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Abstract

The exploitation of bu�er over
ow vulnerabilities
in process stacks constitutes a signi�cant portion of
security attacks. We present two new methods to
detect and handle such attacks. In contrast to pre-
vious work, the new methods work with any existing
pre-compiled executable and can be used transpar-
ently per-process as well as on a system-wide basis.
The �rst method intercepts all calls to library func-
tions known to be vulnerable. A substitute version
of the corresponding function implements the origi-
nal functionality, but in a manner that ensures that
any bu�er over
ows are contained within the cur-
rent stack frame. The second method uses binary
modi�cation of the process memory to force veri�-
cation of critical elements of stacks before use. We
have implemented both methods on Linux as dy-
namically loadable libraries and shown that both
libraries detect several known attacks. The perfor-
mance overhead of these libraries range from negli-
gible to 15%.

1 Introduction

As the Internet has grown, the opportunities for
attempts to access remote systems improperly have
increased. Several security attacks, such as the 1988
Internet Worm [7, 18, 19], have even become en-
trenched in Internet history. Some attacks merely
annoy or occupy system resources. However, other
attacks are more insidious because they seize root
privileges and modify, corrupt, or steal data.

�This work was performed while the author was with Lu-
cent Technologies, Bell Labs, Murray Hill, NJ USA.
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Figure 1: Number of Reported CERT Security Ad-
visories and the Number Attributable to Bu�er
Over
ow (Data from [24])

Figure 1 shows the increase in the number of re-
ported CERT [3] security advisories that are based
on bu�er over
ow. In recent years, attacks that
exploit bu�er over
ow bugs have accounted for ap-
proximately half of all reported CERT advisories.
The bu�er over
ow bug may be due to errors in
specifying function prototypes or in implementing
functions. In either case, an inordinately large
amount of data is written to the bu�er, thus over-

owing it and overwriting the memory immediately
following the end of the bu�er. The over
ow injects
additional code into an unsuspecting process and
then hijacks control of that process to execute the
injected code. The hijacking of control is usually ac-
complished by overwriting return addresses on the
process stack or by overwriting function pointers in
the process memory. In either case, an instruction
that alters the control 
ow (such as a call, return, or



Function prototype Potential problem

strcpy(char *dest, const char *src) May over
ow the dest bu�er.
strcat(char *dest, const char *src) May over
ow the dest bu�er.
getwd(char *buf) May over
ow the buf bu�er.
gets(char *s) May over
ow the s bu�er.
fscanf(FILE *stream, const char *format, ...) May over
ow its arguments.
scanf(const char *format, ...) May over
ow its arguments.
realpath(char *path, char resolved path[]) May over
ow the path bu�er.
sprintf(char *str, const char *format, ...) May over
ow the str bu�er.

Table 1: Partial List of Unsafe Functions in the Standard C Library

jump instruction) may inadvertently transfer execu-
tion to the wrong address that points at the injected
code instead of the intended code.

Programs written in C have always been plagued
with bu�er over
ows. Two reasons contribute
to this problem. First, the C programming lan-
guage does not automatically bounds-check array
and pointer references. Second, and more impor-
tantly, many of the functions provided by the stan-
dard C library are unsafe, such as those listed in
Table 1. Therefore, it is up to the programmers to
check explicitly that the use of these functions can-
not over
ow bu�ers. However, programmers often
omit these checks. Consequently, many programs
are plagued with bu�er over
ows and are therefore
vulnerable to security attacks.

Preventing bu�er over
ows is clearly desirable. If
one did not have access to a C program's source
code, the general problem of automatically bounds-
checking array and pointer references is very di�-
cult, if not impossible. So at �rst, it might seem
natural to dismiss any attempts to perform auto-
matic bounds checking at runtime when one does
not have access to the source code. One of the con-
tributions of this paper is to demonstrate that by
leveraging some information that is available only
at runtime, together with context-speci�c security
knowledge, one can automatically foil security at-
tacks that exploit unsafe functions to over
ow stack
bu�ers.

