Proceedings of FREENIX Track:
2000 USENI X Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

AN OPERATING SYSTEM IN JAVA
FOR THE LEGO MINDSTORMS RCX
MICROCONTROLLER

Pekka Nikander

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Operating System in Java for the Lego Mindstorms RCX Micocontroller

Pekka Nilander

Helsinki University offechnology
Pekka.Nikander@hut.fi
http://wvww.tcm.hutfi/~pnr/rcx/

Abstract

The Leggo Mindstoms is a Lego briks basd robotics
toy series prducead by the Lego Groupbased on the
ideas deeloped at he Massadusettsinstitute of Tech-
nology in the Psgranmable Bick project The hea of
a Lego obot, the RCX miocontrolle, hosts a Hitachi
H8 micromntroller with 28 kildytes of nemory avail-
able for downloaddle firmware and pplications. In
addition to he GUI based mmgramming ervironment
provided by Lego, a rumber of altenative programming
ervironments have bea developed fa the RCX. How-
eva, thee altemative programming environments are
written in G tightly bound to the haware, and pvide
only relatively low level sevices. The strong haware
dependecy makes it hat to debug programs; inprac-
tice, a hadware simulator is needd, andsuch a smula-
tor doesnotyetexist in anopensource fom.

In this paper wepresent a ew type ofoperatng system
and rew progranming environments for the Lgo RCX

brick. The opelting systemis written dmost com-

pletely in Java, and aurrenty provides runtime support
for Java, C and C++rpgrams. In the case of Jawappli-

catiors, simulation and debging isrelatively ample as
it can be pdormed on a standard JaVatual Machine
with just a snall hardware sinulation packge.

1 Introduction

Introduction of an affordable robotics devebpment kit

in the form of the Lego Mindstoms Robotis Invention

System (RS) [1], and its predecessathe MIT program-

mable brick [2], has fostered aumber d very diferent
efforts for both teachng robotics axd experimenting

with non-traditiond applications of pbotic equpment.

These aproaches inclde, far exanple, the idea of us-
ing a hoard of Lego rabots to collectively perform a

larger task.

A Lego Mindstams Rdot consists of a pgrammable
Lego lrick, called the RCX, whichcontains three sesor
inputs three actuatooutputs, four ugebuttons a sim-
ple LCD displg, an IR trarsceive, and a Hitachi H8
microcortroller with 32 kilobytes of RAM, 4 kilobytes
of which isused for interrupt vectors ad other lowlevel
data. Normally, the RAM is used to hosta firmware po-
gram, provided by Lego, which issed to intepret the
actual user mgram. The user pogramis represented in
the fam of byte cale [3]. Thebyte caleitself, in turn, is
generatel on aWindows PC runing a graphical mr
gramming environment which is tightly bound to te
Windows opeating sygem. Currenty, the byte code
offersfairly limited view to he power of the RCX; for
example, it allovs orly 32 varigblesto be sed.

Since he two programming environments [4][5] pro-

vided by the Lego group are seawedy limited in their

ability to fully utilize the camputatianal power of the

RCX brick, a number of independent progmaing

ervironments have been developér the RCX, includ-

ing Not QuiteC (NQC) [€], LegOS [7] andlibrex , a

minimal rurtime library [8]. The lattertwo of these use
the GNU CCompiler, pat of the GNU Compiler Col-
lection (GCC) [9, to canpile C source ade to the

machne aode of he Hitadi H8 processar.

In this pape we presentRCX Java Operatirg Systen,
which is an expelimental operatng systemfor the RCX
microcontroller. To compile our OS, we have used a
modified GNU Java compiler, GCJ, from the GCC alite
of compilers. The &J canpiler canpiles Java source
code am byte code into the native ode of the teget
machhne. We used a cress campiler running on a
FredBSD PC withthe Hitadi H8 asthe taget ewiron-
ment. In catrast with the other existing Java runtime
ervironments, ours is ahost canpletely written inJava,
which waspossible sice al the Jara code isbeing com-
piled into native code. In the prect, getting the @n-
piler and the runtime to function tagetherwas one of he

index.html

most interesting tasks. Furthermore, a number of inter-
esting tricks were needed to represent non-object data
structures in a beautiful way in Java code. Some of the
design choices are explained in Sections 3 and 6.

In addition to being a neat way of making it possible to
use Java to write programs for the RCX, our approach
has a number of potential benefits. First, because the
operating system is written in Java, it is fairly indepen-
dent of the hardware, making it relatively easy to port to
other microcontroller basedstgms such as the uClinux
SIMM [10]. Second, as the operating system is written
in an object oriented language, it is possible to extengontrol the robot. However, our goal was to enable full
the operating system using the object paradigm. ThircCCeSS to the microcontroller resources. Therefore, only
in Java the thread and synchronization models arthe low level programmer’s view of the RCX is de-
tightly integrated into the language, making it natural toScribed. The following information is largely based on
use threads when developing applications for the RCxthe reverse engineering work performed by Kekoa
And fourth, the compiler and runtime system can be”roudfoot and others [12].

extended to support additional Java based technologies

such as Jini [11]. Some of these aspects are furthé¥hen programming at the machine language level

explored later in this paper, while others are left for(either using an assembler or through a high level lan-
future work. guage), a programmer has direct access both to the hard-

ware and to the ROM routines. Hitachi H8 uses memory
The rest of this paper is organized as follows. Inmapped I/O, and the actual hardware ports are mapped
Section 2 we describe the hardware and ROM structurd® the highest part of the memory, at a so called eight bit
of the RCX microcontroller in more detail. Next, in @réa. The I/O port map, as used for RCX, is partially
Section 3, we briefly outline the structure of the GCcillustrated in Table 1. [12]
compilers, focusing on the GCJ native Java compiler,
and describe the modifications we have made to it. Memory
Section 4 describes the minimal Java runtime that we Range
developed to support Java based native code on ti
RCX, and in Section5 we explain the RCX specificTEOOO_ FOFF
operating system services implemented as well as th EFB7
interface from the Java environment both to the routinesFFBA
implemented in the RCX ROM and to the actual hard
ware. Finally, Section 6 summarizes the benefits ang
lessons learned so far, while Section 7 outlines some

