
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

A N O P E R AT I N G S Y S T E M I N J AVA
F O R T H E L E G O M I N D S T O R M S R C X

M I C R O C O N T R O L L E R

Pekka Nikander

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Operating System in Java for the Lego Mindstorms RCX Microcontroller

Pekka Nikander

Helsinki University of Technology
Pekka.Nikander@hut.fi

http://www.tcm.hut.fi/~pnr/rcx/
Abstract
The Lego Mindstorms is a Lego bricks based robotics
toy series produced by the Lego Group, based on the
ideas developed at the Massachusetts Institute of Tech-
nology in the Programmable Brick project. The heart of
a Lego robot, the RCX microcontroller, hosts a Hitachi
H8 microcontroller with 28 kilobytes of memory avail-
able for downloadable firmware and applications. In
addition to the GUI based programming environment
provided by Lego, a number of alternative programming
environments have been developed for the RCX. How-
ever, these alternative programming environments are
written in C, tightly bound to the hardware, and provide
only relatively low level services. The strong hardware
dependency makes it hard to debug programs; in prac-
tice, a hardware simulator is needed, and such a simula-
tor does not yet exist in an open source form.

In this paper we present a new type of operating system
and new programming environments for the Lego RCX
brick. The operating system is written almost com-
pletely in Java, and currently provides runtime support
for Java, C and C++ programs. In the case of Java appli-
cations, simulation and debugging is relatively simple as
it can be performed on a standard Java Virtual Machine
with just a small hardware simulation package.

1 Introduction

Introduction of an affordable robotics development kit
in the form of the Lego Mindstorms Robotics Invention
System (RIS) [1], and its predecessor, the MIT program-
mable brick [2], has fostered a number of very different
efforts for both teaching robotics and experimenting
with non-traditional applications of robotic equipment.
These approaches include, for example, the idea of us-
ing a hoard of Lego robots to collectively perform a
larger task.

A Lego Mindstorms Robot consists of a programmable
Lego brick, called the RCX, which contains three sensor
inputs, three actuator outputs, four user buttons, a sim-
ple LCD display, an IR transceiver, and a Hitachi H8
microcontroller with 32 kilobytes of RAM, 4 kilobytes
of which is used for interrupt vectors and other low level
data. Normally, the RAM is used to host a firmware pro-
gram, provided by Lego, which is used to interpret the
actual user program. The user program is represented in
the form of byte code [3]. The byte code itself, in turn, is
generated on a Windows PC running a graphical pro-
gramming environment, which is tightly bound to the
Windows operating system. Currently, the byte code
offers fairly limited view to the power of the RCX; for
example, it allows only 32 variables to be used.

Since the two programming environments [4][5] pro-
vided by the Lego group are severely limited in their
ability to fully utilize the computational power of the
RCX brick, a number of independent programming
environments have been developed for the RCX, includ-
ing Not Quite C (NQC) [6], LegOS [7], and librcx , a
minimal runtime library [8]. The latter two of these use
the GNU C Compiler, part of the GNU Compiler Col-
lection (GCC) [9], to compile C source code to the
machine code of the Hitachi H8 processor.

In this paper, we present RCX Java Operating System,
which is an experimental operating system for the RCX
microcontroller. To compile our OS, we have used a
modified GNU Java compiler, GCJ, from the GCC suite
of compilers. The GCJ compiler compiles Java source
code and byte code into the native code of the target
machine. We used a cross compiler running on a
FreeBSD PC with the Hitachi H8 as the target environ-
ment. In contrast with the other existing Java runtime
environments, ours is almost completely written in Java,
which was possible since all the Java code is being com-
piled into native code. In the project, getting the com-
piler and the runtime to function together was one of the

index.html

ull
nly
-
n
oa

el
n-
ard-
ry

ped
 bit
lly

s,
em
-

most interesting tasks. Furthermore, a number of inter-
esting tricks were needed to represent non-object data
structures in a beautiful way in Java code. Some of the
design choices are explained in Sections 3 and 6.

In addition to being a neat way of making it possible to
use Java to write programs for the RCX, our approach
has a number of potential benefits. First, because the
operating system is written in Java, it is fairly indepen-
dent of the hardware, making it relatively easy to port to
other microcontroller based systems such as the uClinux
SIMM [10]. Second, as the operating system is written
in an object oriented language, it is possible to extend
the operating system using the object paradigm. Third,
in Java the thread and synchronization models are
tightly integrated into the language, making it natural to
use threads when developing applications for the RCX.
And fourth, the compiler and runtime system can be
extended to support additional Java based technologies
such as Jini [11]. Some of these aspects are further
explored later in this paper, while others are left for
future work.

The rest of this paper is organized as follows. In
Section 2 we describe the hardware and ROM structure
of the RCX microcontroller in more detail. Next, in
Section 3, we briefly outline the structure of the GCC
compilers, focusing on the GCJ native Java compiler,
and describe the modifications we have made to it.
Section 4 describes the minimal Java runtime that we
developed to support Java based native code on the
RCX, and in Section 5 we explain the RCX specific
operating system services implemented as well as the
interface from the Java environment both to the routines
implemented in the RCX ROM and to the actual hard-
ware. Finally, Section 6 summarizes the benefits and
lessons learned so far, while Section 7 outlines some
possibilities for future work.

2 Lego RCX microcontroller

The Lego RCX (see Figure 1) is a large Lego brick host-
ing a battery case, a Hitachi H8 microcontroller, an IR
transceiver, a simple LCD panel, a few control buttons,
sensor and actuator connectors shaped into the form of
Lego brick connectors, and some auxiliary circuitry.

The standard programming environments provided by
Lego [4][5] allow only a very limited access to the re-
sources of the microcontroller. Basically, they are aimed
to enable high school students to apply their knowledge
of using Lego blocks in building physical structures on
the domain of building logical program structures that

control the robot. However, our goal was to enable f
access to the microcontroller resources. Therefore, o
the low level programmer’s view of the RCX is de
scribed. The following information is largely based o
the reverse engineering work performed by Kek
Proudfoot and others [12].

