
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

D M F S — A D ATA M I G R AT I O N F I L E S Y S T E M
F O R N E T B S D

William Studenmund

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

DMFS – A Data Migration File System for NetBSD

William Studenmund
Veridian MRJ Technology Solutions

NASA/Ames Research Center�

Abstract

I have recently developed DMFS, a Data Migration File
System, for NetBSD[1]. This file system provides ker-
nel support for the data migration system being devel-
oped by my research group at NASA/Ames. The file
system utilizes an underlying file store to provide the file
backing, and coordinates user and system access to the
files. It stores its internal metadata in a flat file, which
resides on a separate file system. This paper will first
describe our data migration system to provide a context
for DMFS, then it will describe DMFS. I also will de-
scribe the changes to NetBSD needed to make DMFS
work. Then I will give an overview of the file archival
and restoration procedures, and describe how some typ-
ical user actions are modified by DMFS. Lastly, I will
present simple performance measurements which indi-
cate that there is little performance loss due to the use of
the DMFS layer.

1 Introduction

NAStore 3 is the third-generation of mass storage sys-
tems to be developed at NAS, the Numerical Aerospace
Simulation facility, located at NASA/Ames Research
Center. It consists of three main parts: the volume man-
agement system (volman), the virtual volume manage-
ment system (vvm), and the DMFS (data migration file
system) system.

A complete description of the NAStore 3 system is be-
yond the scope of this document. I will give a brief
overview, and then descrive DMFS’s role in NAStore 3.

1.1 volman system

The volman system is responsible for keeping track of
the tapes, and for bringing them on line when requested.

�Present address: Zembu Labs, 445 Sherman Avenue, Palo Alto
CA 94306, wrstuden@zembu.com

It was designed to support the mass storage systems de-
ployed here at NAS under the NAStore 2 system. That
system supported a total of twenty StorageTek NearLine
tape silos at two locations, each with up to four tape
drives each. Each silo contained upwards of 5000 tapes,
and had robotic pass-throughs to adjoining silos.

The volman system is designed using a client-server
model, and consists of three main components: the vol-
man master, possibly multiple volman servers, and vol-
man clients. The volman servers connect to each tape
silo, mount and unmount tapes at the direction of the
volman master, and provide tape services to clients. The
volman master maintains a database of known tapes and
locations, and directs the tape servers to move and mount
tapes to service client requests. The client component
consists of a set of programs to monitor activity and tape
quotas, and a programmatic interface so that programs
can make requests of the volman master and servers.

1.2 vvm system

The vvm system provides a virtual volume (or virtual
tape) abstraction and interface for client programs. Its
main utility is to improve tape usage efficiency. Many
streaming tape technologies do not handle writing small
files efficiently. For instance, a seven kilobyte file might
take up almost as much tape space as a one megabyte
file. To better handle such cases, vvm clients (such as the
DMFS system) read and write files out of and into virtual
volumes (vv’s), which are typically between 50 and 300
megabytes in size. These vv’s are read and written to
tape. Thus all tape operations involve large reads and
writes which are much more efficient.

The vvm system consists of a server, client programs,
and a tape server daemon. The vvm server is respon-
sible for remembering which vv’s have been allocated,
and on which tape volume they reside. When a vvm
client requests a vv, the vvm server contacts the volman
system (the volman master specifically) to arrange for
the needed tape volume to be mounted. The vvm tape

server daemon, which runs on the same machine as the
volman tape servers, then reads the tapes and makes the
vv available to the client. The clients obviously use the
vv’s to store variable-length files. There are client pro-
grams which are able to monitor the status of vv’s, and
there is a programmatic interface which lets programs
make requests of the vvm system.

1.3 DMFS system

The final component of the NAStore system is the
DMFS system. This consists ofdmfsd, the DMFS data
migration daemon, system utilities to assist file migra-
tion, and the DMFS file system (the focus of this paper).
dmfsd is the data migration daemon, and it runs on each
host supporting a DMFS file system. It is responsible
for responding to requests from the DMFS file system
for file restoration. The userland system utilities in the
DMFS system are responsible for archiving files and for
making them non-resident. There are also utilities to per-
mit users to force the archival or restoration of specific
files.

2 Description of DMFS

The DMFS file system is the part of NAStore 3 with
which most end-user interaction happens. It maintains as
much of a traditional UNIX user experience as possible
while providing data migration services.

2.1 Layered file system

One of the main differences between DMFS and other
migration file systems (such as RASHFS, the NAStore
2 file system, or HighLight[3]) is that it is a layered file
system. These other file systems merge the data migra-
tion code into the file system code, while DMFS uses
the layered file system formalism to place its migration
code between most kernel accesses and the underlying
file system.

