Proceedings of 2000 USENIX Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

PORTABLE MULTITHREADING:
THE SIGNAL STACK TRICK FOR USER-SPACE
THREAD CREATION

Ralf S. Engelschall

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Portable Multithreading

The Signal Stack Trick For User-Space Thread Creation

Ralf S. Engelschall
Technische Universit Miinchen (TUM)
rse@engel schall.com, http://www.engelschall.com

Abstract

This paper describes a pragmatic but portable fallback approach for creating and dispatching between the machine
contexts of multiple threads of execution on Unix systems that lack a dedicated user-space context switching facility.
Such a fallback approach for implementing machine contexts is a vital part of a user-space multithreading environ-
ment, if it has to achieve maximum portability across a wide range of Unix flavors. The approach is entirely based
on standard Unix system facilities and ANSI-C language features and especially does not require any assembly code
or platform specific tricks at al. The most interesting issue is the technique of creating the machine context for
threads, which this paper explainsin detail. The described approach closely follows the algorithm as implemented by
the author for the popular user-space multithreading library GNU Portable Thread§GNU Pth [25]) which this way
quickly gained the status of one of the most portable user-space multithreading libraries.

1 Introduction

1.1 Multithreading

The paradigm of programming with multiple threads of
execution (aka multithreading is aready avery old one
and dates back to the decades of programming with co-
routines[2, 3]. Paradoxically, the use of threads on Unix
platforms did not become popular until the early 1990s.

Multithreading Advantages

Multithreading can provide many benefits for applica
tions (good runtime concurrency, parallel programming
techniques can be implemented more easily, the popu-
lar procedural programming style can be combined with
multiple threads of execution, etc) but the most interest-
ing ones are usually performance gains and reduced re-
source consumption. Because in contrast to multiprocess
applications, multithreaded ones usually requireless sys-
tem resources (mainly memory) and their internal com-
munication part can leverage from the shared address
space.

Multithreading and Applications

Nevertheless there still exist just afew real applications
in the free software world that use multithreading for
their benefit, although their application domains are pre-
destined for multithreading. For instance, the popular
Apache webserver as of version 1.3 dtill uses a pre-
forking process model for serving HTTP requests, a-
though two experimentswith multithreaded A pache vari-
antsin 1996 (with rsthreadq27]) and 1998 (with NSPR
[31]) aready showed great performance boosts. The
same applies to many similar applications.

The reason for this restraint mainly is that for along
time, multithreading facilities under Unix wererare. The
situation became better after some vendors like Sunand
DEC incorporated threading facilitiesinto their Unix fla-
vors and POSIX standardized a threading Application
Programming Interfac€API) (aka Pthreadq1]). But an
API and afew vendor implementations are not enough to
fulfill the portability requirements of modern free soft-
ware packages. Here stand-alone and really portable
multithreading environments are needed.

The author collected and evaluated over twenty
(mostly user-space) available multithreading facilities
for Unix systems (see Table 1), but only afew of them are
freely available and showed to be redly portable. And
even the mostly portable ones suffered from the fact that
they partly depend on assembly code or platform spe-
cific tricks usually related to the creation and dispatch-
ing of the individual threads. This means that the num-
ber of platforms they support is limited and applications
which are based on these facilities are only portable to
those platforms. This situation is not satisfactory, so ap-
plication authors still avoid the use of multithreading if
they want to (or have to) achieve maximum portability
for their application.

A pragmatic and mostly portable fallback technique
for implementing user-space threads can facilitate wider
use of multithreading in free software applications.

Ingredients of a Thread

A Unix process has many ingredients, but the most im-
portant ones are its memory mapping table, the signa

