needs. All of the shared libraries that it sees are
real Linux shared libraries, with one exception: when
the application asks for the Linux C library, it also gets
an emulation library.

Let’s say the application needs a service from the Linux
C library; for example, it does astat() call to find
out the size of a file. The application doesn’t define
stat() itself, so the dynamic linker looks for an
implementation ofstat(). Because of the way the
libraries were loaded, the dynamic linker looks in the
emulation library before it looks in the Linux C library,
and it uses the emulation library’sstat() function.
The emulation function allocates room on the stack for
a BSD/OS stat structure and calls the BSD/OS
stat() function with the stack buffer as an argument.
If the BSD/OSstat() call succeeds, the emulation
function copies and converts the elements of the buffer
into the Linuxstat structure that was passed in and
returns 0 for success. If thestat() call failed, the
emulation function converts the BSD/OS error number
into a Linux error number and stores the result in the
Linux errno location.

Current Linux shared C libraries are statically linked
internally, so astat() call inside the C library works
a little differently. The Linux C library moves the sys-
tem call number (106) and the two parameters into reg-
isters and executes the Intelint $0x80 instruction to
generate a software interrupt. The Intel hardware trans-
fers control directly to a dispatch routine in the emula-
tion library. The dispatch code performs a computed
goto using the system call number, resulting in a branch
to the automatically generated stub forstat() in the

emulation library. This code pushes the parameters on
the stack and calls the samestat() emulation func-
tion that the application used in the example above. On
return, if there was an error, the stub code copies the
negatederrno value back into the result register.

(This example oversimplifies the specific situation with
stat() slightly - see the appendix for more details.)

6. Conclusions
6.1. Comparisons to other work
Of course there are many ways to emulate other operat-
ing systems and Linux on other Unix-like systems in
particular. I want to mention a couple other emulations
done in a different style, and compare them to LAP.

• The Skunkworks folks atSCO have a very neat
emulator that they calllxrun. Lxrun is a program
that loads a Linux program into its address space
and catches theSIGSEGV signal that the SCO Unix
operating system sends to the program when the
Linux code executes a software interrupt instruction
(int $0x80). This is analogous to the way that
LAP redirects the hardware interrupt descriptor
table, but it uses unprivileged software instead, so it
requires no changes to the kernel at all, although it’s
a little slower. Lxrun can handle statically linked
programs as well as the obsolete Linuxa.out
executable format, unlike LAP, and it requires no
changes at all to the dynamic linker and no futzing
with libraries. It’s a really lightweight implementa-
tion. LAP improves on it by reducing the overhead
of software interrupts, reducing overhead again by
interposing the library interface to system calls
when possible, and by loading itself automatically
rather than requiring a separate loader program (at
the expense of modifying the dynamic linker to use
BSD/OS system calls). LAP’s transformation lan-
guage should also make it easier to maintain.

• The FreeBSD project decided to implement Linux
emulation in its kernel. All of the transformations
are performed in privileged mode, and the memory
for the emulation is dedicated. This is a heavy-
weight implementation in terms of the amount of
code required and its effect on the kernel, but it does
permit precise emulation of (for example) signal
semantics. While this is nice, I feel that operating
system kernels are already absurdly fat, and given
that LAP can be reasonably complete and efficient
operating outside the kernel, that’s a virtue. Cer-
tainly the transformation-driven approach to emula-
tion could be applied to an in-kernel emulation if we
felt that it would be useful.

Another out-of-kernel approach that we could have
taken was the microkernel plus OS server approach that

was used in Mach 3 and later versions of Mach
[Golu90]. In Mach, not just the libraries but entire
machine-independent part of the operating system runs
outside the kernel, and the emulation communicates
with the kernel using IPC calls. That strategy would
clearly be overkill for a Linux emulation on a BSD
Unix system, however, since Linux and BSD are so
similar at the API level.