We perceived two main advantages and one potential
disadvantage with this design choice. The first advan-
tage we perceived is that it would be much easier to cre-
ate and maintain a layered file system with data migra-
tion facilities than to add those facilities to a specific file
system and maintain them over the long term. For in-
stance, the Berkeley Fast File System (FFS)[4, 5] is un-
dergoing change with the addition of soft updates[7]. By
maintaining the file migration functionality separately,
we decouple DMFS from any other FFS-related devel-

opment. Secondly, we leave the choice of underlying file
system to the site administrators. If the access patterns
of a site are better suited to the Berkeley Log-structured
File System (LFS)[4, 6], then a site can use that as the
underlying file store rather than LFS. The only limita-
tions are that the underlying file system support vnode
generation numbers, and the current metadata database
requires knowledge of the maximum number of vnodes
at the time of initial configuration.

The one potential disadvantage is that the use of layered
file systems incurs a certain amount of overhead for each
file system operation. In [2], Heidemann measures lay-
ered file system overhead to be on the order of a few
percent. Section 7 will describe the limited testing we
have done to date. The conclusion we have reached is
that any performance penalties due to layered file system
technology are certainly worth the benefits in maintain-
ability and flexibility.

2.2 Functions

The primary function of the DMFS file system layer is
to provide user processes transparent access to migrated
data. It determines if an operation would access non-
resident portions of the underlying file. If so, it re-
quests that thedmfsd daemon restore the file, and then
blocks the operation until the file is sufficiently restored
so that the operation may proceed. One feature present
in DMFS is that when a process is blocked awaiting file
restoration, it may be interrupted. As a practical matter,
a user may kill (ˆC) a blocked process.

Another main function of the DMFS layer also is to pre-
serve the integrity of the metadata it and the userland
dmfsd databases keep regarding files. It does so in two
ways.

First, it records the generation number of the underlying
vnode. When an operation (such as name lookup) causes
the allocation of a DMFS vnode, the recorded generation
number is compared with the generation number of the
underlying vnode. In case of a discrepancy, the informa-
tion in both the kernel and userland databases is inval-
idated. Likewise these databases are invalidated when
the last reference to an unlinked vnode is released.

The second area of metadata preservation keeps a file
from getting in an inconsistent state. The present
metadata format permits recording that a portion of an
archived file is resident, but does not permit noting that
only a portion of a file is archived. The possibility of
file inconsistency would arise if the on-disk portion of

a non-resident file were permitted to be modified. For
simplicity, such cases are forbidden at present. Thus any
writes or truncations to a non-resident file are blocked
until the file is fully restored.

2.3 Metadata

The DMFS layer keeps a small amount (80 bytes) of
metadata for each vnode in the underlying file system.
At present these data are kept in a flat file database in-
dexed by vnode number which is stored on a separate
file system. The metadata file contains a header which
records the version number of the metadata file and of
the nodes, their size, and the byte order in which they
are stored. The metadata include:

flags
Flags indicating state of the DMFS node, in-
cluding: metadata valid, file is archived, and file is
(partially) non-resident.

generation number
The generation number of the current file us-
ing this vnode number.

archive size
The size of the file (including any non-resident
portion).

byte barrier
How much of a non-resident file is present on
the underlying file store. Reads of non-resident
files which access only data that is present on the
underlying file store are not blocked.

bfid
“Binary File IDentifier” a 16-byte endian-
independent tag assigned to the file which is
intended to uniquely identify it. Thedmfsd
databases use this tag as the main index for the file.

atime andmtime
Access and modification time stamps (with
nanosecond resolution) for the file. These times are
not updated due to either archive or restore agent
operation.

archive time andrestore time
Time stamps (with second resolution) of last
archive and restore events.

For files with valid metadata, theatime and mtime
values above are reported in a VOP_GETATTR() op-
eration, masking archive and restoration agent activity

from view by users. When a file is flagged as non-
resident, thearchive size value is also reported in a
VOP_GETATTR() operation. These elements together
serve to preserve a more traditional user experience with
files on the DMFS layer. The activities of the archive and
restore agents are not noticeable by userland processes
such asls -l, find -amin, find -mtime, etc.,
other than as described in section 3.91.

The archive and restore time stamps are recorded to help
the policy engine in the userland migration agent know
more of a file’s access history.

2.4 Comparison with other projects

Some of the design goals of the DMFS layer are best
understood in terms of some of the data migration efforts
which have come before it.

The DMFS layer is based on NASA’s experience with
the RASHFS file system used in the NAStore 2 system.
NAStore 2 was deployed at NAS from 1991 until June,
1999. It was initially deployed on an Amdahl 5880 run-
ning UTS. Later it was deployed on two Convex 3820
computers running ConvexOS. RASHFS was a modi-
fied version of the native FFS file system implementa-
tion. The changes needed to support data migration were
grafted into the FFS implementation, extra space in the
inode was used to store metadata, and a few system calls
were modified to call into the RASHFS implementation
to ensure that a file was restored before proceeding. (A
file had to be fully restored before it was executed.) This
implementation was very successful. The system de-
ployed at NAS had about 4 TB of disk in the file systems
and a couple of petabytes of on-line tape.