Figure 1: The Lego RCX, opened [12]

Function

Motor control

IR transceiver range, button input

IR control, external RAM power
save mode

FBB Sensor power, timer, LCD I/O

possibilities for future work. FFBE Sensor input, button input
FFC3 Serial/Timer control
FFEO - FFE4 |Sensor A/D input

2 Lego RCX microcontroller

Table 1: Some RCX |/O addresses

The Lego RCX (see Figure 1) is a large Lego brick hostThe ROM contains a fairly large number of routines,
ing a battery case, a Hitachi H8 microcontroller, an IRand it is beyond the scope of this paper to describe them
transceiver, a simple LCD panel, a few control buttonsg||. However, the routines include the following func-
sensor and actuator connectors shaped into the form gnality:
Lego brick connectors, and some auxiliary circuitry. « |nitialization functions and a simple main loop

e Default interrupt handlers
The standard programming environments provided by Memory move, copy, clear, etc. auxiliary functions

Lego [4][5] allow only a very limited access to the re-.
sources of the microcontroller. Basically, they are aimed
to enable high school students to apply their knowledge
of using Lego blocks in building physical structures on.
the domain of building logical program structures that.

Battery power management

Sensor 1/O taking care of interpreting raw data
Motor control

LCD and sound output

IR transceiver 1/0

The firmware code, either as loaded from internal storGNU compiler structure. The compilers in the GCC

age or over IR, is stored in a memory area starting auite are structured around a three pass architecture.

hex 8000. The default firmware is meant to interpretFirst, a file to be compiled is read in, along with any

user programs expressed in the form of byte code [3pxplicitly or implicitly included files. While parsing, the

Since we do not use the byte code in any way, the strucompiler front end forms recursive data structures,

ture and functionality of the default firmware are be-calledtrees of any global declarations encountered. In

yond the scope of this paper. the case of Java, all classes and most methods and fields
are considered global; a Java compilation unit may only

]])) contain classes belonging to a single package, and

3 GNU Java compiler and libgcj runtime classes within a package have access to all non-private
fields and methods of each other.

The GNU Compiler Collection (GCC) is a suite of com-

pilers, based on the original GNU C Compiler architec-Intermixed with the first pass, whenever the parsing of a

ture as created by Richard Stallman and otherssompilable entity such as a method or a class is finished,

including C, Fortran, C++, Objective C, and Java comthe second pass creates an intermediate RTL representa-

pilers. These compilers share the same basic structutien of the entity. RTL, short foRegister Transfer Lan-

and a common set of back ends, including a back end fgfuage is a kind of an abstract machine language.

the Hitachi H8 series of processors. The C and C++ ver-

sions of these compilers had earlier been adapted for the the third pass, a compiler back end optimizes the RTL

RCX environment by Markus L. Noga and others [7]representations through a number of passesasgem-

(8]. bler language. Target specific transformations are taken
into consideration and used by the optimization rou-

Utilizing the C and even C++ compilers of the GCCtines.

suite is pretty straightforward, even for anbeamdded

stand-alone environment such as the RCX. Basicallywhile building the Java runtime we experienced a num-

the C compiler requires little runtime support while theber of times the relative newness of the Java front end,

C++ runtime support is relatively modest. However, theand to a lesser degree the fact that the COFF (Common

runtime support required by the GNU Java compilerObject File Format [14]) back end had apparently not

GCJ, is both much more complex and currently lespeen used before with the Java front end. However, the

mature than its C and C++ counterparts. Furthermorehack end problems were basically inabilities to handle

the Java runtime support is provided as a separate paake names of Java specific data types, i.e., arrays, as first

age, calledibgcj , and its connections with the actual class objects. More specifically, the back end needed a

compiler are lagely undocumented. fix to mangle any symbols containing brackets.

When we started our work with the system, a new verThe Java front end. The front end restrictions were

sion of GCC, GCC 2.95.1, and a corresponding versiomore severe but also more subtle. To understand these,

of the runtime,libgcj 2.95.1, were just released. we have to dig deeper into the structure of the Java front

However, in that version the compiler had a number oénd.

immaturities and restrictions, some of which have later

been relieved while others have not been. In our workin contrast to the C programming language, which was

we have attempted to generalize away some of thdesigned to be independent from any runtime library,

immature features and restrictions, basically aiming fothe Java language specification explicitly defines a

a compiler that would be more runtime independent. number of runtime classes that belong to the
java.lang package. Of these, especialBbject ,

3.1 Restrictions in GCJ 2.95.2 and -current Class , and Throwable are fundamental. Addition-
ally, the default semantics of a number of runtime

In order to facilitate understanding of the current statushecks expect certain subclasses of Theowable

of the compiler and the way the compiler restrictionsclasses, e.g.NullPointerException , Which is

made our work a little bit harder, a brief outline of thethrown whenever a null reference is followed. Further-

GCC compiler structure and the definition of the Javanore, if a native compiler is to provide information

programming language is needed. They are presenté@eded by the Java reflection APl (fhea.lang.

next. refect package), the compiler needs to supply infor-
mation about the fields and methods of classes.