2 Bu�er Over
ow Exploit

The most general form of security attack achieves
two goals:

1. Inject the attack code, which is typically a small
sequence of instructions that spawns a shell,
into a running process.

2. Change the execution path of the running pro-
cess to execute the attack code.

It is important to note that these two goals are mu-
tually dependent on each other: injecting attack
code without the ability to execute it is not nec-
essarily a security vulnerability.

By far, the most popular form of bu�er over-

ow exploitation is to attack bu�ers on the stack,
referred to as the stack smashing attack. As is
discussed below, the reason for this popularity is
because over
owing stack bu�ers can achieve both
goals simultaneously. Another form of bu�er over-

ow attack known as the heap smashing attack, is
to attack bu�ers residing on the heap (a similar at-
tack involves bu�ers residing in data space). Heap
smashing attacks are much harder to exploit, simply
because it is di�cult to change the execution path
of a running process by over
owing heap bu�ers.
For this reason, heap smashing attacks are far less
prevalent.

A complete C program to demonstrate the stack
smashing attack is shown in Figure 2. Figure 3 il-
lustrates the address space of a process undergoing
this attack. The process stack after executing the
initialization code and entering the main() function
(but before executing any of the instructions) is il-
lustrated in Figure 3(a). Notice the structure of the
top stack frame (i.e., the stack frame for main()).
This stack frame contains, in order, the function pa-
rameters, the return address of the calling function,
the previous frame pointer, and �nally the stack
variable buffer. Looking at the sample program
in Figure 2, a sequence of instructions for spawning
a shell is stored in a string variable called shellcode
(lines 3-6). The shellcode is equivalent to execut-



#include <stdio.h>

char shellcode[ ] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" 5

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large string[128];
int i;
long �long ptr; 10

int main() f
char bu�er[96];

long ptr = (long �)large string; 15

for (i=0; i<32; i++)
�(long ptr+i) = (int)bu�er;

for (i=0; i<(int)strlen(shellcode); i++)
large string[i] = shellcode[i];

strcpy(bu�er, large string); 20

return 0;
g

Figure 2: A Sample Program to Demonstrate a Stack Smashing Attack

void main() {
   char buffer[96];
   ...
   strcpy(buffer, large_string);
   return
}
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void main() {
   char buffer[96];
   ...
   strcpy(buffer, large_string);
   return;
}
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void main() {
   char buffer[96];
   ...
   strcpy(buffer, large_string);
   return;
}
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Figure 3: A Process Undergoing a Stack Smashing Attack



ing exec(``/bin/sh''). The two for loops in the
main function prepare the attack code by writing
two sequences of bytes to large string: the for

loop starting on line 16 writes the (future) start-
ing address of the attack code; then the for loop
starting on line 18 copies the attack code (exclud-
ing the terminating null character). The stack is
smashed on line 20 by the strcpy() function. Fig-
ure 3(b) depicts the process' stack space after exe-
cuting the strcpy() call. Notice how the unsafe use
of strcpy() simultaneously achieves both require-
ments of the stack smashing attack: (1) it injects the
attack code by writing it on the process' stack space,
and (2) by overwriting the return address with the
address of the attack code, it instruments the stack
to alter the execution path. The attack completes
once the return statement on line 21 is executed:
the instruction pointer \jumps" and starts execut-
ing the attack code. This step is illustrated in Fig-
ure 3(c).

In a real security attack, the attack code would
normally come from an environment variable, user
input, or even worse, from a network connection. A
successful attack on a privileged process would give
the attacker an interactive shell with the user-ID of
root, referred to as a root shell.

3 Related Work

The Internet Worm that infected tens of thou-
sands of hosts in 1988 was one of the �rst well-
known bu�er over
ow attacks, although there are
some anecdotal evidence that bu�er over
ow at-
tacks date back to the 1960's [4]. The proportion of
attacks based on bu�er over
ows is increasing each
year|in recent years, bu�er over
ow attacks have
become the most widely used type of security at-
tack [24]. Among such attacks, the stack smashing
attack is the most popular form [10, 22].