When programming at the machine language lev
(either using an assembler or through a high level la
guage), a programmer has direct access both to the h
ware and to the ROM routines. Hitachi H8 uses memo
mapped I/O, and the actual hardware ports are map
to the highest part of the memory, at a so called eight
area. The I/O port map, as used for RCX, is partia
illustrated in Table 1. [12]

The ROM contains a fairly large number of routine
and it is beyond the scope of this paper to describe th
all. However, the routines include the following func
tionality:
• Initialization functions and a simple main loop
• Default interrupt handlers
• Memory move, copy, clear, etc. auxiliary functions
• Battery power management
• Sensor I/O taking care of interpreting raw data
• Motor control
• LCD and sound output
• IR transceiver I/O

Memory
Range

Function

F000 - F0FF Motor control

FFB7 IR transceiver range, button input

FFBA IR control, external RAM power
save mode

FFBB Sensor power, timer, LCD I/O

FFBE Sensor input, button input

FFC3 Serial/Timer control

FFE0 - FFE4 Sensor A/D input

Table 1: Some RCX I/O addresses

Figure 1: The Lego RCX, opened [12]

ure.
y

s,
In
ields
nly
nd
ate

f a
ed,
nta-

TL

en
u-

m-
nd,
on

ot
the
le

 first
d a

ese,
ont

as
ry,
a
e

e

r-
n

r-
The firmware code, either as loaded from internal stor-
age or over IR, is stored in a memory area starting at
hex 8000. The default firmware is meant to interpret
user programs expressed in the form of byte code [3].
Since we do not use the byte code in any way, the struc-
ture and functionality of the default firmware are be-
yond the scope of this paper.

3 GNU Java compiler and libgcj runtime

The GNU Compiler Collection (GCC) is a suite of com-
pilers, based on the original GNU C Compiler architec-
ture as created by Richard Stallman and others,
including C, Fortran, C++, Objective C, and Java com-
pilers. These compilers share the same basic structure
and a common set of back ends, including a back end for
the Hitachi H8 series of processors. The C and C++ ver-
sions of these compilers had earlier been adapted for the
RCX environment by Markus L. Noga and others [7]
[8].

Utilizing the C and even C++ compilers of the GCC
suite is pretty straightforward, even for an embedded
stand-alone environment such as the RCX. Basically,
the C compiler requires little runtime support while the
C++ runtime support is relatively modest. However, the
runtime support required by the GNU Java compiler,
GCJ, is both much more complex and currently less
mature than its C and C++ counterparts. Furthermore,
the Java runtime support is provided as a separate pack-
age, called libgcj , and its connections with the actual
compiler are largely undocumented.

When we started our work with the system, a new ver-
sion of GCC, GCC 2.95.1, and a corresponding version
of the runtime, libgcj 2.95.1, were just released.
However, in that version the compiler had a number of
immaturities and restrictions, some of which have later
been relieved while others have not been. In our work,
we have attempted to generalize away some of the
immature features and restrictions, basically aiming for
a compiler that would be more runtime independent.

3.1 Restrictions in GCJ 2.95.2 and -current

In order to facilitate understanding of the current status
of the compiler and the way the compiler restrictions
made our work a little bit harder, a brief outline of the
GCC compiler structure and the definition of the Java
programming language is needed. They are presented
next.

GNU compiler structure. The compilers in the GCC
suite are structured around a three pass architect
First, a file to be compiled is read in, along with an
explicitly or implicitly included files. While parsing, the
compiler front end forms recursive data structure
called trees, of any global declarations encountered.
the case of Java, all classes and most methods and f
are considered global; a Java compilation unit may o
contain classes belonging to a single package, a
classes within a package have access to all non-priv
fields and methods of each other.

Intermixed with the first pass, whenever the parsing o
compilable entity such as a method or a class is finish
the second pass creates an intermediate RTL represe
tion of the entity. RTL, short for Register Transfer Lan-
guage, is a kind of an abstract machine language.

In the third pass, a compiler back end optimizes the R
representations through a number of passes into assem-
bler language. Target specific transformations are tak
into consideration and used by the optimization ro
tines.

While building the Java runtime we experienced a nu
ber of times the relative newness of the Java front e
and to a lesser degree the fact that the COFF (Comm
Object File Format [14]) back end had apparently n
been used before with the Java front end. However,
back end problems were basically inabilities to hand
the names of Java specific data types, i.e., arrays, as
class objects. More specifically, the back end neede
fix to mangle any symbols containing brackets.

The Java front end. The front end restrictions were
more severe but also more subtle. To understand th
we have to dig deeper into the structure of the Java fr
end.

In contrast to the C programming language, which w
designed to be independent from any runtime libra
the Java language specification explicitly defines
number of runtime classes that belong to th
java.lang package. Of these, especially Object ,
Class , and Throwable are fundamental. Addition-
ally, the default semantics of a number of runtim
checks expect certain subclasses of the Throwable
classes, e.g., NullPointerException , which is
thrown whenever a null reference is followed. Furthe
more, if a native compiler is to provide informatio
needed by the Java reflection API (the java.lang.
refect package), the compiler needs to supply info
mation about the fields and methods of classes.

e

t
e

o
ith
m-
re
ler
ew

e is
e

d
ct
of

re

r,

ose
ep-

, a
’s
g

t

The GCJ compiler addresses these needs by handling a
number of runtime classes specially, including Object ,
Class , Throwable , Error , Exception , and
Thread . Of these, the compiler treated the classes
Object and Class significantly differently from oth-
ers, thereby creating unnecessary limitations for the run-
time. More specifically, the out-of-the-box GCJ silently
inserts a number of fields (see Tables 2, above, and 4, on
the next page) into these classes, and does not allow any
new fields to be defined in the corresponding Java
source code. Furthermore, even if some of the silently
added fields can be accessed by Java code to be com-
piled, classes containing such references cannot be com-
piled with any other Java compiler. Finally, some of the
internally generated fields have types that cannot be rep-
resented in Java. The restriction of not allowing any
other fields to be declared, along with the other two
above mentioned features, made it relatively hard to
build the runtime in Java. Lifting the restriction and
modifying the compiler, as described next in
Section 3.2, alleviated the situation.