Field name Field type and contents Field name Field type and contents
vtable pointer to a table of function pointers; |vtable No changes
initialized to point to the dispatch monitorSema hyte ; id of the thread holding the
table of the class monitor corresponding to the object
sync_info vqid pointer; initialized taull monitorQueue byte ;id of a thread waiting for
Table 2: Instance fields silently inserted entry to the monitor; other threads
to theObject class by the unmodified GCJ waiting for entry to the monitor are
The GCJ compiler addresses these needs by handling a linked to the first thread
number of runtime classes specially, includ®igiect , |monitorCount byte ;the number of times the
Class , Throwable , Error , Exception , and holding thread has recuvsiy
Thread . Of these, the compiler treated the classes entered the monitor
Object andClass significantly differently from oth- waitQueue byte :id of a thread waiting for a
ers, thereby creating unnecessary limitations for the rup- notify on this object, any other
time. More specifically, the out-of-the-box GCJ silently| waiting threads are linked to the
inserts a number of fields (see Tables 2, above, and 4, jon first thread

the next page) into these classes, and does not allow afny
new fields to be defined in the corresponding Java
source code. Furermore, even if some of the silently
added fields can be accessed by Java code to be coof- the compiler generated fields. That is, when we
piled, classes containing such references cannot be comaively tried to add a field namddterfaces to
piled with any other Java compiler. Finally, some of thejava.lang.Class , the compiler complained about
internally generated fields have types that cannot be reffield redefinition. On the other hand, if we tried to use
resented in Java. The restriction of not allowing anythe compiler generated fielthterfaces without
other fields to be declared, along with the other twoexplicitly declaring it in the source, Sijavac refused
above mentioned features, made it relatively hard tdo compile the file.

build the runtime in Java. Lifting the restriction and

modifying the compiler, as described next inTo resolve the dilemma, we modified the compiler so

Table 3: Instance fields inserted
to theObject class by the modified GCJ

Section 3.2, alleviated the situation. that if the user defines a field with a name clashing with
a compiler generated field, and if the types of the com-
3.2 Modifications to the Java compiler piler generated field and the user defined field are

assignment compatible in both directions, the compiler

The problems encountered were mostly related to th@nly issues an warning, not an error. By using a new
Java front end and not to the rest of the compiler; this i§ompiler flag, even the warning can be silenced.
a strong indication of the very high quality of the GCC
compiler suite in general. Unfortunately, apparently dueSince making the compiler generated fields accessible is
to early design decisions, the GCJ compiler is builonly meant to be used in implementing the runtime
around the idea that the necessary Java runtime wouftgelf, we went still a little bit further and loosened
be mostly written in some other language than Javaslightly the assignment compatibility rules. One effect
e.g., in C++. Considering the fact that the GCJ compilepf this was that the compiler still could declare some of
is able to produce native code in addition to byte codethe integer fields unsigned (whichristrepresentable in
we considered that approach limiting. Furthermore, adava) while the corresponding user defined fields are
our goal was to implement as much as possible of theigned. Additionally, ~we allowed the type
RCX operating system in Java itself, we decided to lifiava.lang.Void to function as an unnamed pointer,
these restrictions and modify the compiler so that thée., something likeoid pointer in C or C++. Thus, in
runtime could be written in Java to the greatest extenthat way we were able to declare in Java even those
These modifications are explained next. compiler generated fields whose types could not be rep-
resented as Java types.
Making the compiler-inserted fields visible. In addi-
tion to disallowing any new fields from being added toln addition to these loosened type compatibility rules, a
the fundamental classes, the unmodified GCJ rejectgdefinition in the modified compiler resets the field's
(re)definitions of any fields with a name matching anyVisibility to that defined by the user, thereby allowing

Field name Field type (and contents)
next a pointer tgava.lang.Class
name a pointer to an UTF8 constant string
accflags umsigned short , access bits
superclass a pointer tgava.lang.Class
constants a record enclosing constants info
methods a pointer to the first element in an array of internal method records

method_count

short , size of the array above

vtable_method_count shdrt

, hnumber of virtual functions

fields a pointer to the first element in an array of internal field records
size_in_bytes int , Size of instance objects

field_count shart , humber of fields

static_field_count short , humber of static fields

vtable a pointer to the table referred at thbject s vtable
interfaces a pointer to the first element of an array of class pointers
loader void pointer, initialized tawull

interface_count

short , humber of interfaces

state

byte , initialized to zero

thread

void pointer, initialized tawull

Table 4: Instance fields silently inserted to @lass class

wider access within the runtime. (By default the com-tively easy in most cases. The new types for the changed

piler generated fields are considepgivate .) inserted fields are given in Table 5. (For the original
field types, see Table 4, above.)

Changing the types of the compiler-inserted fields.

As was explained in Section 3.1, the compiler silentlyChanging the types of some of these fields required con-

inserts a number of instance fields to @leject and siderable changes, some of which were not quite obvi-

Class classes, among others. However, the types obus. For example, the otdethods field was a pointer

many of these fields are defined so that they cannot b a C struct array. Each element in the array described a

expressed in Java. Fortunately, modifying the compilemethod, and the fielanethod_count provided the

to use a corresponding Java compatible type was reldength of the array. In our Java friendly version, the

methods field is a pointer to a Java array object. The

generic memory layout of a Java array is described in

Field name New field type

Figure 2, below. In the standard case, the array object

methods ava.lang.reflect.

would contain pointers tMethod objects stored else-
Method[]

where in memory. However, since we are here having

method_count

removed

fields java.lang.reflect.
Field[]

field_count removed

interfaces javp.lang.Class]]

interface_count

removed

loader

—

q

ava.lang.Loader

thread j

ava.lang.Thread

Table 5: Modifications to the fields installed t€kass

the compiler generate the array and have full control

java.lang.Object fields
J 950 vtable pointer

synchronization
information

array specific fields length

data

Figure 2: Java array structure

Original function name The corresponding method after modification En((::llzssgng
_Jv_InitClass void initClass() Class
_Jv_Reqgister_class void registerClass() Class
_Jv_AllocObject Object allocObject() Class
_Jv_CheckCast OQbject checkCast(Object) Class
_Jv_lIsInstanceOf boaglean isInstace(Object) a Class
_Jv_LookuplinterfaceMethod Method Class

lookuplinterfaceMethod(String, String)
_Jv_MonitorEnter static void monitorEnter(Object) Thread
_Jv_MonitorExit static void monitorExit(Object) Thread
_Jv_Throw static void throwException(Object) Thread
_Jv_ThrowBadArraylndex static void throwBadArrayIndex(int) Thread
_Jv_exception_info static Throwable exceptioninfo() Thread
_Jv_NewArray static Object newArray(int, int) Runtime
_Jv_NewObjectArray static Object Runtime
newObjectArray(int, Class, Object)
_Jv_NewMultiArray currently unsupported
_Jv_CheckArrayStore static void checkArrayStore(Object, Object) Runtime
Table 6: Runtime functions internally called by the compiler
a. Note thatsinstance(Object) is a method that is called not only by the runtime, but that is also

available as a part of the public API; in order for this to work, the order of the parameters to the method
was changed.