The majority of bu�er over
ow attacks, including
the one exploited by the Internet Worm is based on
the stack smashing attack. Detailed descriptions of
stack smashing attacks are presented in [20, 22], and
cook-book-like recipes are presented in [6, 15, 16].

Researchers in the areas of operating systems,
static code analyzers and compilers, and run-time
middleware systems have proposed solutions to cir-
cumvent stack smashing type of attacks. In most
operating systems the stack region is marked as ex-
ecutable, which means that code located in the stack

memory can be executed. Because this \feature" is
used by stack smashing attacks, making the stack
non-executable is a commonly proposed method for
thwarting over
ow attacks. A kernel patch remov-
ing the stack execution permission has been made
available [17]. This approach, however, has some
drawbacks. First, patching and recompiling the ker-
nel is not feasible for everyone. Second, nested func-
tion calls or trampoline functions, which are used
extensively by LISP interpreters and Objective C
compilers, and the most common implementation of
signal handler returns on Unix (as well as Linux),
rely on an executable stack to work properly. And
�nally, an alternative attack on stacks known as
return-into-libc, which directs the program control
into code located in shared libraries, cannot be de-
feated by making the stack non-executable [25]. Be-
cause of those reasons, Linus Torvalds has consis-
tently refused to incorporate this change into the
Linux kernel [23].

Snarskii has developed a custom implementation
of the standard C library for FreeBSD [21]. This
library targets the set of unsafe functions, and in-
spects the process stack to detect bu�er over
ows
that write across frame pointers. In contrast to our
work, this is a custom implementation and replaces
the standard C library.

Several commonly used tools, such as Lint [11],
and those proposed in [8] use compile-time analy-
sis to detect common programming errors. Exist-
ing compilers have also been augmented to perform
bounds-checking [13]. These projects have demon-
strated limited success in preventing the general
bu�er over
ow problem. Wagner et al. have re-
cently proposed the use of compile-time range anal-
ysis to ensure the \safe" use of C library func-
tions [24]. This project speci�cally concentrates on
the set of unsafe library functions. Unlike our ap-
proach, this method requires access to a program's
source code, which is not always available. More-
over, preliminary results indicate that this method
may produce false positives: a correct program may
produce warning or error messages.

StackGuard [5] is another compiler extension that
instruments the generated code with stack-bounds
checks. Speci�cally, on function entry, a canary is
placed near the caller's return address on the stack.
Before the function returns to the caller, the va-
lidity of this canary is checked and the program is
terminated if a discrepancy is detected. This ap-
proach works on the assumption that if the return
address is tampered with (due to bu�er over
ows),



Program Name Version Description Result of
Attack

Result with libsafe
or libverify

xlockmore 3.10 Lock an X Window display root shell terminated
amd 6.0 Automatic remote �le sys-

tem mount daemon
root shell terminated

imapd 3.6 IMAP mail server root shell terminated
elm 2.5 PL0pre8 ELM mail user agent root shell terminated
SuperProbe 2.11 Probes and identi�es video

hardware
root shell terminated

Table 2: List of Some Known Exploits That Are Detected

the canary will also be modi�ed, thus causing vali-
dation of the canary to fail. With the exception of a
few programs, this approach has shown to be e�ec-
tive. StackGuard introduces a noticeable run-time
overhead. Furthermore, StackGuard requires source
code access, and there are some programs, such as
Netscape Navigator, Adobe Acrobat Reader, and
Star O�ce, that it does not currently support.

Janus [9] is a run-time sand-boxing environment
that con�nes each application to a set of prede�ned
operations. It works on the principle that \an appli-
cation can do little harm if its access to the under-
lying operating system is appropriately restricted."
It relies on the operating system's debugging fea-
tures, such as trace and strace, to observe and
to con�ne a process to a sand-box. Similar to our
work, this approach works with existing binary ap-
plications and does not require access to applica-
tion's source code. However, unlike our approach,
Janus does not work with applications that legiti-
mately need high privileges. For example, the Unix
login process requires a high level of privilege to
execute, but Janus is unable to selectively allow le-
gitimate privileges while denying unauthorized priv-
ileges. This inherent limitation prevents Janus from
being applied to high privileged applications, where
secure execution is most critical.