3.2 Modifications to the Java compiler

The problems encountered were mostly related to the
Java front end and not to the rest of the compiler; this is
a strong indication of the very high quality of the GCC
compiler suite in general. Unfortunately, apparently due
to early design decisions, the GCJ compiler is built
around the idea that the necessary Java runtime would
be mostly written in some other language than Java,
e.g., in C++. Considering the fact that the GCJ compiler
is able to produce native code in addition to byte code,
we considered that approach limiting. Furthermore, as
our goal was to implement as much as possible of the
RCX operating system in Java itself, we decided to lift
these restrictions and modify the compiler so that the
runtime could be written in Java to the greatest extent.
These modifications are explained next.

Making the compiler-inserted fields visible. In addi-
tion to disallowing any new fields from being added to
the fundamental classes, the unmodified GCJ rejects
(re)definitions of any fields with a name matching any

of the compiler generated fields. That is, when w
naively tried to add a field named interfaces to
java.lang.Class , the compiler complained abou
field redefinition. On the other hand, if we tried to us
the compiler generated field interfaces without
explicitly declaring it in the source, Sun javac refused
to compile the file.

To resolve the dilemma, we modified the compiler s
that if the user defines a field with a name clashing w
a compiler generated field, and if the types of the co
piler generated field and the user defined field a
assignment compatible in both directions, the compi
only issues an warning, not an error. By using a n
compiler flag, even the warning can be silenced.

Since making the compiler generated fields accessibl
only meant to be used in implementing the runtim
itself, we went still a little bit further and loosene
slightly the assignment compatibility rules. One effe
of this was that the compiler still could declare some
the integer fields unsigned (which is not representable in
Java) while the corresponding user defined fields a
signed. Additionally, we allowed the type
java.lang.Void to function as an unnamed pointe
i.e., something like void pointer in C or C++. Thus, in
that way we were able to declare in Java even th
compiler generated fields whose types could not be r
resented as Java types.

In addition to these loosened type compatibility rules
redefinition in the modified compiler resets the field
visibility to that defined by the user, thereby allowin

Field name Field type and contents

vtable pointer to a table of function pointers;
initialized to point to the dispatch
table of the class

sync_info void pointer; initialized to null

Table 2: Instance fields silently inserted
to the Object class by the unmodified GCJ

Field name Field type and contents

vtable No changes

monitorSema byte ; id of the thread holding the
monitor corresponding to the objec

monitorQueue byte ; id of a thread waiting for
entry to the monitor; other threads
waiting for entry to the monitor are
linked to the first thread

monitorCount byte ; the number of times the
holding thread has recursively
entered the monitor

waitQueue byte ; id of a thread waiting for a
notify on this object, any other
waiting threads are linked to the
first thread

Table 3: Instance fields inserted
to the Object class by the modified GCJ

ged
al

on-
vi-

d a

e
e
 in
ject

ing
rol
wider access within the runtime. (By default the com-
piler generated fields are considered private .)

Changing the types of the compiler-inserted fields.
As was explained in Section 3.1, the compiler silently
inserts a number of instance fields to the Object and
Class classes, among others. However, the types of
many of these fields are defined so that they cannot be
expressed in Java. Fortunately, modifying the compiler
to use a corresponding Java compatible type was rela-

tively easy in most cases. The new types for the chan
inserted fields are given in Table 5. (For the origin
field types, see Table 4, above.)

Changing the types of some of these fields required c
siderable changes, some of which were not quite ob
ous. For example, the old methods field was a pointer
to a C struct array. Each element in the array describe
method, and the field method_count provided the
length of the array. In our Java friendly version, th
methods field is a pointer to a Java array object. Th
generic memory layout of a Java array is described
Figure 2, below. In the standard case, the array ob
would contain pointers to Method objects stored else-
where in memory. However, since we are here hav
the compiler generate the array and have full cont

Field name Field type (and contents)

next a pointer to java.lang.Class

name a pointer to an UTF8 constant string

accflags unsigned short , access bits

superclass a pointer to java.lang.Class

constants a record enclosing constants info

methods a pointer to the first element in an array of internal method records

method_count short , size of the array above

vtable_method_count short , number of virtual functions

fields a pointer to the first element in an array of internal field records

size_in_bytes int , size of instance objects

field_count short , number of fields

static_field_count short , number of static fields

vtable a pointer to the table referred at the Object ’s vtable

interfaces a pointer to the first element of an array of class pointers

loader void pointer, initialized to null

interface_count short , number of interfaces

state byte , initialized to zero

thread void pointer, initialized to null

Table 4: Instance fields silently inserted to the Class class

Field name New field type

methods java.lang.reflect.
Method[]

method_count removed

fields java.lang.reflect.
Field[]

field_count removed

interfaces java.lang.Class[]

interface_count removed

loader java.lang.Loader

thread java.lang.Thread

Table 5: Modifications to the fields installed to a Class Figure 2: Java array structure

java.lang.Object fields

synchronization
information

vtable pointer

array specific fields length

data

ject
or-

fault

n-

 a
s
in
ere
n

e

over its internal structure, a more compact representa-
tion is possible. Thus, instead of storing pointers to the
Method objects in the Java array, we store the Method
objects themselves. Since the compiler knows the actual
type of the array, it generates correct code when
accessed from Java. However, care must be taken when
declaring and accessing these kinds of arrays from C++.

Redirecting compiler-generated support functions to
Java. Any Java runtime includes a number of relatively
high level functions, including memory management,
threads, thread synchronization, a few of type manage-
ment operations, and runtime class handling. To imple-
ment these, the GCJ compiler inserts calls to runtime
support functions in the generated object code (see Ta-
ble 6, above). In the unmodified compiler, these func-
tions are C functions, and some of them take arguments
whose type cannot be described in Java. Now, in order
to be able to write as much of the runtime in Java as pos-
sible, we modified the compiler so that the inserted
functions are calls to Java methods and the arguments
are representable as Java types. The resulting methods
are also given in Table 6.