over its internal structure, a more compact representssince these methods are directly inserted to the object

tion is possible. Thus, instead of storing pointers to theode without any access checking, we declared the cor-

Method objects in the Java array, we storeethod responding methods in the Java classes as using default

objects themselves. Since the compiler knows the actugbackage) orprivate visibility, thereby making it

type of the array, it generates correct code whermpossible to directly use them from outside of the run-

accessed from Java. However, care must be taken whéme classes.Glass.isInstance is an example of

declaring and accessing these kinds of arrays from C++deviation from this scheme, as it happens to be a
public method defined in J2ME.) In a few cases

Redirecting compiler-generated support functions to where the functionality could not be implemented in

Java. Any Java runtime includes a number of relativelyJava (yet) the corresponding Java methods were

high level functions, including memory management,declarechative , and the implementation was made in

threads, thread synchronization, a few of type managez++.

ment operations, and runtime class handling. To imple-

ment these, the GCJ compiler inserts calls to runtim®ther front end modifications. The other modifica-

support functions in the generated object code (see Téons include the following:

ble 6, above). In the unmodified compiler, these funce= The semantics afynchronized native meth-

tions are C functions, and some of them take arguments ods andstatic transient volatile vari-

whose type cannot be described in Java. Now, in order ables were changed, as described in Sections 3.3

to be able to write as much of the runtime in Java as pos- and 5.4.

sible, we modified the compiler so that the inserted The generation of metadata for Java methods,

functions are calls to Java methods and the arguments fields, and class names was made optional. The

are representable as Java types. The resulting methods method and field information is only needed for the

are also given in Table 6. reflection API while class names are also needed

for theClass.forName method. Since most

embedded programs do not use the reflection API the case of Lego RCX, since the RCX ROM calling con-
nor theforName method, leaving that information ventions are different. That is, the first argument to a
out reduces the code size about 30%. ROM routine is passed in registé&r while the rest are

* The automatic inclusion of compiler generated passed on the stack. LegOS and librcx have solved this
fields in theObject andClass classes was made problem by adding a small assembler wrapper which is
more generic, or less hardwired, thereby making it used when calling the ROM routines. However, in order
easier to specify runtime specific fields in these to gain efficiency and to minimize the amount of code

classes. not written in Java, we solved the problem differently.
* Inanumber of locations, the front end created code
that made computations using the Jaa type Basically, GCC calling conventions are defined using

variables. For example, the artapgth fieldand relatively simple macros and functions in the target spe-
any computations applied to it, including array cific back end specification. Thus, in order to support
index checking, useidts internally. However, direct ROM calls from Java we created a new back end
since the RCX is a 16 bit processor, and has only variation, calledh8300-hitachi-rcx (instead of
64 kB of total address space, the resulting assemblylefaulth8300-hitatchi-hms), that has a different
code is both inefficient and unnecessarily volumi- call convention. First, registe8 is used as a frame
nous. To alleviate this problem, we created a new pointer instead of registe6 . Second, the first parame-
compiler symbol for Java array lengths, and used ters to a function are passed in registérsr5 andr4 ,
that in the calculations. Selecting an 16 bit integer unlessthe call is declared as a ROM call, in which case
for this type produced much better assembler codeonly r6 is used to pass parameters, and the rest of
» According to the Java specification, the JVM han- parameters are passed on the stack. As other register
dles integral data types that have less than 32 bits assage related optimizations, we declared that frame
32 bit integers during computation of expressions. pointers may be omitted when not needed and that regis-
However, GCJ attempts to optimize this issue and ter r4 is saved over function calls. Together these
uses only the native machine word size whenever itreduced both code size and the number of memory
is sufficient. Now, when GCJ reads in Java byte stores and loads.
code, it cannot immediately determine the “real”
types of JVM stack variables just by inspecting the Calling ROM functions directly. The changed regis-
byte code instructions. Handling of this had a cou- ter usage made it easy to call ROM routines directly
ple of bugs that appeared only in machines with a from C by declaring a ROM routine as an external func-
small native word size. The fixes were contributed tion and declaring the actual address in the linker con-
back to the GCJ project. However, more could be figuration file. To ensure correct parameter passing, the
done in this respect, and new optimizations would external function declaration must be announced as a

help produce even better code. ROM call by using a C or C++_attribute__ ,ora
corresponding preprocess#pragma , which signals
3.3 HB8/300 back end optimizations the back end to use the alternative calling conventions.

The backend optimizations we made were mostly re/As an example, let us consider the ROM routine “set
lated to two issues. First, we changed the calling con-CD segment,” which is available @x1b62 . The cor-
ventions to produce slightly better code and to bdesponding C declaration and a relevant fragment of the
compatible with the RCX ROM calls. Second, welinker configuration file are given in Figure 3, on the
changed the register usage directives so that the result€Xxt page.

ing code uses fewer memory references than with the

default directives, when compiling typical Java codeMaking a ROM routine callable directly from Java
These changes required us to modify the register usadigquired a little bit more. First, Java does not include

of the runtime system, includingsetimp and any feature corresponding to the C/C++ usage of
longjmp as well as exception handling. attributes in method or field declarations. However, Java

allows a native method to be declared synchronized, but
Changes in register usageThe standard GCC back does not associate any specific semantics for this. (Syn-
end for the Hitachi H8/300 microcontroller uses registechronization is implemented by a method itself; the
r7 as the stack pointe® as a frame pointer, and regis- caller of a method does not need such information.)
tersr0 ..r2 to pass the first three arguments to func-Thus, we hacked the compiler so that it flags any
tions. The rest of arguments, if any, are passed on tHeethod declared asative synchronized as a
stack. While a standard practice, this has a drawback iIROM entry point.