4 Overview of Techniques

This paper presents two novel methods for per-
forming detection and handling of bu�er over
ow
attacks. In contrast to previous methods and with-
out requiring access to a program's source code, our
novel methods can transparently protect processes
against stack smashing attacks, even on a system-
wide basis. The �rst method intercepts all calls to
library functions that are known to be vulnerable.

A substitute version of the corresponding function
implements the original functionality, but in a man-
ner that ensures that any bu�er over
ows are con-
tained within the current stack frame. This method
has been implemented as a dynamically loadable li-
brary called libsafe. The second method uses binary
re-writing of the process memory to force veri�ca-
tion of critical elements of stacks before use. This
method has also been implemented as a dynamically
loadable library called libverify.

The key idea behind libsafe is the ability to esti-
mate a safe upper limit on the size of bu�ers auto-
matically. This estimation cannot be performed at
compile time because the size of the bu�er may not
be known at that time. Thus, the calculation of the
bu�er size must be made after the start of the func-
tion in which the bu�er is accessed. Our method is
able to determine the maximum bu�er size by real-
izing that such local bu�ers cannot extend beyond
the end of the current stack frame. This realiza-
tion allows the substitute version of the function to
limit bu�er writes within the estimated bu�er size.
Thus, the return address from that function, which
is located on the stack, cannot be overwritten, and
control of the process cannot be commandeered.

The libverify library relies on veri�cation of a
function's return address before use, a scheme sim-
ilar to that found in StackGuard. The di�erence
is the manner of implementation. Whereas Stack-
Guard introduces the veri�cation code during com-
pilation, libverify injects the veri�cation code at the
start of the process execution via a binary re-write
of the process memory. Furthermore, libverify uses
the actual return address for veri�cation instead of
a \canary" value representing the return address.
Thus, in contrast to StackGuard, libverify can pro-
tect pre-compiled executables.

We have implemented the previously described
methods as dynamically loadable libraries on Linux



Instrumentation Techniques
None libsafe libverify StackGuard Janus Non-

Executable
Stack

E�ectiveness (what types of errors are handled?)
Kernel Errors No No Yes Yes No Yes
Speci�cation Errors No Yes Yesa Yesa Maybeb Maybec

Implementation Errors No Maybed Yesa Yesa Maybeb Maybec

User Code Errors No No Yes Yes Maybeb Maybec

Other characteristics
Performance Overhead None Very low Medium Medium Medium None
Disk Usage Overhead None Very low Very low Low Very low None
Source Code Needed No No No Yes No No
Ease of Use | Very easy Very easy Mediume Easy-

Mediumf

Easy-
Mediumg

aIf libraries are instrumented.
bCannot catch hijacked privileges that are similar to legitimate privileges.
cFor certain types of exploits (see Section 3).
dIf we know which functions have errors.
eSource code must be recompiled, and the compiler may also needed to be recompiled.
f Policies need to be written.
gKernel may need to be patched and recompiled.

Table 3: Summary of Detection Technique Characteristics

and tested them against several security attacks.
Table 2 lists several commonly used applications
and the result of running publicly available exploits
against the applications with and without our li-
braries.1 As the table indicates, libsafe and libverify
were able to detect the exploits and terminate the
programs before any serious harm was done.