Since these methods are directly inserted to the ob
code without any access checking, we declared the c
responding methods in the Java classes as using de
(package) or private visibility, thereby making it
impossible to directly use them from outside of the ru
time classes. (Class.isInstance is an example of
deviation from this scheme, as it happens to be
public method defined in J2ME.) In a few case
where the functionality could not be implemented
Java (yet) the corresponding Java methods w
declared native , and the implementation was made i
C++.

Other front end modifications. The other modifica-
tions include the following:
• The semantics of synchronized native meth-

ods and static transient volatile vari-
ables were changed, as described in Sections 3.3
and 5.4.

• The generation of metadata for Java methods,
fields, and class names was made optional. The
method and field information is only needed for th
reflection API while class names are also needed
for the Class.forName method. Since most

Original function name The corresponding method after modification
Enclosing

class

_Jv_InitClass void initClass() Class

_Jv_Register_class void registerClass() Class

_Jv_AllocObject Object allocObject() Class

_Jv_CheckCast Object checkCast(Object) Class

_Jv_IsInstanceOf boolean isInstace(Object) a

a. Note that isInstance(Object) is a method that is called not only by the runtime, but that is also
available as a part of the public API; in order for this to work, the order of the parameters to the method
was changed.

Class

_Jv_LookupInterfaceMethod Method
lookupInterfaceMethod(String, String)

Class

_Jv_MonitorEnter static void monitorEnter(Object) Thread

_Jv_MonitorExit static void monitorExit(Object) Thread

_Jv_Throw static void throwException(Object) Thread

_Jv_ThrowBadArrayIndex static void throwBadArrayIndex(int) Thread

_Jv_exception_info static Throwable exceptionInfo() Thread

_Jv_NewArray static Object newArray(int, int) Runtime

_Jv_NewObjectArray static Object
newObjectArray(int, Class, Object)

Runtime

_Jv_NewMultiArray currently unsupported

_Jv_CheckArrayStore static void checkArrayStore(Object, Object) Runtime

Table 6: Runtime functions internally called by the compiler

n-
 a

this
 is
er
e

g
e-
rt
nd

-

se
 of
ister
me
gis-
se
ory

tly
c-
n-

the
s a

s.

et

the
e

a
de
of
va
but
yn-
e

n.)
ny
embedded programs do not use the reflection API
nor the forName method, leaving that information
out reduces the code size about 30%.

• The automatic inclusion of compiler generated
fields in the Object and Class classes was made
more generic, or less hardwired, thereby making it
easier to specify runtime specific fields in these
classes.

• In a number of locations, the front end created code
that made computations using the Java int type
variables. For example, the array length field and
any computations applied to it, including array
index checking, used ints internally. However,
since the RCX is a 16 bit processor, and has only
64 kB of total address space, the resulting assembly
code is both inefficient and unnecessarily volumi-
nous. To alleviate this problem, we created a new
compiler symbol for Java array lengths, and used
that in the calculations. Selecting an 16 bit integer
for this type produced much better assembler code.

• According to the Java specification, the JVM han-
dles integral data types that have less than 32 bits as
32 bit integers during computation of expressions.
However, GCJ attempts to optimize this issue and
uses only the native machine word size whenever it
is sufficient. Now, when GCJ reads in Java byte
code, it cannot immediately determine the “real”
types of JVM stack variables just by inspecting the
byte code instructions. Handling of this had a cou-
ple of bugs that appeared only in machines with a
small native word size. The fixes were contributed
back to the GCJ project. However, more could be
done in this respect, and new optimizations would
help produce even better code.

3.3 H8/300 back end optimizations

The backend optimizations we made were mostly re-
lated to two issues. First, we changed the calling con-
ventions to produce slightly better code and to be
compatible with the RCX ROM calls. Second, we
changed the register usage directives so that the result-
ing code uses fewer memory references than with the
default directives, when compiling typical Java code.
These changes required us to modify the register usage
of the runtime system, including setjmp and
longjmp as well as exception handling.

Changes in register usage. The standard GCC back
end for the Hitachi H8/300 microcontroller uses register
r7 as the stack pointer, r6 as a frame pointer, and regis-
ters r0 ...r2 to pass the first three arguments to func-
tions. The rest of arguments, if any, are passed on the
stack. While a standard practice, this has a drawback in

the case of Lego RCX, since the RCX ROM calling co
ventions are different. That is, the first argument to
ROM routine is passed in register r6 while the rest are
passed on the stack. LegOS and librcx have solved
problem by adding a small assembler wrapper which
used when calling the ROM routines. However, in ord
to gain efficiency and to minimize the amount of cod
not written in Java, we solved the problem differently.

Basically, GCC calling conventions are defined usin
relatively simple macros and functions in the target sp
cific back end specification. Thus, in order to suppo
direct ROM calls from Java we created a new back e
variation, called h8300-hitachi-rcx (instead of
default h8300-hitatchi-hms), that has a different
call convention. First, register r3 is used as a frame
pointer instead of register r6 . Second, the first parame
ters to a function are passed in registers r6 , r5 and r4 ,
unless the call is declared as a ROM call, in which ca
only r6 is used to pass parameters, and the rest
parameters are passed on the stack. As other reg
usage related optimizations, we declared that fra
pointers may be omitted when not needed and that re
ter r4 is saved over function calls. Together the
reduced both code size and the number of mem
stores and loads.

Calling ROM functions directly. The changed regis-
ter usage made it easy to call ROM routines direc
from C by declaring a ROM routine as an external fun
tion and declaring the actual address in the linker co
figuration file. To ensure correct parameter passing,
external function declaration must be announced a
ROM call by using a C or C++ __attribute__ , or a
corresponding preprocessor #pragma , which signals
the back end to use the alternative calling convention

As an example, let us consider the ROM routine “s
LCD segment,” which is available at 0x1b62 . The cor-
responding C declaration and a relevant fragment of
linker configuration file are given in Figure 3, on th
next page.