In our project, the goal is to be as compatible as possible

extern char set_lcd_segment(with J2ME. However, the J2ME specification is based
short code on the assumption that the runtime environment is capa-
) __attribute_ ((ROM)); ble of executing Java class files, i.e., has an interpreter,

JIT, or hardware support for byte code. Due to space
restrictions, this is not possible in the RCX, and there-
fore we cannot be fully compatible witBME.

SECTIONS {

rom : {

Below, we describe the basic API provided by our envi-
_set_lcd_segment = 0x1b62; P y

ronment, the language features currently not supported,
static constructor, destructor and class initialization rou-
tines, and thread support. The description of the operat-
ing system level features are deferred to Section 5.

}>rom

Figure 3: A C declaration for an RCX ROM routine,
and a corresponding linker directive

Second, the link time naming conventions for Javarhe java.lang classes included in our runtime are
methods are different from those of C functions. INepnymerated in Table 7. The methods provided are more
order to overcome this, the entry points must b&estricted than they are in the Java standard edition, but
declared asnangled namem the linker configuration mostly aimed to be compatible with J2ME. However,
fil_e. The result of converting the C example is shown ingn has not produced any public specification of the ac-
Figure 4, below. tual J2ME API. Therefore, we have used Embedded
Java [17], which is available, as our comparison point.
The most important differences from the Embedded
Java API are outlined in the table. Most notably, the
. o String class is heavily restricted, providing only min-
Originally, the Java 1.0 and Java 1.1 specifications d&pa| support. Furthermore, some exceptions and many
fined a single language and runtime structure. HOwevegors associated with runtime checks are eliminated
along with the success of Java, Sun Microsystemg e (g the static nature of our runtime environment.
started to define a number of versions of the runtime,

targeted for different purposes. Currendigva 2 Micro \when compiled into class files, the total size of the class
Edition (J2ME) [19] is the smallest runtime specifica- jjes js about 32 kilobytes. As a binary library (including
tion still supporting the full language. On the other gy mpos) the runtime fits into 170 kilobytes. In binary,

hand, theJava Card Runtime Environme@ICRE) [16] \yith all the symbolic and metadata information elimi-
provides a still smaller runtime, but due to the restricy ated. a typical runtime size is 15 kilobytes.

tions it imposes on the language it is arguable whether
JCRE utilizes Java at all in the sense that the rest of th& 2 Language level restrictions
Java runtime environments do.)

4.1 java.lang APIs

4 Minimal Java runtime

Our current implementation has a number of restrictions

class Display { that affect the typical programmer. These include the
static native synchronized void following.
setSegment(short code); « The runtime library does not currently support

floats ordoubles . Source code attempting to
use them compiles but does not link.

e Multidimensional arrays are unsupported. Code
attempting to create such arrays caksvMulti-

Array , which has not been implemented.

- Javainterface classes are not supported either, since
their current implementation in GCJ relies on the
method and field metadata, and we want to omit
them from the binaries. If the metadata information

is included, the interface support should work, but
Figure 4: A Java declaration for an RCX ROM routine, that has not been tested.

and a corresponding linker directive

SECTIONS {

rom : {
_setSegment__Q17Displays = 0x1b62;

}>rom

Classes Differences to Embedded Java

Object MethodtoString omitted; otherwise full API.
Class MethodsgetResource, getResources, andgetSigners omitted;
otherwise full API.
ClassLoader Only available as a placeholder. All methods omitted.
System, Runtime I/O channel, library, process, property, security manager, and trace releated fields
and methods omitted. Some of the other methods are currently placeholders only.
Throwable, Error, No messages or stack trace supported. All errors and exceptions are assunjed to be
Exception immutable singletons. Each class has a constant statiénfitéchce
Void Full API. Also used as an opaque type for data whose type is not available in Java.
Boolean , Byte , Integer String related parsing and printing omitted. Conversions to floating point numbers
Number, Long, Short currently unsupported. Otherwise full API.
Double , Float , Math Currently unsupported.
Character Only rudimentary supprt. Most methods omitted.
String Only rudimentary supprt. No constructors nor any methods creating new strings

are available. All strings must be created at the compile time.

Thread String, security manager, stack trace, thread group, and deamon threading methods
omitted. Priorities are currently unsupported, but the APl is available.

Compiler , Process , Not available at all. Thread groups might be added later; no need for others,
StringBuffer , Security-
Manager , ThreadGroup

Table 7: Differences between Embedded Java API and the API of our implementation
(Some classes, such as the exception and error classes, are left out for brevity.)

4.3 Static constructors and destructors class Ex1 { static short x; }

When compiling Java code, the GCJ compiler produces Ex1.x =0;

stubs for class registration. That is, for each compiled ---

class, the GCJ produces a piece of code that is not callgfle code generated from the assignment looks like the
anywhere from the code, but a pointer to it is placed intc,)O||0ng_

a so calledctors loader area. The initialization sys-

tem in the runtime loops over the pointers in the o, 16,# CL_QI13Ex1

.ctors area, calling each function in turn. The same jsr initClass

mechanism is used for running static constructors in a g, r0.10

C++ program. In the case of GCJ generated code, how- 0.\ r0,_ Q13ExX1$x

ever, the stub code only calls thegisterClass -

routine, allowing us to create a list of all classes. This approach complicates slightly the writing of the
code for thenitClass method. That is, care must be

4.4 Class initialization taken that all classes that are accessed from
initClass , either directly or directly, must be sepa-

By default, the GCJ compiler behaves strictly according@t€ly initialized by explicitly marking them initialized
to the JVM specification, and generates lots and lots #And calling their class initializetseforeany other Java
calls toinitClass . That is. whenever a Java class is€de is called. Furthermore, the class initializers of

accessed from the Java source code, the code generdf¥fS€ classes must not cause invoking ofinite
generates a piece of code that first calleClass | Class method for any other classes. If these rules are

and then performs the actual class access. For examplt strictly followed, a call tonitClass ~ easily re-
consider the following code fragment. sults in an unterminated recursion or other disastrous
complications.