One of the difficulties with the RASHFS system is that
it basically was RASH-FFS. To add the same migration
abilities on top of a different file system type would re-
quire a substantial amount of re-implementation. As
there is less unused space in FFS inodes in modern
(4.4BSD and later) FFS implementations, it is possible
that the metadata will no longer fit. This is one of the
main reasons we went with a layered file system when
designing DMFS. While untested, DMFS should work
with NetBSD’s LFS, and possibly even EXT2FS file sys-
tems, about as well as with the FFS file system. Addi-
tionally, at the same time as DMFS was being devel-

1the fact that accessing non-resident portions of a file will block
until the needed tape can be mounted and read. That will depend on
the tape silo robotics, and, for tapes in off line storage, a human find-
ing and mounting the needed tape. This delay, especially for off line
storage, can be on the order of tens of minutes.

oped, there was a tremendous amount of file system de-
velopment going on within the *BSD community. Kirk
McKusick was working on adding “soft updates” to FFS,
a technology which works to give FFS the resiliency of a
journalized file system without having to have a journal.
Konrad Schroder has been working to make NetBSD’s
LFS implementation quite robust and functional. By
not integrating DMFS into a file system, DMFS stays
independent of the above technology progressions – a
site could choose to follow them or not, using the same
DMFS code either way.

NAStore 3 is not the first tertiary storage system built
on top of 4.4BSD. One predecessor was HighLight, a
migration file system built above LFS. The major dif-
ference between it and DMFS is that HighLight is like
RASHFS in that it represents melding data migration
into a file system in a very intimate manner. How-
ever, HighLight uses certain aspects of the LFS struc-
ture to its advantage. LFS operates in terms of written
segments[4, 6]. A file is described as having contents
in specific segments. HighLight implements data migra-
tion by including in the file system block space (where
these segments may reside) the tapes in the robotics as-
signed to the file system. Thus when a file is migrated
to tape storage, the inode is modified to point to the tape
block. When a migrated file is read, portions of the on-
tape segments are read onto disk. Otherwise, the file
system behaves much as a non-migrating LFS. One ad-
vantage of this methodology is that it is possible to cre-
ate dense files larger than the disk storage allocated to
the migration file system (something not possible with
DMFS).

The DMFS layer does have a few advantages over High-
Light. One is that it has no knowledge of where migrated
files are stored. As mentioned above, HighLight marks
the blocks stored on the tape as part of the file system.
Thus it requires knowledge of how many tapes of which
size (in which robots) are available at file system cre-
ation time. While it certainly would be feasible to extend
this knowledge base (add new tape robotics for instance)
for an operational file system, keeping this knowledge
separate from the migration file system is simpler. Addi-
tionally, by decoupling the tape storage information, we
permit more sophisticated tape policies. For instance,
NAStore 3 will by default archive a file into two inde-
pendent vv’s (which will reside on two separate tapes)
before making it non-resident (deallocating its blocks on
disk). This behavior permits a level of redundancy not
readily obtained with HighLight.

3 NetBSD vfs changes

A number of changes were required to the NetBSD vn-
ode and vfs interfaces in order to get DMFS to work.
All of these changes were designed to be applicable to
all file systems, not just DMFS.

3.1 The OVERLAY file system

One change was the addition of a new file system, the
OVERLAY file system. The OVERLAY file system is
functionally similar to the NULLFS[4] file system ex-
cept that it does not export the directory hierarchy into
another part of the file name space. It places itself be-
tween the file name space and the overlayed file sys-
tem2. It is intended for certain specific circumstances,
such as that of DMFS, where the layered file system has
a strong need to block access to the underlying file sys-
tem. DMFS does so to prevent metadata inconsistencies.
One other variant of the OVERLAY file system might be
a file system which attempts to validate executables with
a checksum before permitting their execution. This file
system would need to block access as that is very key
to its security model. Unless there is a strong need for
interposition, all future layered file systems should be
based on the NULLFS layer rather than the OVERLAY
layer as it simplifies the fcntl(2) interactions described
in section 3.8.