The characteristics of libsafe and libverify are
shown in Table 3 along with the corresponding
characteristics of alternative methods: StackGuard,
Janus, and kernel patches for non-executable stack,
which were described earlier in Section 3. The �rst
instrumentation technique labeled \None" is pre-
sented as a point of comparison and represents the
original program with no modi�cations. The upper
half of Table 3 describes the types of errors that each
method is able to handle. Speci�cation and imple-
mentation errors refer to errors in standard library
functions. In particular, by speci�cation errors we
mean the set of functions known to be unsafe as
described in Section 1; implementation errors refer
to the set of functions that are unsafe due to imple-
mentation errors. Kernel errors and user code errors

1The security attacks are available from Crv's Security
Bugware Page (http://oliver.efri.hr/~crv/).

refer to implementation errors in kernel code and
user code, respectively. The bottom half of the ta-
ble describes other characteristics. The performance
overhead includes only the run-time overhead. Time
spent during con�guration and compilation are not
included. The disk usage overhead is the extra disk
space required due to additional shared libraries, in-
creased executable binary �le sizes, and con�gura-
tion �les. The next to last row indicates whether
access to source code of the defective program is
needed. The ease of use considers the complexity
and time requirement of human e�orts needed for
con�guration and compilation.

5 Libsafe

The fundamental observations forming the basis
of the libsafe library are the following:

� Over
owing a stack variable|that is, inject-
ing the attack code into a running process|
does not necessarily lead to a successful stack
smashing attack. The attack must also divert



char * memcpy(void *dest, const void *src, size_t n) {
   ...
}

char *strcpy(char dest, const char *src) {
   ...
}

char *strcpy(char *dest, const char *src) {
   // compute length of input string
   // compute upper bound of destination's buffer size
   // bounds check
   // call libc's memcpy()
   // return
}

void main() {
   char buffer[96];
   ...
   strcpy(buffer, large_string);
   return;
}
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Figure 4: Libsafe Containment of Bu�er Over
ow

the execution sequence of a process to run the
attack code.

� Although bu�er over
ows cannot be stopped
in general, automatic and transparent run-time
mechanisms can prevent the over
ow from cor-
rupting a return address and altering the con-
trol 
ow of a process.

Refer to Figure 3(a) for an example. At the time
strcpy() is called, the frame pointer (i.e., the ebp

register in the Intel Architecture) will be pointing to
a memory location containing the previous frame's
frame pointer. Furthermore, the frame pointer sep-
arates the stack variables (local to the current func-
tion) from the parameters passed to the function.
Continuing with the example of Figure 3(a), the
size of buffer and all other stack variables resid-
ing on the top frame cannot extend beyond the
frame pointer|this is a safe upper limit. A cor-
rect C program should never explicitly modify any
stored frame pointers, nor should it explicitly mod-
ify any return addresses (located next to the frame
pointers). We use this knowledge to detect and limit
stack bu�er over
ows. As a result, the attack exe-
cuted by calling the strcpy() can be detected and
terminated before the return address is corrupted
(as in Figure 3(b)). In the case that a local bu�er
on one of the previous stack frames is accessed, then
frame pointers are traversed up the stack until the
the right stack frame is found, and then libsafe com-
putes the upper bound.

Libsafe implements the above technique. It is im-
plemented as a dynamically loadable library that
is preloaded with every process it needs to pro-
tect. The preloading injects the libsafe library be-
tween the program code and the dynamically load-
able standard C library functions. The library can
then intercept and bounds-check the arguments be-
fore allowing the standard C library functions to
execute. In particular, it intercepts the unsafe func-
tions listed in Table 1 to provide the following guar-
antees:

� Correct programs will execute correctly, i.e., no
false positives.

� The frame pointers, and more importantly re-
turn addresses, can never be overwritten by an
intercepted function|an over
ow that would
lead to overwriting the return address is always
detected.

Figure 4 illustrates the memory of a process
that has been linked with the libsafe library, and
in particular, it shows the new implementation of
strcpy() in the libsafe library. Once the program
invokes strcpy(), the version implemented in the
libsafe library gets executed|this is due to the or-
der in which the libraries were loaded. The libsafe
implementation of the strcpy() function �rst com-
putes the length of the source string and the upper
bound on the size of the destination bu�er (as ex-
plained above). It then veri�es that the length of
the source string is less than the bound on the des-



tination bu�er. If the veri�cation succeeds, then the
strcpy() calls memcpy() (implemented in the stan-
dard C library) to perform the operation. However,
if the veri�cation fails, strcpy() creates a syslog

entry and terminates the program. A similar ap-
proach is applied to the other unsafe functions in
the standard C library.