Making a ROM routine callable directly from Jav
required a little bit more. First, Java does not inclu
any feature corresponding to the C/C++ usage
attributes in method or field declarations. However, Ja
allows a native method to be declared synchronized,
does not associate any specific semantics for this. (S
chronization is implemented by a method itself; th
caller of a method does not need such informatio
Thus, we hacked the compiler so that it flags a
method declared as native synchronized as a
ROM entry point.

ible
d

pa-
ter,
ce
e-

vi-
ed,
u-
rat-

e
ore
 but
r,
ac-
ed
nt.
ed
e

-
ny

ted

ss
g
y,
i-

ns
he

nce

n
t
Second, the link time naming conventions for Java
methods are different from those of C functions. In
order to overcome this, the entry points must be
declared as mangled names in the linker configuration
file. The result of converting the C example is shown in
Figure 4, below.

4 Minimal Java runtime

Originally, the Java 1.0 and Java 1.1 specifications de-
fined a single language and runtime structure. However,
along with the success of Java, Sun Microsystems
started to define a number of versions of the runtime,
targeted for different purposes. Currently, Java 2 Micro
Edition (J2ME) [15] is the smallest runtime specifica-
tion still supporting the full language. On the other
hand, the Java Card Runtime Environment (JCRE) [16]
provides a still smaller runtime, but due to the restric-
tions it imposes on the language it is arguable whether
JCRE utilizes Java at all in the sense that the rest of the
Java runtime environments do.

In our project, the goal is to be as compatible as poss
with J2ME. However, the J2ME specification is base
on the assumption that the runtime environment is ca
ble of executing Java class files, i.e., has an interpre
JIT, or hardware support for byte code. Due to spa
restrictions, this is not possible in the RCX, and ther
fore we cannot be fully compatible with J2ME.

Below, we describe the basic API provided by our en
ronment, the language features currently not support
static constructor, destructor and class initialization ro
tines, and thread support. The description of the ope
ing system level features are deferred to Section 5.

4.1 java.lang APIs

The java.lang classes included in our runtime ar
enumerated in Table 7. The methods provided are m
restricted than they are in the Java standard edition,
mostly aimed to be compatible with J2ME. Howeve
Sun has not produced any public specification of the
tual J2ME API. Therefore, we have used Embedd
Java [17], which is available, as our comparison poi
The most important differences from the Embedd
Java API are outlined in the table. Most notably, th
String class is heavily restricted, providing only min
imal support. Furthermore, some exceptions and ma
errors associated with runtime checks are elimina
due to the static nature of our runtime environment.

When compiled into class files, the total size of the cla
files is about 32 kilobytes. As a binary library (includin
symbols), the runtime fits into 170 kilobytes. In binar
with all the symbolic and metadata information elim
nated, a typical runtime size is 15 kilobytes.

4.2 Language level restrictions

Our current implementation has a number of restrictio
that affect the typical programmer. These include t
following.
• The runtime library does not currently support

floats or doubles . Source code attempting to
use them compiles but does not link.

• Multidimensional arrays are unsupported. Code
attempting to create such arrays calls newMulti-
Array , which has not been implemented.

• Java interface classes are not supported either, si
their current implementation in GCJ relies on the
method and field metadata, and we want to omit
them from the binaries. If the metadata informatio
is included, the interface support should work, bu
that has not been tested.

extern char set_lcd_segment(
short code

) __attribute__((ROM));

SECTIONS {
...
.rom : {

_set_lcd_segment = 0x1b62;
 ...

} > rom
...

Figure 3: A C declaration for an RCX ROM routine,
and a corresponding linker directive

Figure 4: A Java declaration for an RCX ROM routine,
and a corresponding linker directive

class Display {
static native synchronized void

setSegment(short code);

SECTIONS {
...
.rom : {

_setSegment__Q17Displays = 0x1b62;
...

} > rom
...

the

e
e
om
-

of

re

us

ields
only.

d to be

 Java.

bers

gs

ethods
4.3 Static constructors and destructors

When compiling Java code, the GCJ compiler produces
stubs for class registration. That is, for each compiled
class, the GCJ produces a piece of code that is not called
anywhere from the code, but a pointer to it is placed into
a so called .ctors loader area. The initialization sys-
tem in the runtime loops over the pointers in the
.ctors area, calling each function in turn. The same
mechanism is used for running static constructors in a
C++ program. In the case of GCJ generated code, how-
ever, the stub code only calls the registerClass
routine, allowing us to create a list of all classes.

4.4 Class initialization

By default, the GCJ compiler behaves strictly according
to the JVM specification, and generates lots and lots of
calls to initClass . That is, whenever a Java class is
accessed from the Java source code, the code generator
generates a piece of code that first calls initClass ,
and then performs the actual class access. For example,
consider the following code fragment.

 class Ex1 { static short x; }
 ...
 Ex1.x = 0;
 ...

The code generated from the assignment looks like
following.

 mov.w r6,#_CL_Q13Ex1
 jsr initClass
 sub.w r0,r0
 mov.w r0,__Q13Ex1$x

This approach complicates slightly the writing of th
code for the initClass method. That is, care must b
taken that all classes that are accessed fr
initClass , either directly or directly, must be sepa
rately initialized by explicitly marking them initialized
and calling their class initializers before any other Java
code is called. Furthermore, the class initializers
these classes must not cause invoking of the init-
Class method for any other classes. If these rules a
not strictly followed, a call to initClass easily re-
sults in an unterminated recursion or other disastro
complications.

Classes Differences to Embedded Java

Object Method toString omitted; otherwise full API.

Class Methods getResource, getResources, and getSigners omitted;
otherwise full API.

ClassLoader Only available as a placeholder. All methods omitted.

System, Runtime I/O channel, library, process, property, security manager, and trace releated f
and methods omitted. Some of the other methods are currently placeholders

Throwable, Error,
Exception

No messages or stack trace supported. All errors and exceptions are assume
immutable singletons. Each class has a constant static field instance .

Void Full API. Also used as an opaque type for data whose type is not available in

Boolean , Byte , Integer ,
Number, Long , Short

String related parsing and printing omitted. Conversions to floating point num
currently unsupported. Otherwise full API.

Double , Float , Math Currently unsupported.

Character Only rudimentary support. Most methods omitted.

String Only rudimentary support. No constructors nor any methods creating new strin
are available. All strings must be created at the compile time.

Thread String, security manager, stack trace, thread group, and deamon threading m
omitted. Priorities are currently unsupported, but the API is available.