4.5 Memory management low level hardware access, and events are more tightly
bound to the underlying hardware than to the language.

As already mentioned, most of the runtime environmenfl herefore, we decided to classify the latter issues as op-

and operating system was written in Java. However, exerating system services, and consider them next.

plicit C, C++ and even assembler support was needed

for the memory management, exception handlingd.1 Exceptions

thread management, and thread synchronization. Of

these, exceptions, thread management and thread syfhe GCC collection of compilers have two different

chronization are discussed in more detail later irpossibilities for exception handling. The default method

Section 5, while memory management is consideredises thesetimp andlongjmp functions while the al-

next. ternative method explicitly scans the execution stack
looking for exception handling frames. Since the default

In Java, the memory is managed at the granularity ofnethod produces more compact code, especially when

objects. Each object consists of a few compiler genemwe told the compiler to use our own versions of

ated fields (see Table 3) along with any user definedetjimp andlongjmp instead of the compiler internal

instance variables. Each instance variable containgersions, we decided to use the default method.

either a reference to some object, or a primary data item.

For the variable fields, GCJ uses natural field sizes, anth Java, there are two basic constructs that cause the

aligns the fields according to the C++ alignment rulescompiler to construct exception handling frames. The

(this is different from what most JVMs do). In order to first one is obvious, namely the Jawa... catch

allocate objects, the compiler arranges calls to allocationonstruct. The other case are thgnchronized

routines allocObject and various versions of methods and statements, which use exception handling

newArray . code to release monitor locks.

Due to the limited amount of memory available and theNow, whenever a GCC compiled function establishes an
nature of programs running in a typical robotics applicaexception handling frame, it first calls an internal func-
tion, we assume that most applications will create dion that returns aexception contextn our implemen-
small number of relatively long living objects. Further- tation, the context is a part of the currently running
more, temporary circular data structures will be morehread. Next, when entering the protected block of code,
likely the exception than the rule. the compiler allocates a few bytes on the stack, calls

setimp to store the current execution context there,
Our current garbage collection method is very simpleand links this stack frame to the front of a list of excep-
and similar to the Java Card Runtime Environment. Thation handling frames, available in the exception context.
is, garbage is not collected, and allocated objects stay
around until the next firmware or hardware reset. Howdf the execution of the block terminates normally, the
ever, to better support dynamic data structures we amgack frame is popped from the list and the stack is
planning to support garbage collection. The currentestored. On the other hand, whenever an exception is
options include a simple reference counting scheme thalhirown, the exception context is consulted to get the list
would be implementable in the compiler back end, and af exception handling frames, and each frame is called
simple mark-and-sweep collector utilizing object layoutin order until the exception is caught or the list termi-
information provided by the compiler. However, both of nates. In the latter case, the execution of the thread is
these schemes require considerable support from thierminated.
compiler, and are presently left for further study.

5.2 Threads and synchronization
5 Operating system services In the RCX, a thread of control is very simple, essen-
_ tially consisting of the current processor state. A context
Due to the simple nature of the RCX hardware, the borgyitch merely changes the contents of the processor reg-
der between the Java runtime environment and the opeters. The state is stored ifTaread instance, and is
ating system is ambiguous. However, while object leve|isinle to the Java environment as a series of

memory management along with garbage collection igojatile ~ short instance variables. This allows di-
more or less hardware independent, exceptions, threadgct manipulation of non-running threads from Java
code.

To save memory and simplify implementation, the num-queue to its thread ID link, and places its own thread 1D
ber of threads is limited to 126. This allows a threadn the wait queue byte; this, effectively, places the thread
identifier to be stored in a single signed byte (threadit the head of the waiter list.

number zero is used as a sentinel). Each thread also con-

tains a link byte, possibly containing a thread ID ofWhen another thread invokesotifyAll , thereby
another thread. These link bytes are used to create listgaking all threads waiting on a thread’s wait queue, the
of threads waiting for a specific event. thread list is simply moved to the monitor queue. The

notify — method, instead, just moves the head of the
Monitors. Object level synchronization, implemented wait queue to the monitor queue. (In this case the wait
in Thread.monitorEnter and Thread.monit- gqueue acts as a stack, but that is perfectly fine according
orExit , is implemented with a simple per object to the Java language specification.) The notified thread
semaphore together with a counter and a queue. Tl threads are woken when the notifying thread leaves
monitorEnter and monitorExit actions disable the monitor, as explained before.
interrupts by manipulating the processor condition code

register through th&hread.disablelnterrupts Wait time-outs are currently not supported; their addi-
and Thread.enablelnterrupts assembly rou- tion may require slight revisions to the implementation.
tines.

5.3 ROM services
The monitor semaphore is represented as a diytge,
present in all objects (see Table 3). Whenever there arghe ROM services are encapsulated into a number of
no threads within the object's monitor, the semaphorglatform specific classes, enumerated in Table 8. IR
byte is zero. When the first thread enters the monitor, igommunication is not supported, yet. The platform spe-

places its thread ID to the semaphore byte. Any othegific classes form a package of their own, called
threads attempting to enter the monitor will find thecom.rex .

monitor occupied, and insert themselves to the head of
the monitor queue.

Class Description

When a thread leaves the monitor, the thread checks (iButton Initialize, read and shutdown RCX buttons.
there are any other threads waiting for the monitor. |
such a thread is found, the semaphore is kept busy a
the first waiter is removed from the queue and its ID ig
placed into the semaphore byte, after which it is wokenPower | Allows access to power savings.
up by linking it to the run queue. On the other hand, ifp
there are no waiters, the semaphore is simply released

Display |Modify the LCD screen contents.

d
Motor Power motors in a controllable way.