The libsafe library has been implemented on
Linux. It uses the preload feature of dynamically
loadable ELF libraries to automatically and trans-
parently load with processes it needs to protect. In
essence, it can be used in one of two ways: (1) by
de�ning the environment variable LD PRELOAD, or
(2) by listing the library in /etc/ld.so.preload.
The former approach allows per-process control,
where as the latter approach automatically loads
the libsafe library machine-wide.

The libsafe library does not use any Linux speci�c
feature of ELF; these ELF features are available for
many other versions of Unix such as Solaris, and
have been used for other purposes [1, 14]. Further-
more, an alternative technique with a similar feature
can be used for Windows NT [2, 12].

We have installed the libsafe library on a Linux
machine. The library is automatically loaded with
every process and transparently protects each pro-
cess from stack smashing attacks. The protected
applications include daemon processes such as the
Apache HTTP server, sendmail, and an NFS server,
as well as those started by users such as the XFree86
server, the Enlightenment window manager, GNU
Emacs, Netscape Navigator, and Adobe Acrobat
Reader. We have used this machine for several
months and found the machine to be stable and run-
ning without a noticeable performance hit.

6 Libverify

The libverify library implements a return address
veri�cation scheme similar to that used in Stack-
Guard.

Both methods protect return addresses on the
process stack by saving canary values at the start
of a function and verifying the canary value at the
end of the function to determine if any bu�er over-

ow occurred. However, in contrast to StackGuard,
libverify requires no recompilation of source code
and is therefore applicable to legacy programs. In-
stead, all code for saving and verifying canaries is

contained in a special library. This library also con-
tains instrumentation code to link the canary code
with the program. As with libsafe, the library is
activated by specifying it as part of the LD PRELOAD

environment variable or the /etc/ld.so.preload

�le.

Figure 5 shows the memory of a process that has
been linked with libverify. Before the process com-
mences execution, the library is linked with the user
code. As part of the link procedure, the init()

function in the library is executed. The init()

function contains code to instrument the process
such that the canary veri�cation code in the library
will be called for all functions in the user code. The
instrumentation includes the following steps:

1. Determine the location and size of the user
code.

2. Determine the starting addresses of all func-
tions in the user code.

3. For each function

(a) Copy the function to heap memory.
(b) Overwrite the �rst instruction of the

original function with a jump to the
wrapper entry function.

(c) Overwrite the return instruction of the
copied function with a jump to the
wrapper exit function.

The wrapper entry function saves a copy of the
canary value on a canary stack and then jumps to
the copied function. The wrapper exit function
veri�es the current canary value with the canary
stack. A canary stack is needed to save canary val-
ues for nested function calls. If the canary value is
not found on the canary stack, then the function
determines that a bu�er over
ow has occurred. In
that case, the wrapper exit function then calls the
die() function, which creates a syslog entry, prints
an error message to the standard error device, and
terminates. The die() function can also perform
additional noti�cation and handling, such as send-
ing an email message or shutting down the entire
system.

In contrast to StackGuard, which generates ran-
dom numbers for use as canaries, libverify uses the
actual return address as the canary value for each
function. This simpli�es the binary instrumentation
procedure because no additional data is pushed onto
the stack, which means that the relative o�sets to all
data within each stack frame remain the same. Al-
though the return address can sometimes be guessed
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Figure 5: Memory Usage for libverify

by an attacker, control 
ow is still protected be-
cause the actual value of any return address is ex-
plicitly veri�ed before execution of that return in-
struction. The canary stack resides in heap memory.
The size is dynamically extended to accommodate a
large number of simultaneous canaries. The canary
stack itself is not protected against over
ow attacks
in the current libverify implementation. However,
such protection can be easily added by using the
mprotect() function to designate the page immedi-
ately preceding the canary stack as non-writable.