3.2 Layering works

The most dramatic change needed to get DMFS to work
was to get layered file systems working with NetBSD.
The layered file system research of Heidemann [2] de-
scribes many of the advantages of layered file systems.
When we began this work, we found the layered file
system implementations present in all *BSDs not to be
robust enough for production work. For instance, the
NetBSD 1.4 NULLFS certainly will replicate a file hier-
archy in another portion of the system’s file name space.
However simultaneous access of this replication by mul-
tiple processes, for instance a parallel make invoked
with make -j 8, would result in kernel locking pan-
ics. Obviously a production-quality migration system

2file system mounted on/home, and an OVERLAY file system
subsequently mounted on/home. Access to files under/home in the
file name space (/home/user1/.profile for example) now go
to the OVERLAY file system. It in turn can pass these to the under-
lying file system initially mounted on/home as it needs to. Contrast
this to the case of mounting a second leaf (non-layered) file system
onto/home. In this case, no operations would be passed to the file
system initially mounted on/home until the second file system was
unmounted.

needed a more robust implementation.

The changes described below, especially those of sec-
tions 3.3 and 3.4, were implemented at the same time,
in addition to a modification to how null_lookup() be-
haved3. As such, it is not clear which change (if any)
was singularly responsible for the increase in robustness,
though I suspect the change to how null_lookup() be-
haves represents most of it.

After these changes were implemented, I performed a
few simple tests to ensure their effectiveness. The first
one was to perform a multi-process kernel make in a
directory on a NULLFS file system (cd into a kernel
compile directory and typemake -j 8). Before these
changes, such an action would promptly panic the ker-
nel. After these changes, it did not. Additionally, simul-
taneous access of multiple NULL layers and the under-
lying layer, such as the parallel make above combined
with recursive finds in the other layers, have not been
observed to panic the system. The DMFS layer we have
built based on this NULLFS layer has shown no difficul-
ties (panics or otherwise) due to simultaneous multi-user
access in almost one year of operation.

It should be noted that the NULLFS and UMAP layered
file systems have benefited from these changes, while
the UNION file system has not. It is still not considered
production quality.

3.3 Most file systems do real locking

To better support the vnode locking and chaining de-
scribed in the next section, all file systems (except for
UNIONFS and NFS) were changed to do vnode lock-
ing. Previously only file systems with on-disk storage
actually did vnode locking, while the others merely re-
turned success. As of NetBSD 1.5, the NFS file system
is the only leaf file system which does not do real vnode
locking. This defect remains as lock release and reacqui-
sition during RPC calls to the NFS server has not been
implemented. As mentioned above, the UNION file sys-
tem has not been updated with these locking changes.

While it is not likely that one would want to layer a file
system above many of the file systems which gained true
locking (such as the KERNFS layer), this change makes
it easier to impliment layered file systems. Lock man-
agement is one of the keys of getting layered file sys-

3directly rather than using the bypass routine. It also checks for the
case of a lookup of “.”, where the returned vnode is the same as the
vnode of the directory in which the lookup was performed and handles
it explicitly.

tems to work. By being able to rely on all leaf vnodes
doing locking, the layered locking becomes much eas-
ier. Additionally the changes to add this support were
not difficult.

3.4 New vnode lock location and chaining

One change made in how vnodes are locked was to im-
plement vnode lock chaining similar to what Heidemann
described in [2]. After this change, each vnode contains
a pointer to a lock structure which exports the lock struc-
ture used for this vnode. If this pointer is non-null, a
layered file system will directly access this lock struc-
ture for locking and unlocking the layered vnode. If
this pointer is null, the layered file system will call the
underlying file system’s lock and unlock routines when
needed, and will maintain a private lock on its vnode. As
described in the preceding section, all leaf file systems
other than NFS now do locking, and thus export a lock
structure. Once NFS has been fixed, the only file sys-
tems which should not export a lock structure would be
layered file systems which perform fan-out (such as the
UNIONfile system) as they need to perform more com-
plicated locking.

As all file systems should be doing locking and export-
ing a pointer to a lock structure, I decided to add a lock
structure to the vnode structure and remove it from all of
the leaf file systems’ private data. I was concerned about
a whole stack of vnodes referring to file system-specific
private data, and felt it cleaner for vnodes to refer to
memory contained in vnodes. In retrospect (and having
completed the change), it now seems wiser to leave the
lock structure in the leaf file system’s private data and
just require the file system be careful about managing
the memory it exports in the lock structure pointer in its
vnode. This change would improve memory usage in a
system with multiple layered file systems by not allocat-
ing a lock structure in the layered vnodes which would
go unused.

The effect of this change is that a whole stack of vn-
odes will lock and unlock simultaneously. At first glance
this change seems unimportant, as any locking operation
can traverse a vnode stack and interact with the under-
lying leaf file system. The advantage is three-fold. One
advantage is conceptual. By having all layers use the
same lock structure, the commonality of the stack is re-
inforced. Secondly, layered nodes do not need to call the
underlying file system if the lock structure has been ex-
ported – it may directly manipulate it itself. This lack of
stack traversal becomes quite advantageous in the case
of multiple layered file systems on top of each other.