P

Direct access to the hardware 1/O registers.

'Sensor | Power, read, and shutdown sensors.

Since a Java thread can recursively enter a monitor se{sound | Allows sounds to be played.
eral times, yet another variable is needed to keep COURimer
of these recursive entries. Due to the limited stack in th

RCX, we decided to use a single byte as this counter 4€¢tor | Direct access to the interrupt vectors.
well. Table 8: Platform specific classes in twen.rcx package.

Access to the hardware timers.

Condition variables. Another type of synchronization Most of the platform specific classes contain a number
is provided by the Jawaait andnotify primitives. of native synchronized methods that are used to directly

In Java, any thread holding an object monitor maycall the ROM routines. In most cases, these methods are
invoke theObject.wait ~ method. This suspends the public , allowing direct access from anywhere in the

thread issuing the call until either another threadProgram. Only those ROM calls that require specific
invokes theObject.notify method for the same arguments or otherwise cannot be called without possi-

object, or a time out occurs. ble problems are protected by restricted visibility.

Again, our implementation is fairly simple. In addition 5.4 Hardware access

to the monitor thread queue, each object also includes a

waiter queue. This queue is also implemented as a sinih some cases it is clearly beneficial to bypass the ROM
ple byte, which is initialized to zero. Whenever a threadand to access the hardware directly. To support this, we
enters await , it stores the current value in the wait modified the GCJ compiler so that any variable defined

6 Evaluation and lessons learned

class Port { It was no surprise to us that it was both challenging and

fun to write a new operating system (or @perating

static transient volatile PORT4; .
systlet) in a new language for a hardware we were not

familiar with when we started. However, the main

SECTIONS { obstacles came from a direction we could not anticipate.
That is, the intrinsic interrelationships between a com-
.eight (OxFF00) : { piler and the corresponding runtime system are much

_Q14Port$PORT4 = 0xB7; more complex and fragile than we originally expected.
Writing a runtime system independent compiler for C is

} > eight clearly feasible, as shown by GCC. The same applies,
. more or less, to the GCC C++ compiler. However, the
current GCJ compiler is far from being runtime neutral,

Figure 5: Definition of the variableort.PORT4 , which and curre_ntly_one is required to have good knoyvledge of
allows direct access to the hardware I/O register number 4. the compiler internals in order to be able to write a new

type of runtime system. We learned this tieed way,
and hope that this paper and our modifications to the

asstatic transient volatile is considered as PC‘] allow others to do the same more easily.

if it were a declaration of an external variable instead o

gﬁmgmzr?]i?mt;gp't;g:s’;;Zg0£p¢§r2§§§§ n_?:]:r”eofg?éq_ooking at the situation from another direction, the fact
y y ' that we were able to complete the project in the first

their location in the memory can be freely decided by . o o
the linker. Again, utilizing linker directives made this place is an indication of the feasibility of ourpapach.

easy. Figure 5 illustrates the definition of I/O Port 4 First, we have shown that the idea of using Java as a low

whose memory address OxFFB7. Among other thingsleveI language to_ w_nplement b.Oth a Java_runtlme_en_n-
fonment and a minimal operating system in Java is via-

. f
port 4 can be used to directly read the status of two Ble. The basic methods, or tricks, that we used in our

the user buttons. . L o
implementation include the following:
« Using a compiler that produces native code instead
of byte code.

-) * Wiring the compiler-generated Java runtime primi-
In Java, it is customary to represent changes in external iy eg (see Table 6) back to Java, thereby allowing
environment as events. Thus, our intention is to abstract ¢ primitives to be implemented in Java instead of

changes in button and sensor values as events. The basic ggme other language.
idea is to have a thread polling on a specific I/O port, gnapling Java source level access to the meta-infor-
waking up on interrupts generated either by a change in - ation generated by the compiler. This allows, for

the port or by a timer. If the polling thread notices that example, an easy pure Java implementation of
the value represented at the port has changed, it takes an 555 jsAssignableFrom

event object from a queue of free event objects, fills in Convertingstatic ~ transient volatle and
the appropriate values, and places the object in an ap- synchronized native modifiers into external
propriate event queue. A non-interrupt level thread §ocjarations and back end specific attributes,
would be waiting on the queue, and handle the event af- respectively, which make it possible to tailor the
ter the interrupt routine has been completed. Finally, the compiler and linker to provide direct access to the

event would be passed back to the free event queue ,ngerlying ROM routines and hardware addresses.
when it is not needed any more.

5.5 Event model

Second, our experience indicates that writing an operat-
5.6 Other services ing system in a beautiful object oriented language, such
as Java, gives a number of benefits. In the present case,

We expect to enhance our operating system with a nunj€ target environment is such a simple device that a
ber of additional services. The planned services includgfict boundary between the operating system and an ap-
communications (both basic IR and IP over IR) and?!ication would probably only complicate things and

scheduled power management (to save power in |On51ake the application both bigger and less efficient. Ob-

running sensor-type applications). However, these feg€ct-orientation allows some of the underlying problems
tures are currently left for further study to be solved in a neat way. That is, visibility rules, data

hiding, and inheritance make it possible to provide amvailability
application programmer an environment where the ap-

plication may be tightly integrated with the operating The source code for the system is availabletat//
system without compromising architectural layering orwww.tcm.hut.fi/~pnr/rex/ . The actual source
introducing unnecessary bugs. We allege that the samge is supplied as a gzipped tar file, whose size is about
principles could also be applied in a more complex casgs0 kilobytes. Building the system requires patched ver-
if appropriate memory management hardware wasjons of both GNU binutils and GCC; the necessary
added. patches are provided. The binutils patch is minimal (less
than 2 kilobytes) and should not cause any problems.
Considering the language, the main benefits of Java ligiowever, since the various versions of the GCC patch
in its relative strictness when compared with C++. Thagre fairly large (about 150 kilobytes) and since they
is, given any C++ based operating system level frameyere made against GCC-current instead of any specific
work, the programmer is required to understand considreleased version, building a working compiler may re-
erable amount of the implementation details in order nO@luire some manual work, or, a|ternative|y' using CVS to

to mistakenly break the underlying semantic assumpcheck out GCC-current of the date when the particular
tions of the framework. In the case of Java, the semanersion of the GCC patch was created.