It’s worth pointing out that while the transformation
compiler was written in such a way to make it easy to
retarget for (say) FreeBSD, I would not consider it a
flaw if it were never retargeted. It’s nice to be able to
generalize tools, but LAP benefits from using a little
language regardless of whether it is general.

6.2. General results
The emulation is quite successful. We can run a num-
ber of interesting Linux applications, and they run quite
efficiently. Among the programs we have tested are the
Adobe Acrobat Reader v4, Netscape Communicator
v4.7, and WordPerfect v8. (In fact, this document was
composed using Netscape Composer for Linux running
under BSD/OS.) Only very minor BSD/OS kernel
modifications were required, and the kernel contains no
emulation code itself, so we avoided any significant ker-
nel bloat. The implementation is remarkably robust so
far; we have had to make very few bug fixes after the
initial coding and testing. I attribute this to the small
size and the simplicity of the specification.

As far as performance goes, LAP seems to be more
than adequate, but the impact is difficult to measure in a
meaningful way. I thought about trying to measure
some application running under native Linux and com-
paring it to the same application running under LAP on
native BSD/OS on the same hardware, but the different
kernels, filesystems and other factors would surely con-
found the result - it would be more of a measure of
Linux versus BSD than the overhead of LAP. Howev er,
I can provide a vague idea of how much time is spent in
LAP when running a program. I ran an instruction
tracer on the Linuxls program runningls -l under
LAP and counted the number of instructions that were
executed in the range of addresses occupied by LAP.
For an 8-item directory listing, LAP used 3423 instruc-
tions out of 714797 total, or about 0.5%. Because of
the way that LAP interposes itself in front of the Linux
C library, the impact is actually a bit less than it seems,
because LAP replaced code that would have been
executed in thels program under Linux. When running
an X-based program under LAP such as Netscape (as I
am doing right now), the overhead is not perceptible.

6.3. Bugs, omissions and other niceties
Not all Linux system calls are currently emulated. The
sign that a system call hasn’t been emulated is that your
application prints a message and aborts. Almost all of
the missing system calls are administrative calls, how-
ev er, so we suspect that we won’t encounter them in
third-party applications. (For example, we don’t sup-
port Linux NFS daemons; the BSD/OS native NFS dae-
mons work just fine.)

By far the biggest user-visible omission is the lack of
support for the Linuxclone() system call and related
user thread support. I am working actively on this issue
and I hope to have news to report at the conference.

We don’t support statically linked Linux programs. If
we wanted to support statically linked Linux programs,
we would adopt the SCO emulation technology. The
kernel would load a statically-linked version of the
emulation library into every statically linked Linux pro-
gram. The emulation library would not interpose itself
in front of Linux C library functions, but it would still
catch software interrupts and process them in the same
way that LAP currently does. Statically linked Linux
programs are sufficiently rare that we have not seen a
need for this feature yet.

Currently LAP does not do any mapping of data types
that have narrower widths on Linux. If a UID on BSD
is greater than 65,536, a LAP program may see a trun-
cated value for that UID instead of the full 32-bit value
in some situations.

I hav e not described the LAP support for older Linux
ELF programs that use the 5th version of the Linux C
library (sometimes calledlibc5). We do support those
programs and thelibc5 emulation shares most of its
source code with the rest of LAP. It works a little dif-
ferently from the scheme described in this document,
but I’m not going to explain it here. LAP does not (and
probably will never) support Linuxa.out programs.

The code for LAP is available on the BSD/OS con-
tributed software CD-ROM. Like all software on that
CD-ROM, it is freely redistributable. Feel free to use it
and modify it as you please with the usual understand-
ing that if it doesn’t work for you or causes problems
for you, BSDI doesn’t take any responsibility.