The third advantage is due to the lock semantics of the
lookup operation on “..”. To avoid deadlock, directories
are locked from parent to child, starting with the root
vnode. To preserve this when looking up “..”, the child
directory must be unlocked, the parent locked, and the
child then re-locked. When looking up “..” in a layered
file system, with a unified lock, the leaf file system can
unlock the entire stack and re-lock it while trying to ob-
tain the parent node. If the locks were not unified and
there were separate locks in vnodes stacked above the
leaf one, the leaf file system would either need to some-
how unlock and re-lock those locks during the lookup of
“..” or to run the risk of deadlock where one process had
the upper lock(s) and not the lower, while another had
the lower and not the upper.

3.5 New flag returned by lookup:
PDIRUNLOCK

One other change has been to plug a semantic hole in the
error reporting of the lookup operation. In case of an er-
ror, the lookup operation in a leaf file system is supposed
to return with the directory vnode in which it was look-
ing locked. One potential problem with this is that it is
possible that the error being returned resulted from not
being able to reacquire the lock on the examined direc-
tory when looking up “..”. In this scenario, the lookup
routine has little choice but to return an error with the
examined directory unlocked. It signals this behavior by
setting the PDIRUNLOCK flag which is returned to the
caller. When a layered file system is maintaining its own
parallel locks (if the underlying file system did not ex-
port a lock structure), the layered file system must adjust
its locks accordingly.

3.6 “layerfs” library added

Before NetBSD 1.5, most NetBSD layered file sys-
tems other than UNIONFS were based on copies of
NULLFS. Typically the NULLFS files were copied and
renamed, the routine names were changed (the “null_”
prefix changed to reflect the new file system name), and
then new features were added. This behavior represents
a duplication of code. In order to reduce this duplication,
there is now a library of common files, “layerfs,” which
provide most of the NULL layer functionality. For in-
stance the NULL layer now consists of a mount routine
and vnode interface structures. The rest of the routines
are in the layerfs library. The UMAP layer now shares
most all of these routines, with the only difference being
that it has some customized routines (bypass, lookup,
and a few others) which perform its credential mapping.

DMFS also uses this library of routines. Of the 19 vn-
ode operations handled by DMFS, 20% consist solely of
calls into this library.

3.7 File Handles usable in the context of a local
filestore

When communicating with the userland daemondmfsd,
DMFS uses file handles to refer to specific files. It
does this because on all of the occasions where it
needs to communicate withdmfsd (for instance in a
VOP_READ() attempting to access non-resident data)
none of the potentially multiple paths to this file are
available.

To make file handles truly useful in this manner, two
changes were made to the kernel. First, three new system
calls were added: fhopen(2), fhstat(2), and fhstatfs(2).
For security reasons, all three calls are restricted to the
superuser. fhopen(2) is similar to open(2) except that the
file must already exist, and that it is referenced via a file
handle rather than a path. fhstat(2) and fhstatfs(2) are
similar to lstat(2) and statfs(2) except that they take file
handles rather than paths.

The other change modified the operation of file handle
to vnode conversion. In 4.4BSD, the only use of file
handles was with network-exported file systems, specif-
ically by the NFS server module. For convenience, the
VFS operation which did file handle to vnode conver-
sion also did foreign host export credential verification.
Obviously that combination is not appropriate for a ter-
tiary storage system. So I changed the VFS_FHTOVP()
operation to just do the file handle to vnode conversion,
and added a separate VFS_CHECKEXP() operation to
handle the export verification.

3.8 VOP_FCNTL added

One feature which was needed bydmfsd and the other
utilities was an ability to perform arbitrary operations,
such as start archive, finish restore, etc., on the file(s)
which it was manipulating. At the same time as we were
addressing this need, there was a desire to add the abil-
ity to add the capability to perform file/inode operations.
One such example is adding the ability to manipulate ac-
cess control lists on file systems which support them.

These operations would be similar at the VFS level to
ioctl(2)s except that they would always reach the file
system, rather than possibly being dispatched to device
drivers as is the case for ioctl(2)s.

Arw-r--r-- 1 wrstuden mss 2202790 Sep 14 15:14 Inside_AT.pdf
arw-r--r-- 1 wrstuden mss 7537 Nov 9 17:27 dmfs.h
-rw-r--r-- 1 wrstuden mss 36854 Dec 6 15:28 ktrace.out

Figure 1: Sample directory listing

While there was no objection to adding this extension
to the VFS interface, the form of its programmatic in-
terface generated controversy and much discussion on
NetBSD’s kernel technology email list. The desired in-
terface would consist of a file descriptor, a command
code, and a data argument (void *). There were three
options: add a new system call with this parameter sig-
nature, overload the fcntl(2) interface, or overload the
ioctl(2) interface.