S Q>
ol &, SERSEry
Q& N '\‘\q Qé\ & @ Q\ Q\\S\ & g .
&S & S ¢ B a9, e & cJoé R
& & = & & SRR Qo
& @A < & ’\‘Q'O é‘\@é‘eok 6« P e q¢°Q & f 5’%\
5 &S NN
package & & & SEFSRRKETELSE & ¥ o
gnu-pth 1999 135 user nl yes no yes yes no yes yes no no full/mesctglj no partly
cmu-lwp 1984 14 user nl yesno yes no - yes yes patly no semi/fixed:8 yes no
fsu-pthread 1992 3.13 user nl no no yesyesno no - - yes semiffixed:6 yes yes
mit-pthread 1993 1.89 user nl no no yesyesno no - - yes semi/fixed:17 yes yes
ptl 1997 990622 user nl no no yesyesno no - - yes semi/fixed:10 yes yes
linuxthreads 1997 2.1.2 user+kernel 1:1 yes no yes yes no no - - yes semiffixed:5 yes yes
uthread 1998 34 user nl yesno yesyesno no - - yes semiffixed:i2 yes yes
cthread 1991 991115 user nl no no yesno - yes yes no no semif/fixed:8 yes yes
openthreads/qt 1996 2.0 user nl no no yesno - yesno no no semiffixed:9 yes no
rt++/qt 199 1.0 user nl no no yes no - Yyes yes no no semiffixed:9 yes no
rsthreads 1996 980331 user nl no yesyesno - yesno no no semi/fixed:9 yes no
pcthread 1996 1.0 user nl no yesyesyesno no - - yes semiffixed:1 yes no
bbthreads 1996 0.3 kernel 1:1 no yesyesno - yesno - yes semiffixed:1 yes no
jkthreads 1998 1.2 kernel 1:1 no yesyesno - yesno - yes semiffixed:1 yes no
nthreads 1997 970604 user nl no yesyesno - yesnhno - no semiffixed:9 yes partly
rexthreads 1993 930614 user nl no yesyesno - yesno - no semiffixed:4 yes no
coro 1999 1.0.3 user nl no yesyesno - yesno - no semiffixed:l yes no
greenthreads 1995 1.2 user Nl no nO nO nO - Yyes yes - yes full/mesc no no
solaris-pthread NN 2.7 user+kernel nim yes no no yes yes yes yes no yes NN NN yes
tru4-pthreed NN 5.0 user+kernel nim yes no no yesyesno no no yes NN NN yes
aix-pthread NN 43 user+kernel 1:1 yes no no yesyesno no no yes NN NN yes
Table1l: Summary of evaluated multithreading packages and some of their determined characteristics. Notice that mostly all packages contain

assembly code and are just semi-portable, i.e., they support only afixed set of platforms and do not automatically adjust for new ones.

dispatching table, the signal mask, the set of file descrip-
tors and the machine context. The machine context in
turn consists of at least the CPU registers including the
program counter and the stack pointer. In addition, there
can be light-weight processes (LWP) or threads, which
usually share al attributes with the underlying (heavy-
weight) process except for the machine context.

Kernel-Space vs. User-Space

Those LWPs or threads, on a Unix platform classicaly
can be implemented either in kernel-space or in user-
space. When implemented in kernel-space, one usu-
ally calls them LWPs or kernel threads, otherwise (user-
space) threads. If threads are implemented by the kernel,
the thread context switches are performed by the kernel
without notice by the application, similar to the dispatch-
ing of processes. If threads are implemented in user-
space, the thread context switches are performed usually
by an application library without notice by the kernel.
Additionally, there exist hybrid threading approaches,
where typically a user-space library binds one or more
user-space threads to one or more kernel-space LWPs.

Thread Models

The vendor threading facilities under Sun SolarisIBM
AlX, DEC Tru64 (formerly DIGITAL UNIX or OSF/)
and SGI IRIXuse aM:N mapping [21, 30], i.e., M user-

space threads are mapped onto N kernel-space LWPs.
On the other hand, LinuxThread$29] under GNU/Linux
usesa 1:1 mapping and pure user-space implementations
like GNU Pth FSU pthreadsr MIT pthreadsetc.usea
M:1 mapping [25, 22, 23].

From now on we focus on such M:1 user space
threading approaches, where one or more user space
threads areimplemented inside asingle kernel space pro-
cess. Theexerciseistoimplement thisby using standard-
ized Unix system and ANSI-C language facilities only.

1.2 TheExercise

As we have mentioned, a thread shares its state with the
underlying process except for the machine context. So
the major task for auser-space threading systemisto cre-
ate and dispatch those machine contexts.

In practice, the second major task it hasto doisto en-
sure that no thread by accident blocks the whole process
(and thereby all other threads). Instead when an opera-
tion would block, the threading library should suspend
only the execution of the current thread and in the mean-
time dispatch the remaining threads. But thistask is out-
side the scope of this paper (see [11] for details about
this task). We focus only on the aspect of machine con-
text handling.

1.3

The Curse of Portability

Our goal of real portahility for athreading system causes
some non-trivial problems which have to be solved. The
most obvious one is that dealing with machine contexts
usually suffers from portability, because it is a highly
CPU dependent task for which not every Unix flavor pro-
vides a standardized API. Although such an APl would
be not too hard for vendors to provide, because in prin-
cipleit isjust a matter of switching afew CPU registers
(mainly the program counter and the stack pointer).

Assembly Code Considered Har mful

Additionally, we disallow the use of any assembly solu-
tions or platform specific tricks, because then the thread-
ing system again would be only semi-portable, i.e., it can
be ported to N platformsbut on the (N+1)th platform one
has to manually adjust or even extend it to work there,

too.