Compiler , Process ,
StringBuffer , Security-
Manager , ThreadGroup

Not available at all. Thread groups might be added later; no need for others.

Table 7: Differences between Embedded Java API and the API of our implementation
(Some classes, such as the exception and error classes, are left out for brevity.)

tly
ge.
op-

t
d

ck
ult
hen
of
l

 the
he

ling

 an
c-

g
de,
lls
e,
p-
t.

e
 is
 is

list
led
i-
 is

n-
xt

reg-

of
-
va
4.5 Memory management

As already mentioned, most of the runtime environment
and operating system was written in Java. However, ex-
plicit C, C++ and even assembler support was needed
for the memory management, exception handling,
thread management, and thread synchronization. Of
these, exceptions, thread management and thread syn-
chronization are discussed in more detail later in
Section 5, while memory management is considered
next.

In Java, the memory is managed at the granularity of
objects. Each object consists of a few compiler gener-
ated fields (see Table 3) along with any user defined
instance variables. Each instance variable contains
either a reference to some object, or a primary data item.
For the variable fields, GCJ uses natural field sizes, and
aligns the fields according to the C++ alignment rules
(this is different from what most JVMs do). In order to
allocate objects, the compiler arranges calls to allocation
routines allocObject and various versions of
newArray .

Due to the limited amount of memory available and the
nature of programs running in a typical robotics applica-
tion, we assume that most applications will create a
small number of relatively long living objects. Further-
more, temporary circular data structures will be more
likely the exception than the rule.

Our current garbage collection method is very simple,
and similar to the Java Card Runtime Environment. That
is, garbage is not collected, and allocated objects stay
around until the next firmware or hardware reset. How-
ever, to better support dynamic data structures we are
planning to support garbage collection. The current
options include a simple reference counting scheme that
would be implementable in the compiler back end, and a
simple mark-and-sweep collector utilizing object layout
information provided by the compiler. However, both of
these schemes require considerable support from the
compiler, and are presently left for further study.

5 Operating system services

Due to the simple nature of the RCX hardware, the bor-
der between the Java runtime environment and the oper-
ating system is ambiguous. However, while object level
memory management along with garbage collection is
more or less hardware independent, exceptions, threads,

low level hardware access, and events are more tigh
bound to the underlying hardware than to the langua
Therefore, we decided to classify the latter issues as
erating system services, and consider them next.

5.1 Exceptions

The GCC collection of compilers have two differen
possibilities for exception handling. The default metho
uses the setjmp and longjmp functions while the al-
ternative method explicitly scans the execution sta
looking for exception handling frames. Since the defa
method produces more compact code, especially w
we told the compiler to use our own versions
setjmp and longjmp instead of the compiler interna
versions, we decided to use the default method.

In Java, there are two basic constructs that cause
compiler to construct exception handling frames. T
first one is obvious, namely the Java try ... catch
construct. The other case are the synchronized
methods and statements, which use exception hand
code to release monitor locks.

Now, whenever a GCC compiled function establishes
exception handling frame, it first calls an internal fun
tion that returns an exception context. In our implemen-
tation, the context is a part of the currently runnin
thread. Next, when entering the protected block of co
the compiler allocates a few bytes on the stack, ca
setjmp to store the current execution context ther
and links this stack frame to the front of a list of exce
tion handling frames, available in the exception contex

If the execution of the block terminates normally, th
stack frame is popped from the list and the stack
restored. On the other hand, whenever an exception
thrown, the exception context is consulted to get the
of exception handling frames, and each frame is cal
in order until the exception is caught or the list term
nates. In the latter case, the execution of the thread
terminated.

5.2 Threads and synchronization

In the RCX, a thread of control is very simple, esse
tially consisting of the current processor state. A conte
switch merely changes the contents of the processor
isters. The state is stored in a Thread instance, and is
visible to the Java environment as a series
volatile short instance variables. This allows di
rect manipulation of non-running threads from Ja
code.

ID
ad

he
he
he
ait
ing
ad
es

i-
.

 of
IR
e-
d

er
tly

 are
e
ic
si-

M
we
ed

.

s.
To save memory and simplify implementation, the num-
ber of threads is limited to 126. This allows a thread
identifier to be stored in a single signed byte (thread
number zero is used as a sentinel). Each thread also con-
tains a link byte, possibly containing a thread ID of
another thread. These link bytes are used to create lists
of threads waiting for a specific event.

Monitors. Object level synchronization, implemented
in Thread.monitorEnter and Thread.monit-
orExit , is implemented with a simple per object
semaphore together with a counter and a queue. The
monitorEnter and monitorExit actions disable
interrupts by manipulating the processor condition code
register through the Thread.disableInterrupts
and Thread.enableInterrupts assembly rou-
tines.

The monitor semaphore is represented as a single byte ,
present in all objects (see Table 3). Whenever there are
no threads within the object’s monitor, the semaphore
byte is zero. When the first thread enters the monitor, it
places its thread ID to the semaphore byte. Any other
threads attempting to enter the monitor will find the
monitor occupied, and insert themselves to the head of
the monitor queue.

When a thread leaves the monitor, the thread checks if
there are any other threads waiting for the monitor. If
such a thread is found, the semaphore is kept busy and
the first waiter is removed from the queue and its ID is
placed into the semaphore byte, after which it is woken
up by linking it to the run queue. On the other hand, if
there are no waiters, the semaphore is simply released.

Since a Java thread can recursively enter a monitor sev-
eral times, yet another variable is needed to keep count
of these recursive entries. Due to the limited stack in the
RCX, we decided to use a single byte as this counter as
well.

Condition variables. Another type of synchronization
is provided by the Java wait and notify primitives.
In Java, any thread holding an object monitor may
invoke the Object.wait method. This suspends the
thread issuing the call until either another thread
invokes the Object.notify method for the same
object, or a time out occurs.

Again, our implementation is fairly simple. In addition
to the monitor thread queue, each object also includes a
waiter queue. This queue is also implemented as a sim-
ple byte, which is initialized to zero. Whenever a thread
enters a wait , it stores the current value in the wait

queue to its thread ID link, and places its own thread
in the wait queue byte; this, effectively, places the thre
at the head of the waiter list.