In the end, I opted for using the fcntl(2) system call. The
main reasoning is that we should allocate the entire com-
mand space reserved for the new vnode operation now –
it would not be advisable to reserve some now and then
add more later. There are far fewer fcntl operations than
ioctl operations in NetBSD, and they are less frequently
added, so it is less likely that using fcntl(2) as the pro-
grammatic interface and reserving a sizable command
space now will impede future kernel development. Ad-
ditionally, in the case of overlay-type layered file sys-
tems, different layered file systems will need to choose
unique codes, and pass codes they do not understand to
underlying file systems, so that tools designed to operate
on one particular file system type will operate regardless
of the depth of layered file systems. This requirement is
easier to satisfy with a spacious reservation of command
space.

The fcntl(2) system call takes an integer as its command
code. If the most significant bit is set, the operation is
now considered a request for a file system-specific op-
eration – a VOP_FCNTL() call. This division leaves
approximately 2ˆ31 commands available for traditional
fcntl-type operations. The remaining 31 bits encode
whether a value or a structure are read into or out of the
kernel (3 bits), the size of data so transferred (12 bits),
and the actual command code (16 bits). Half of the com-
mand space (32768 commands) is reserved for NetBSD
use, while the remaining space is for a file system’s pri-
vate use.

3.9 New ls -l reporting

One user feature added to support the data migration sys-
tem is a set of additional flags which indicate archive
state and which are displayed via thels -l command.
Files typically have a “-” in the left-most column. With

this change, an archived file has an “a”, and an archived,
non-resident file is indicated with an “A”. This change
was implemented by increasing the functionality of the
strmode(3) subroutine, and by adding two extra flags to
the mode value returned by a stat(2) call. For instance in
the directory listing shown in Figure 1, it is clear that
the file dmfs.h has been archived, and the fileIn-
side_AT.pdf has both been archived and also been
made non-resident.

These flags are available for use by all file systems which
possess the concept of file archival attributes. For in-
stance, the NetBSD FAT (MS-DOS) file system imple-
mentation has been extended to indicate archival state
using this mechanism.

4 Archival

There are two ways for an archival to be initiated. One
is for a user to request a file be archived (and possibly
made non-resident) using the forcearc(8) utility. An-
other would be for an archival scan process to determine
that the file should be archived. After opening the file,
the first step is for the archiving process to perform the
DMFS_SETAIPfcntl(2) operation, which sets the in-
ternalDM_AIP (archive in progress) flag. This opera-
tion will succeed if the process has root privileges and
if no other process is in the process of archiving the file.
The process ID for the file is noted for reference.

The second step of the archival process is for the archiver
to add the file to thedmfsd databases, and to copy the file
to tape storage. Adding the file to thedmfsd databases
might also involve initializing some of the metadata
fields such as thebfid, the unique identifier for this file.

The third step is for the archiving process to set the file’s
DM_ARCH flag, which indicates that the file has been
archived. TheDMFS_SETARCHfcntl(2) operation
sets this flag.

Finally, if the file is to be made non-resident, the archiver
performs theDMFS_SETNONRfcntl(2), which takes
the amount of initial data which are to remain on the
underlying file system. The DMFS layer determines the
size of the underlying file, and, assuming it is greater

than the requested size, it notes the underlying file size
in the archive size field, and truncates it to the desired
length. TheDM_NONR flag is set for the filewhich
indicates that it is not totally resident. From this point,
the file size reported will be that which was noted during
this operation rather than the actual size of the remaining
portion on disk.

NAStore 2 truncated all files to zero residency. In NA-
Store 3 we have added the ability to retain a portion of
the file on disk. From our analysis of some new stor-
age architectures, such as MCAT/SRB, files will actu-
ally be managed by storage agents rather than directly
by the generating program. Often such systems will add
a header of metadata to the beginning of the file which
serves to describe the whole file. By leaving this por-
tion on disk, we permit whatever agent is managing the
storage of these data to examine the file’s header without
triggering a restore event. As the exact amount of stor-
age to leave on disk is a dependent on site and storage
broker configuration, we permit the archiving process to
determine how much of the file should remain.

5 Restoration

Like archival, restoration can also be triggered in one of
two ways. The most common method is for a user’s ac-
cess of a file to trigger the restore, which is performed
by thedmfsd daemon. Another method is the use of the
frestore(8) program, which performs the restoration di-
rectly.

In either case, the restore agent opens the file, using
either the fhopen(2) or open(2) system calls, with the
O_ALT_IO flagset. This flag requires root privileges,
and will permit the process to access the underlying
file directly, rather than being blocked when accessing
a non-resident portion.

The next step is for the restoration process to
set the DM_RIP (Restore In Progress) flag us-
ing the DMFS_SETRIPfcntl(2). As with the
DMFS_SETAIPfcntl(2), this will only succeed if no
other process is restoring the file.