Appendix - an extended example
types.xh:
/* BSDI $Id: types.xh,v 1.2 1999/04/14 22:42:57 prb Exp $ */

/*
* Linux has an awkward problem which we have to worry about here...
*
* The GNU C library defines basic types that don’t match Linux kernel types.
* The library applies transformations to these types when passing them
* to and from the Linux kernel. By convention, the transformation routines
* call stubs named __syscall_*() to perform the syscall using Linux
* kernel data types. It’s stupid to transform these data types twice,
* especially when the GNU C data types are generally wider and hence
* closer to BSD types, so we interpose our transformation routines over
* the GNU C library routines rather than the Linux __syscall_() routines.
*/

%{
#include <sys/types.h>
%}

/*
* Here are the GNU C library types.
*/

typedef unsigned long long dev_t {
in(dev) { return (makedev(dev>> 8, dev & 0xff)); }
out(dev) { return (major(dev) << 8 | minor(dev)); }

};

typedef char *caddr_t;
typedef long clock_t;
typedef unsigned int gid_t;
typedef unsigned long ino_t;
typedef int key_t;
typedef long long linux_loff_t;
typedef unsigned int mode_t;
typedef unsigned int nlink_t;
typedef long off_t;
typedef int pid_t;
typedef int ptrdiff_t;
typedef unsigned int size_t;
typedef int ssize_t;
typedef long time_t;
typedef unsigned int uid_t;

/*
* For documentation purposes, here are the actual Linux internal types,
* where they differ from the GNU C library types.
*/

typedef unsigned short linux_kernel_dev_t;
typedef unsigned short linux_kernel_gid_t;
typedef unsigned short linux_kernel_mode_t;
typedef unsigned short linux_kernel_nlink_t;
typedef unsigned short linux_kernel_uid_t;

typedef unsigned int u_int;
typedef unsigned short u_short;
typedef unsigned long u_long;

stat.xh:
/* BSDI $Id: stat.xh,v 1.2 1999/04/14 22:38:59 prb Exp $ */

/*
* Transforms for stat.h.
*/

%{
/* Don’t use timespecs. */
#define _POSIX_SOURCE 1
#include <sys/stat.h
#undef _POSIX_SOURCE
#define old_stat stat
%}

cookie int linux_stat_ver_t {
_STAT_VER_LINUX_OLD 1;
_STAT_VER_SVR4 2;
_STAT_VER_LINUX 3;

};

struct stat {
dev_t st_dev;
unsigned short linux_pad1;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
unsigned short linux_pad2;
off_t st_size;
unsigned long st_blksize;
unsigned long st_blocks;
time_t st_atime;
long linux_unused1;
time_t st_mtime;
long linux_unused2;
time_t st_ctime;
long linux_unused3;
long linux_unused4;
long linux_unused5;

};

struct old_stat {
unsigned short int st_dev;
unsigned short int linux_pad1;
unsigned long int st_ino;
unsigned short int st_mode;
unsigned short int st_nlink;
unsigned short int st_uid;
unsigned short int st_gid;
unsigned short int st_rdev;
unsigned short int linux_pad2;
unsigned long int st_size;
unsigned long int st_blksize;
unsigned long int st_blocks;
unsigned long int st_atime;
unsigned long int linux_unused1;
unsigned long int st_mtime;
unsigned long int linux_unused2;
unsigned long int st_ctime;
unsigned long int linux_unused3;
unsigned long int linux_unused4;
unsigned long int linux_unused5;

};

stat.x:
/* BSDI $Id: stat.x,v 1.2 1999/04/14 22:47:01 prb Exp $ */

/*
* Transformation rules for <sys/stat.h> syscalls.
*/

include "types.xh"
include "stat.xh"