When another thread invokes notifyAll , thereby
waking all threads waiting on a thread’s wait queue, t
thread list is simply moved to the monitor queue. T
notify method, instead, just moves the head of t
wait queue to the monitor queue. (In this case the w
queue acts as a stack, but that is perfectly fine accord
to the Java language specification.) The notified thre
or threads are woken when the notifying thread leav
the monitor, as explained before.

Wait time-outs are currently not supported; their add
tion may require slight revisions to the implementation

5.3 ROM services

The ROM services are encapsulated into a number
platform specific classes, enumerated in Table 8.
communication is not supported, yet. The platform sp
cific classes form a package of their own, calle
com.rcx .

Most of the platform specific classes contain a numb
of native synchronized methods that are used to direc
call the ROM routines. In most cases, these methods
public , allowing direct access from anywhere in th
program. Only those ROM calls that require specif
arguments or otherwise cannot be called without pos
ble problems are protected by restricted visibility.

5.4 Hardware access

In some cases it is clearly beneficial to bypass the RO
and to access the hardware directly. To support this,
modified the GCJ compiler so that any variable defin

Class Description

Button Initialize, read and shutdown RCX buttons

Display Modify the LCD screen contents.

Motor Power motors in a controllable way.

Power Allows access to power savings.

Port Direct access to the hardware I/O register

Sensor Power, read, and shutdown sensors.

Sound Allows sounds to be played.

Timer Access to the hardware timers.

Vector Direct access to the interrupt vectors.

Table 8: Platform specific classes in the com.rcx package.

nd

not
n
te.

m-
ch
d.
is
es,
he
l,
 of
w

he

ct
rst

low
vi-
ia-
ur

d

-

of

for-
r

s.

rat-
ch

ase,
t a
 ap-
d
b-
s

ta
as static transient volatile is considered as
if it were a declaration of an external variable instead of
being a definition. Thus, the compiler does not allocate
any memory for those kinds of variables. Therefore,
their location in the memory can be freely decided by
the linker. Again, utilizing linker directives made this
easy. Figure 5 illustrates the definition of I/O Port 4,
whose memory address 0xFFB7. Among other things,
port 4 can be used to directly read the status of two of
the user buttons.

5.5 Event model

In Java, it is customary to represent changes in external
environment as events. Thus, our intention is to abstract
changes in button and sensor values as events. The basic
idea is to have a thread polling on a specific I/O port,
waking up on interrupts generated either by a change in
the port or by a timer. If the polling thread notices that
the value represented at the port has changed, it takes an
event object from a queue of free event objects, fills in
the appropriate values, and places the object in an ap-
propriate event queue. A non-interrupt level thread
would be waiting on the queue, and handle the event af-
ter the interrupt routine has been completed. Finally, the
event would be passed back to the free event queue
when it is not needed any more.

5.6 Other services

We expect to enhance our operating system with a num-
ber of additional services. The planned services include
communications (both basic IR and IP over IR) and
scheduled power management (to save power in long
running sensor-type applications). However, these fea-
tures are currently left for further study.

6 Evaluation and lessons learned

It was no surprise to us that it was both challenging a
fun to write a new operating system (or an operating
systlet) in a new language for a hardware we were
familiar with when we started. However, the mai
obstacles came from a direction we could not anticipa
That is, the intrinsic interrelationships between a co
piler and the corresponding runtime system are mu
more complex and fragile than we originally expecte
Writing a runtime system independent compiler for C
clearly feasible, as shown by GCC. The same appli
more or less, to the GCC C++ compiler. However, t
current GCJ compiler is far from being runtime neutra
and currently one is required to have good knowledge
the compiler internals in order to be able to write a ne
type of runtime system. We learned this the hard way,
and hope that this paper and our modifications to t
GCJ allow others to do the same more easily.

Looking at the situation from another direction, the fa
that we were able to complete the project in the fi
place is an indication of the feasibility of our approach.
First, we have shown that the idea of using Java as a
level language to implement both a Java runtime en
ronment and a minimal operating system in Java is v
ble. The basic methods, or tricks, that we used in o
implementation include the following:
• Using a compiler that produces native code instea

of byte code.
• Wiring the compiler-generated Java runtime primi

tives (see Table 6) back to Java, thereby allowing
the primitives to be implemented in Java instead
some other language.

• Enabling Java source level access to the meta-in
mation generated by the compiler. This allows, fo
example, an easy pure Java implementation of
Class.isAssignableFrom .

• Converting static transient volatile and
synchronized native modifiers into external
declarations and back end specific attributes,
respectively, which make it possible to tailor the
compiler and linker to provide direct access to the
underlying ROM routines and hardware addresse

Second, our experience indicates that writing an ope
ing system in a beautiful object oriented language, su
as Java, gives a number of benefits. In the present c
the target environment is such a simple device tha
strict boundary between the operating system and an
plication would probably only complicate things an
make the application both bigger and less efficient. O
ject-orientation allows some of the underlying problem
to be solved in a neat way. That is, visibility rules, da

Figure 5: Definition of the variable Port.PORT4 , which
allows direct access to the hardware I/O register number 4.

class Port {
...
static transient volatile PORT4;

SECTIONS {
...
.eight (0xFF00) : {

_Q14Port$PORT4 = 0xB7;
...

} > eight
...

out
er-
ry
ss
s.

tch
ey
ific
e-
 to
lar

e
n-
ts,
t,
n
nk

ri,
,
n,

as
rd
lu-
n
r,
n
er
e
-

nd
e
ts
tu-

eir
and
s

its
hiding, and inheritance make it possible to provide an
application programmer an environment where the ap-
plication may be tightly integrated with the operating
system without compromising architectural layering or
introducing unnecessary bugs. We allege that the same
principles could also be applied in a more complex case
if appropriate memory management hardware was
added.

Considering the language, the main benefits of Java lie
in its relative strictness when compared with C++. That
is, given any C++ based operating system level frame-
work, the programmer is required to understand consid-
erable amount of the implementation details in order not
to mistakenly break the underlying semantic assump-
tions of the framework. In the case of Java, the seman-
tics-related problems are easier due to the more strictly
defined language specification and fewer possibilities
for a programmer to circumvent language-level object
abstractions.