Then the restore agent reads in the relevant virtual vol-
umes, and writes the non-resident portions of the file
to disk. As the file descriptor was opened with the
O_ALT_IO flag set, the write(2) calls will not be
blocked and will restore the file on the underlying file
store.

At various points through the restore, the restore agent
may perform aDMFS_SETBBOUNDfcntl(2). This
operation takes anoff_t argument and adjusts thebyte
barrier to this new value. Typically, as the file is re-
stored, this operation is used to move thebyte barrier,
permitting blocked reads to complete as the file is re-
stored.

The final step for restoration is for the restore agent
to perform theDMFS_FINISHARCfcntl(2) and then
close the file. This fcntl(2) call will set a flag such that
when the file descriptor is closed, the file is marked fully
resident and all processes waiting for the restoration to
complete will be unblocked.

Finishing the restore is done as a two-step process to
better support executing non-resident files. Any process
attempting to execute the file will be blocked until after
the close operation of the restore agent is completed, en-
suring that the file will not be noted as being opened for
write while attempting to execute it.

6 Behavior of typical operations

The above sections have described how the DMFS sup-
port processes interacted with the DMFS layer. This sec-
tion describes how typical user process operations inter-
act with the DMFS layer.

6.1 read(2)

The read(2) operation is intercepted so that an attempt
to read a non-resident portion of a file is blocked until
either the data are restored, or the restoration fails. A
failed restoration returns an EIO error to the calling pro-
cess.

The behavior of the restoration-checking routine is fairly
simple. If no restoration is in progress, a message is sent
to thedmfsd daemon requesting a restore. Then, if the
operation was initiated by the NFS server subsystem4,
the EAGAIN error is returned. For an NFSv3 mount, the
NFS subsystem will return theNFSERR_TRYLATER
error code5.

Then the routine enters a loop. It flags that it is waiting,
4detected by the presence of theIO_KNONBLOCK flag to the

read, a flag set only by the NFS subsystem.
5this error code, its NFS client does not. Thus NFS exporting a

DMFS layer to NetBSD clients will result in access to non-resident
files returning errors to the application. Other NFS clients, such as the
Solaris NFS client, will block the access and periodically retry it.

Without DMFS With DMFS

Creating with 10,000 64k writes 72� 1 71� 1.4
Overwriting with 1000 1024k writes 116 116
Overwriting with 100,000 8k writes 88.4� 1.7 88.75� 0.5

Table 1: Average operation times with standard deviations (seconds)

unlocks the vnode, and sleeps. The sleep is interruptible,
and if it is interrupted the system call will be retried.
This behavior permits users to abort a process waiting
for a restoration.

Upon re-awaking, the vnode is re-locked and the file
state is re-examined. If the restoration failed, EIO is re-
turned. If the blocked read can now progress, it is passed
down to the underlying layer.

For all read operations on nodes with valid DMFS meta-
data, the completion of the read operation is noted in the
atime metadata field.

6.2 write(2)

The write(2) operation is intercepted in much the same
manner as the read operation, and it calls the same
restoration-checking routine. The two main differences
are that the write operation is blocked until the file is
completely restored, and that the completion of a write
operation on an archived file triggers a message to the
dmfsd daemon that the file archive has been invalidated.

As mentioned above, the write operation is blocked until
the file is completely restored because the metadata for-
mat keeps archived state for the whole file, not subsec-
tions of it. Were a restoration to fail after a write mod-
ified part of an archived file, portions of the file would
still be archived and non-resident (needing to be restored
from tape), and other portions would be unarchived (and
thus must not be restored from tape). This limitation was
not considered significant for NAStore 3’s target appli-
cations.

6.3 truncate(2)

Like writes, truncate operations invalidate the archived
copy of the file and are intercepted, and may be blocked
while file data are being restored. If the file is shrink-
ing so that all of the new size is presently resident, the
truncate operation proceeds. Otherwise a file restoration
is triggered. Unfortunately, at present there is no way to
request that only a portion of a file be restored, so the

whole file is restored and then truncated.

7 Performance

One drawback to the layered file design model is that it
adds a certain amount of overhead to each file operation,
even if the operation is merely bypassed to the underly-
ing layer. We have performed only simple performance
testing, but we have found little to no noticeable perfor-
mance degradation due to the DMFS layer.

One operation which will be potentially slower on the
DMFS layer is in-kernel vnode allocation, such as is the
result of a lookup operation. The allocation of the in-
kernel DMFS node requires reading the metadata for this
node from the metadata file.

We have performed extensive usage testing of our DMFS
layer. We have deployed two internal beta-test systems
using two different metadata storage formats (the one
described here and a predecessor which stored metadata
in a large-inode FFS). In this testing, which included
generating over two million files on a 155 GB file sys-
tem, none of the users complained that the DMFS layer
felt slow. Obviously an attempt to access a non-resident
file caused a delay, but that was due to the mechanical
delay of the robotics retrieving a tape.