A di�culty does arise when a function performs
an absolute jump to an address within the same
function. As an example, this situation might occur
for some switch() statements. Because we copy the
original function to heap memory and execute that
function from the copied version, an absolute jump
in the copied function would force control 
ow to the
original function. To handle this situation, we over-
write the original function with trap instructions. If
control is forced to the original function, the trap is
activated, and a trap handler returns control 
ow
back to the copied function.

7 Experiments

The libsafe and libverify libraries are e�ective in
detecting and defeating stack smashing attacks. Ex-
tra code is needed to perform this detection, and
that extra code incurs a performance overhead. In

Application Size (Bytes) Initialization
time (�s)

quicksort 27330 13032
imapd 1305379 67491
tar 418283 40334
xv 1242686 195205

Table 4: The Initialization Elapsed Times for lib-
verify Library

this section we quantify the performance overhead
associated with use of these libraries. Section 7.1 de-
scribes the overheads associated with micro bench-
marks to illustrate the range of possible overheads.
Section 7.2 gives performance data for a selected set
of actual applications.

All experiments were conducted on a 400 MHz
Pentium II machine with 128 MB of memory run-
ning RedHat Linux version 6.0. Our libraries and
all programs in Sections 7.1 and 7.2 were compiled
(and optimized using -O2) with GCC compiler ver-
sion 2.91.66.

7.1 Micro Benchmarks

As the part of the link procedure, libverify ex-
ecutes its initialization section, the init() func-
tion), as described in Section 6. This initializa-
tion section �rst reads, then copies and modi�es



the entire instruction sequence of the application.
Table 4 presents the initialization times of libverify
with four commonly used applications: quicksort
(a fast sorting program), imapd (an Internet Mes-
sage Access Protocol server), tar (an archiving util-
ity), and xv (an interactive image displayer for the
X Window System). The numbers in Table 4 repre-
sent the start-up overhead associated with libverify.
This overhead depends on the size and complexity
of the program libverify is instrumenting. As the
numbers indicate, the start-up overhead takes ap-
proximately 50� 160 milliseconds per Megabyte.

Libsafe does not require an initialization section.
However, the �rst time each libsafe function is acti-
vated, the initialization of that particular function
makes a dlsym() call for each libc function that is
called from that libsafe function. Because the lib-
safe function has the same name as the correspond-
ing libc version, the dlsym() call is needed to ob-
tain a pointer to the libc function. Each dlsym()

call requires 1.26 �s. The interception and redirec-
tion of a C library function consists of an additional
user-level function call, which approximately adds
0.04 �s of overhead.
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Figure 6: Performance of Libsafe Functions

To quantify the performance overhead of the lib-
safe library we measured the execution times of �ve
unsafe C library functions and compared the results
with our \safe" versions. The results are depicted in
Figure 6. Reported times are \wall clock" elapsed
times as reported by gettimeofday(). An interest-
ing observation is that the libsafe versions of several
functions outperform the original versions. This is
a repeatable behavior, and we have observed con-
sistent �ndings on di�erent machines and operating
system versions. This e�ect is due both to low-level
optimizations and the fact that libsafe's implemen-
tation of most functions is di�erent than those of

C library. For example, consider the performance
of the getwd() and sprintf() functions. Our lib-
safe library replaces these functions with equiva-
lent safe versions. In particular, getwd() is re-
placed with getcwd() and sprintf() is replaced
with snprintf(); on Linux, the safe versions exe-
cute faster.

The �gure also shows that the libsafe library
can slow down the string operations strcpy() and
strcat() by as much as 0.5 �s per function call.
However, as the string size increases, the absolute
overhead decreases because the execution time of
the safe versions increases more slowly than that
for the unsafe versions. In fact, the safe version of
strcat() used with strings longer than 256 bytes
is actually faster than the unsafe version! This is
an example of how using a di�erent implementation
(e.g., using memcpy() to copy a string) can outper-
form the standard implementation for certain cases.