tics-related problems are easier due to the more strictly
defined language specification and fewer possibilities
for a programmer to circumvent language-level objectAcknowledgments
abstractions.
This work would have not been possible without the
The use of Java brings up another benefit. That is, sindarge number of people working on the RCX reverse-en-
the APIs are to a large extent compatible with the stangineering and the various programming environments,
dard Java APIs, it should be possible to port a largéncluding, in no particular order, Kekoa Proudfoot,
number of Java packages to the RCX with no or miniMarkus L. Noga, David Baum, Peter Liu, Stephen
mal changes. Now, for example, porting a minimalSpackman, Michael Daumling, Ross Paterson, Frank
JACL [18] interpreter to the RCX should not be tooCremer, Sergey Ivanyuk, Mark Falco, Mario Ferrari,
hard. Frank Mueller, Tom Emerso, Lou Sortman, Luis Villa,
David Van Wagner, Michael Nielsen, Chris Dearman,
Hence, our work has shown that Java can be used asé&c Habnerfeller, and Ben Laurie.
viable language for low level programming, with bene-
fits unavailable from other approaches. Since the availability of the compiler source code was
essential for this work, we want also to thank Richard
Stallman, the Free Software Foundation, Cygnus Solu-
7 Future work tions (now part of Red Hat), the GCJ implementation
team including Alexandre Petit-Bianco, Per Bothner,
At the present time (April 2000), garbage collection,Andrew Haley, Tom Tromey, Anthony Green, Warren
threads and the event model require more work. Someevy, Bryce McKinlay, and others, and the large number
of the modifications made to the GCJ compiler could beyf volunteers for their work in providing free software

made more generic and supplied back to the standajfl general, and the GNU Compiler Collection in particu-
version of GCJ. An extension to study is the ability tojar.

handle dynamically loaded code based on the work re-
cently introduced in LegOS. However, due to the Javaye are also grateful to Tuomas Aura, Hannu Napari and
visibility constraints this may not be easily adoptable. |auri Savioja of HUT and Chris Demetriou and the
anonymous reviewers of USENIX for their comments
Once the basic operating system platform has stabilize@md Suggestions how to improve the paper, to our stu-
we plan to focus on communication issues. The aim is tgents Markus Aholainen and Veera Lehtonen for their
port our Java Conduits Beans (JaCoB) protocol framefeedback about some early versions of the system, and
work [19]to the RCX, and to build a minimal IPv6/ especially to Petri Aukia of Bell Labs for his numerous

UDP implementation on the top of that. Our hope is taconstructive suggestions concerning this work in its
see if it would be possible to make the RCX robots firsearly stages.
class citizens in Jini communities.

References

[1]
(2]

3]

[4]
[5]
[6]

[7]
(8]

9]

[10]

[11]

Lego Mindstorms
http://www.legomindstorms.com/

The MIT Programmable Brigk
http://el.www.media.mit.edu/
projects/programmable-brick/

Kekoa Proudfoot, RCX Opcode Reference
http://graphics.stanford.edu/
~kekoa/rcx/opcodes.html

Lego RCX Code, inRobotics Invention System
User Guide The Lego Group, 1998.

Lego Dacta RoboLahhttp://www.lego.
com/dacta/robolab/default.htm

David Baum,Not Quite C (NQQ)
http://www.enteract.com/~dbaum/
nqgc/index.html

Markus L. Nogal.egOS Home Page
http://www.noga.de/legOS/

Kekoa Proudfootlibrcx,
http://graphics.stanford.edu/
~kekoa/rex/tools.html#Librex

GNU Compiler Collection (GCC) home page
http://gcc.gnu.org/

Michael Durrant and D. Jeff DionpaiCsimm
Home Page http://www.uclinux.com/
uC68EZ328/index.html

Ken Arnold, Bryan O’Sullivan, Robert
W. Scheifler, Jim Waldo, and Ann Wollrath,

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

The Jini™ Specificatiomdddison-Wesley, Read-
ing, MA, July 1999.

Kekoa ProudfootRCX Internals
http://graphics.stanford.edu/
~kekoa/rex/index.html

Hitachi Single-Chip Microcomputer H8/3297 Se-
ries, http://semiconductor.hitachi.
com/products/pdf/h33th014d2.pdf

Gintaras R. GircysUnderstanding and Using
COFF, O'Reilly & Associates Nutshell Series,
Sebastopol, CA, 1988.

Java™ 2 Platform, Micro Edition (J2ME)
http://java.sun.com/j2me/

Java Card™ Technology
http://java.sun.com/products/

javacard/

EmbeddedJava™ Technology, Source Edijtion
http://www.sun.com/software/

embeddedjava/

Ray JohnsonTcl and Java IntegrationSun Mi-
crosystems Laboratories, Palo Alto, CA, Feb
1998.

Pekka Nikander and Juha Pé&rssinen, “A Java
Beans Framework for Cryptographic Protocols,”
in Mohammed Fayad, Douglas Schmidt and
Ralph Johnson (Editors),Object Oriented
Frameworks, Volume IWiley, 1999.

	An Operating System in Java for the Lego Mindstorms RCX Microcontroller
	Abstract
	1 Introduction
	2 Lego RCX microcontroller
	3 GNU Java compiler and libgcj run�time
	4 Minimal Java runtime
	5 Operating system services
	6 Evaluation and lessons learned
	7 Future work

	Availability
	Acknowledgments
	References