The use of Java brings up another benefit. That is, since
the APIs are to a large extent compatible with the stan-
dard Java APIs, it should be possible to port a large
number of Java packages to the RCX with no or mini-
mal changes. Now, for example, porting a minimal
JACL [18] interpreter to the RCX should not be too
hard.

Hence, our work has shown that Java can be used as a
viable language for low level programming, with bene-
fits unavailable from other approaches.

7 Future work

At the present time (April 2000), garbage collection,
threads and the event model require more work. Some
of the modifications made to the GCJ compiler could be
made more generic and supplied back to the standard
version of GCJ. An extension to study is the ability to
handle dynamically loaded code based on the work re-
cently introduced in LegOS. However, due to the Java
visibility constraints this may not be easily adoptable.

Once the basic operating system platform has stabilized,
we plan to focus on communication issues. The aim is to
port our Java Conduits Beans (JaCoB) protocol frame-
work [19] to the RCX, and to build a minimal IPv6/
UDP implementation on the top of that. Our hope is to
see if it would be possible to make the RCX robots first
class citizens in Jini communities.

Availability

The source code for the system is available at http://
www.tcm.hut.fi/~pnr/rcx/ . The actual source
tree is supplied as a gzipped tar file, whose size is ab
250 kilobytes. Building the system requires patched v
sions of both GNU binutils and GCC; the necessa
patches are provided. The binutils patch is minimal (le
than 2 kilobytes) and should not cause any problem
However, since the various versions of the GCC pa
are fairly large (about 150 kilobytes) and since th
were made against GCC-current instead of any spec
released version, building a working compiler may r
quire some manual work, or, alternatively, using CVS
check out GCC-current of the date when the particu
version of the GCC patch was created.

Acknowledgments

This work would have not been possible without th
large number of people working on the RCX reverse-e
gineering and the various programming environmen
including, in no particular order, Kekoa Proudfoo
Markus L. Noga, David Baum, Peter Liu, Stephe
Spackman, Michael Daumling, Ross Paterson, Fra
Cremer, Sergey Ivanyuk, Mark Falco, Mario Ferra
Frank Mueller, Tom Emerso, Lou Sortman, Luis Villa
David Van Wagner, Michael Nielsen, Chris Dearma
Eric Habnerfeller, and Ben Laurie.

Since the availability of the compiler source code w
essential for this work, we want also to thank Richa
Stallman, the Free Software Foundation, Cygnus So
tions (now part of Red Hat), the GCJ implementatio
team including Alexandre Petit-Bianco, Per Bothne
Andrew Haley, Tom Tromey, Anthony Green, Warre
Levy, Bryce McKinlay, and others, and the large numb
of volunteers for their work in providing free softwar
in general, and the GNU Compiler Collection in particu
lar.

We are also grateful to Tuomas Aura, Hannu Napari a
Lauri Savioja of HUT and Chris Demetriou and th
anonymous reviewers of USENIX for their commen
and suggestions how to improve the paper, to our s
dents Markus Aholainen and Veera Lehtonen for th
feedback about some early versions of the system,
especially to Petri Aukia of Bell Labs for his numerou
constructive suggestions concerning this work in
early stages.

-

,

n

b

va
,”
d

References

[1] Lego Mindstorms,
http://www.legomindstorms.com/

[2] The MIT Programmable Brick,
http://el.www.media.mit.edu/
projects/programmable-brick/

[3] Kekoa Proudfoot, RCX Opcode Reference,
http://graphics.stanford.edu/
~kekoa/rcx/opcodes.html

[4] Lego RCX Code, in Robotics Invention System
User Guide, The Lego Group, 1998.

[5] Lego Dacta RoboLab, http://www.lego.
com/dacta/robolab/default.htm

[6] David Baum, Not Quite C (NQC),
http://www.enteract.com/~dbaum/
nqc/index.html

[7] Markus L. Noga, LegOS Home Page,
http://www.noga.de/legOS/

[8] Kekoa Proudfoot, Librcx,
http://graphics.stanford.edu/
~kekoa/rcx/tools.html#Librcx

[9] GNU Compiler Collection (GCC) home page,
http://gcc.gnu.org/

[10] Michael Durrant and D. Jeff Dionne, uCsimm
Home Page, http://www.uclinux.com/
uC68EZ328/index.html

[11] Ken Arnold, Bryan O’Sullivan, Robert
W. Scheifler, Jim Waldo, and Ann Wollrath,

The Jini™ Specification, Addison-Wesley, Read-
ing, MA, July 1999.

[12] Kekoa Proudfoot, RCX Internals,
http://graphics.stanford.edu/
~kekoa/rcx/index.html

[13] Hitachi Single-Chip Microcomputer H8/3297 Se
ries, http://semiconductor.hitachi.
com/products/pdf/h33th014d2.pdf

[14] Gintaras R. Gircys, Understanding and Using
COFF, O'Reilly & Associates Nutshell Series
Sebastopol, CA, 1988.

[15] Java™ 2 Platform, Micro Edition (J2ME),
http://java.sun.com/j2me/

[16] Java Card™ Technology,
http://java.sun.com/products/
javacard/

[17] EmbeddedJava™ Technology, Source Editio,
http://www.sun.com/software/
embeddedjava/

[18] Ray Johnson, Tcl and Java Integration, Sun Mi-
crosystems Laboratories, Palo Alto, CA, Fe
1998.

[19] Pekka Nikander and Juha Pärssinen, “A Ja
Beans Framework for Cryptographic Protocols
in Mohammed Fayad, Douglas Schmidt an
Ralph Johnson (Editors), Object Oriented
Frameworks, Volume II, Wiley, 1999.

	An Operating System in Java for the Lego Mindstorms RCX Microcontroller
	Abstract
	1 Introduction
	2 Lego RCX microcontroller
	3 GNU Java compiler and libgcj run�time
	4 Minimal Java runtime
	5 Operating system services
	6 Evaluation and lessons learned
	7 Future work

	Availability
	Acknowledgments
	References