The slowdown e�ect of strcpy() is observed in
the realpath() experiment. When a program calls
realpath(), the libsafe library calls realpath()

but stores the result in a bu�er in its own memory
region. It then uses strcpy() to copy the result to
the �nal destination. As Figure 6 shows the slow-
down e�ect of strcpy() on realpath() is less than
0.05 �s.

7.2 Application Benchmarks

Since we propose that the libraries are best used
on a machine-wide bases to protect against yet un-
known attacks, their performance impact is impor-
tant for all commonly used application. We used
four real-world applications to illustrate the per-
formance overhead of our libraries. The applica-
tions are quicksort (a CPU-bound program) or-
dering 1; 000; 000 integers, imapd (a network-bound
program) transmitting 100 email messages of size 2
kilobyte each, tar (an I/O-bound program) archiv-
ing 5 Megabytes of data, and xv (a CPU and video-
bound program) displaying a 1:2 Megabyte image.
Figure 7 shows the execution time for each of these
applications (1) unmodi�ed and without any secu-
rity measure, (2) using the libsafe library, (3) using
the libverify library, and (4) compiled with Stack-
Guard.

The execution times are based on 100 runs and
are given in seconds, with associated 95% con�dence
intervals. Reported times are elapsed times as re-
ported by /bin/time, and include the extra initial-



ization time required by libverify.
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Figure 7: Mean Execution Times (With 95% con�-
dence intervals) of Sample Applications

Figure 7 shows that the overheads associated with
all detection methods are reasonable (i.e., less than
15% for these applications). Libsafe is the most ef-
�cient method because only the unsafe library func-
tions are intercepted.

Libverify incurs a greater overhead than the lib-
safe because all user functions are veri�ed. For most
of the applications, the overhead is similar to that
for StackGuard because the same number of func-
tions is veri�ed. For xv, the need to handle a large
number of traps (as described in Section 6) increases
the overhead. The overall application test results
are encouraging, particularly with libsafe. We have
installed and used libsafe on one of our own ma-
chines, and have found that the overhead is not no-
ticeable in practice.

8 Conclusions

We have described two complementary methods
for foiling stack smashing attacks that rely on cor-
rupting the return address, and implemented these
methods as dynamically loaded libraries called lib-
safe and libverify.

An interesting �nding is the performance of lib-
safe. We anticipated a low performance overhead
at the onset of the project. We were happily sur-
prised to �nd how little this overhead is in practice.
Because of low-level optimizations and because lib-
safe's implementation of most functions is di�erent
than those of C library, for some applications we ac-
tually observed a speedup. This is encouraging since

it indicates the viability of this approach. Further-
more, the elegance and simplicity of instrumenting
the standard C library led to a stable implementa-
tion.

The implementation of libverify gave us quite
a challenge. Our initial goal in re-writing binary
instruction streams was to insert the minimum
amount of code at beginning of each function to
divert the execution control to the wrapper entry,
and similarly, to insert the minimal code at the end
of the function to execute wrapper exit before re-
turning to the caller. However on the Intel Archi-
tecture, we could not �t the required instructions
at the end of each function. Hence, we settled with
copying the entire function to the heap where space
was not a limitation. Relocating functions from the
text region to the heap gave rise to the problems we
encountered with absolute jumps (as discussed in
Section 6). Furthermore, it doubled the code space
required for each process. We believe this approach
to verifying return addresses is well suited for RISC
architectures such as the Alpha or SPARC where
the instructions are all the same size.

We believe that the stability, minimal perfor-
mance overhead, and ease of use (i.e., no modi�-
cation or recompilation of source code) of the two
libraries makes them an attractive �rst line of de-
fense against stack smashing attacks. It is generally
accepted that the best solution to bu�er over
ow at-
tacks is to �x the original defects in the programs.
However, �xing the defects requires knowing that
a particular program is defective. The true bene�t
of using libsafe and libverify is protection against
attacks on programs that are not yet known to be
vulnerable.
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