/*
* Linux’s kernel types don’t match its user types.
* The GNU C library performs transformations from the kernel types
* to the user types. We interpose the GNU C library stubs rather
* than the Linux kernel stubs, so that we don’t transform twice.
*/

int __syscall_stat(const char *name, struct old_stat *buf)
{

return (__bsdi_syscall(SYS_stat, name, buf));
}

int _xstat(_STAT_VER_LINUX_OLD, const char *name, struct old_stat *buf)
{

return (__bsdi_syscall(SYS_stat, name, buf));
}
int _xstat(_STAT_VER_LINUX, const char *name, struct stat *buf)
{

return (__bsdi_syscall(SYS_stat, name, buf));
}
int _xstat(linux_stat_ver_t v, const char *name, struct stat *buf) = EINVAL;

int _fxstat(_STAT_VER_LINUX_OLD, int fd, struct old_stat *buf)
{

return (__bsdi_syscall(SYS_fstat, fd, buf));
}
int _fxstat(_STAT_VER_LINUX, int fd, struct stat *buf)
{

return (__bsdi_syscall(SYS_fstat, fd, buf));
}
int _fxstat(linux_stat_ver_t v, int fd, struct stat *buf) = EINVAL;

int _lxstat(_STAT_VER_LINUX_OLD, const char *name, struct old_stat *buf)
{

return (__bsdi_syscall(SYS_lstat, name, buf));
}
int _lxstat(_STAT_VER_LINUX, const char *name, struct stat *buf)
{

return (__bsdi_syscall(SYS_lstat, name, buf));
}
int _lxstat(linux_stat_ver_t v, const char *name, struct stat *buf) = EINVAL;

/*
* The other stat.h calls...
*/

int chmod(const char *path, mode_t mode);

int fchmod(int fd, mode_t mode);

int mkdir(const char *path, mode_t mode);

int umask(mode_t m);

References
[ANSI89] American National Standard for Information Systems,Programming Language - C, ANSI X3.159-1989.

[BSDI00] http://www.bsdi.com/

[Free00] Using and Porting GNU CC, for Version 2.95, R. Stallman, Free Software Foundation, 2000.

[Ging89] ‘‘Shared Libraries in SunOS,’’ R. Gingell, M. Lee, X. Dang, M. Weeks, inProceedings of the Summer
1989 Usenix Conference, 1989.

[Golu90] ‘‘Unix as an application program,’’ D. Golub, R. Dean, A. Forin, R. Rashid, inProceedings of the Summer
1990 Usenix Conference, June 1990.

[IEEE96] IEEE Std 1003.1, 1996 Edition,Portable Operating System Interface (POSIX), Part 1: System Applica-
tion Program Interface (API) [C language], Institute for Electrical and Electronics Engineers, 1996.

[John75] ‘‘Yacc - Yet Another Compiler Compiler,’’ S. Johnson,Computing Science Technical Report 32, AT&T
Bell Laboratories, Murray Hill NJ, 1975.

[John79] ‘‘A Tour through the Portable C Compiler,’’ S. Johnson,Unix Programmer’s Manual, 7th Edition, volume
2b, AT&T Bell Laboratories, Murray Hill NJ, 1979.

[Lesk75] ‘‘Lex - a lexical analyzer generator,’’ M. Lesk,Computing Science Technical Report 39, AT&T Bell Lab-
oratories, Murray Hill NJ, 1975.

[Linu00] http://www.linux.org/

[Olso99] ‘‘Berkeley DB,’’ M. Olson, K. Bostic, M. Seltzer, inProceedings of the Freenix Track, 1999 Usenix
Annual Technical Conference, June 1999.

[Reco98] ‘‘Linux Emulation for SCO,’’ R. Record, M. Hopkirk, S. Ginzburg, in Proceedings of theUsenix 1998
Annual Technical Conference: Invited Talks and Freenix Track, June 1998.

[Ritc79] ‘‘A Tour through the UNIX C Compiler,’’ D. Ritchie,Unix Programmer’s Manual, 7th Edition, volume 2b,
AT&T Bell Laboratories, Murray Hill NJ, 1979.

[Salu98] Handbook of Programming Languages, Volume III: Little Languages and Tools.P. Salus, ed. Macmillan
Technical Publishing, 1998.

[Unix90] System V Application Binary Interface, Unix Software Operation, Prentice-Hall, 1990.