We have performed a limited amount of quantitative test-
ing to compare the performance of reading and writing a
fully-resident file both with and without the DMFS layer
mounted. I performed three tests, all usingdd to trans-
fer a file either from /dev/zero or to /dev/null. The dif-
ference between the tests was the block size used for the
operations.

All tests were performed on an IDE disk in an x86-based
computer running a modified version of NetBSD 1.4.
The file system was built using the default parameters
of 8k blocks and 1k fragments. One test was to write
a 640 MB file using a write size of 64k. I observed a
strong disparity of new-file creation performance over
time. Initially file creation took 72 seconds, while later
creations took 82 seconds. As a comparable decrease

was observed for creation with and without the DMFS
layer, I attribute this degradation to disk and file sys-
tem performance. The exact origin is not important, but
this observation motivated all further testing to consist
of overwriting an existing file.

I timed three creations without the DMFS layer, and two
with. The average times are shown on the first line of
Table 1. I do not believe that the presence of the DMFS
layer actually improved the FFS performance, but that
the variability of times reflects the simplicity of the tests.
However the tests indicate that with 64k writes, the ex-
tra overhead of the DMFS layer was not noticeable and
that I/O scheduling and device performance will add an
amount of variability to the tests.

As shown on line two of Table 1, creating a 1000 MB
file with 1024k byte writes took the same amount of time
both with and without the DMFS layer. This example is
similar to the previous one in that the extra overhead of
the DMFS layer was not noticeable.

Both of the above tests used large write sizes to maxi-
mize performance. As such they minimized the number
of times the DMFS layer was called and thus the impact
of its additional computations. To better measure the call
overhead, I also tried writing with a smaller block size.
Line three of Table 1 shows the average times I observed
when using 8k writes. Here too, no statistically signifi-
cant difference was observed.

As I am using layered file system technology, I expect
a certain amount of overhead when accessing fully resi-
dent files. The rule of thumb estimate I am familiar with
is that this overhead should be on the order of one to two
percent. My simple tests measured less, and I believe
that the rule of thumb one to two percent is a good upper
bound.

8 Conclusion

In this paper I have described DMFS, a layered file sys-
tem developed for NetBSD to support a tertiary storage
system. I have briefly described NAStore 3, the stor-
age system of which it is a part, and described DMFS
in more detail. I have described the changes to NetBSD
needed to support this work. I have given an overview
of how a system process interacts with the DMFS layer
to archive and restore files, and I have touched on how
some typical operations are affected by the DMFS layer.
Finally, I presented some simple performance measure-
ments which indicate that while DMFS might impose

a performance degradation, it is not significant and that
the rule of thumb value of 1 to 2 percent is probably a
reasonable upper bound for the performance penalty.

Acknowledgements

This project would not have succeeded without the as-
sistance of others. I’d first like to thank Jason Thorpe
for his advice and assistance with many of the kernel
design issues raised in this work. My fellow NAStore
developers, Tom Proett and Bill Ross, helped me de-
vise how the kernel and NAStore programs interoperate.
Harry Waddell and John Lekashman, our management
team, encouraged and supported us during the entire de-
velopment cycle. Finally I would like to thank Chris
Demetriou for his design suggestions and especially for
his review comments regarding this paper.

References

[1] The NetBSD Project, http://www.netbsd.org/

[2] J. S. Heidemann,Stackable Design of File Systems,
Ph.D. Dissertation, University of California, Los
Angeles (1995).

[3] J. Kohl, C. Staelin, M. Stonebraker, “HighLight:
Using a Log-structured File System for Tertiary
Storage Management”, Proceedings of the San
Diego Usenix Conference, January 1993.

[4] M. McKusick, K. Bostic, M. Karels, J. Quarterman,
The Design and Implementation of the 4.4 BSD Op-
erating system, Addison-Wesley Publishing Com-
pany (1996).

[5] M. McKusick, W. Joy, S. Leffler, R. Fabry, “A
Fast File System for UNIX”, ACM Transactions on
Computer Systems 2, 3. pp 181-197, August 1984.

[6] M. Seltzer, K. Bostic, M. McKusick, C. Staelin, “An
Implementation of a Log-Structured File System for
UNIX”, Proceedings of the San Diego Usenix Con-
ference, pp 201-218, January 1993.

[7] M. McKusick, G. Ganger, “Soft Updates: A Tech-
nique for Eliminating Most Synchronous Writes in
the Fast Filesystem”, Proceedings of the Freenix
Track at the 1999 Usenix Annual Technical Confer-
ence, pp 1-17, January 1999.