Thisis usualy not acceptable, even if it also makes
solving the problems harder. At least most of the known
free software user-space threading systems [22, 23, 24]
do not restrict themself to thisand thereforeare just semi-
portable. But real portability should be amajor goal.

2 Problem Analysis

21

The Task in Detail

Our task issimple in principle: provide an APl and cor-
responding implementation for creating and dispatching
machine contexts on which user-space threads can beim-
plemented.

The Proposed API

In detail we propose the following Application Program-

mers Interfac€API) for the machine context handling:

A data structure of type ntt x_t which holds the
machine context.

A function “void nttx_create(nctx.t
*mctx void (* sf.addr) (void *), void * sfarg,
void * sk.addr, size_t sksizg ” which creates and
initializes a machine context structurein mctxwith
a start function sf.addr, a start function argument
sfarg, and a stack starting at sk.addr, which is
sk sizebytesin size.

A function “void ntt x save(nctxt *mcty ”
which saves the current machine context into the
machine context structure mctx

A function “void nttx_restore(nctxt
*mcty " which restores the new machine con-
text from the machine context structure mctx This

function does not return to the caller. Instead it
doesreturn at the location stored in mctx(whichis
either sf.addrfromapreviousntt x cr eat e call
or the location of apreviousntt x save call).

A function “void nttx_sw tch(nctx.t

*mctxold, nct x t * mctxnew) ” which switches
from the current machine context (saved to
mctxold for later use) to a new context (restored
from mctxnew). This function returns only to the
caller if nctx restore or nct x_switch is
again used on mctxold.

2.2 Technical Possibilities

Poking around in the references of the ANSI-C language
reference and the Unix standards show the following
functions on which an implementation can be based:

B There is the ucont ext (3) facility with the

functions get cont ext (3), nakecont ext (3),
swapcont ext (3) and set cont ext (3) which
conform to the Single Unix Specificatigi/ersion
2 (SUSv2[20], aka Unix95/99. Unfortunately
these are available on modern Unix platformsonly.

There are the jnp_buf based functions
setj np(3) and | ongj np(3) which conform to
ISO 9899:1990 (ISO-C) and the si gj np buf
based sigsetjnp(3) and si gl ongj mp(3)
functionswhich conform to |EEE Std1003.1-1988
(POSIN, and Single Unix Specificatigiversion 2
(SUSvZ 20], aka Unix95/99. The first two func-
tionsare availablereally on all Unix platforms, the
last two are available only on some of them.

On some platformsset j np(3) and | ongj mp(3)
save and restore aso the signal mask (if one
does not want this semantics, one has to call
setjmp(3) and I ongj np(3) there) while on
others one has to explicitly use the superset func-
tions si gset j mp(3) and si gl ongj np(3) for
this. In our discussion we can assume that
setj np(3) and | ongj np(3) save and restore
the signal mask, because if this is not the case
in practice, one easily can replace them with
si gsetj mp(3) and si gl ongj mp(3) cals (if
available) or (if not available) emulate the miss-
ing functionality manually with additiona si g-
procmask(2) cals (see pt h_ntt x. ¢ in GNU
Pth[25]).

There is the function si gal t st ack(2) which
conforms to the Single Unix SpecificatignVer-
sion 2 (SUSv2[20], aka Unix95/9§ and its an-
cestor function si gst ack(2) from 4.2BSD The

last one exists only on BSD-derived platforms, but
thefirst function already exists on all current Unix
platforms.

2.3 Maximum Portability Solution

The maximum portable solution obviously is to use
the standardized nakecont ext (3) function to cre-
ate threads and swi t chcont ext (3) or get con-
t ext (3)/set cont ext (3) to dispatch them. And actu-
aly these are the preferred functions modern user-space
multithreading systems are using. We could easily im-
plement our proposed API as following (all error checks
omitted for better readability):

/* machine context data structure */

typedef struct nttx_st {
ucont ext _t uc;

} nectx_t;

/ * save machine context */
#define nttx_save(nttx)
(voi d) get cont ext (& nct x) - >uc)

/ * restore machine context */
#define nctx_restore(nctx) \
(voi d) set cont ext (& nct x) - >uc)

/* switch machine context */
#define nctx_sw tch(nctx_ol d, nct x_new) \
(voi d) swapcont ext (& (nctx_ol d) ->uc), \
&((nct x_new) - >uc))

/ * create machine context */

voi d nttx_creat e(
nctx_t *nct X,
void (*sf_addr)(void *), void *sf_arg,
voi d *sk_addr, size_t sk_size)

{
[* fetch current context */
get cont ext (& nct x- >uc)) ;
[* adjust to new context */
nct x- >uc. uc_l i nk = NULL;
nct X- >uc. uc_st ack. ss_sp = sk_addr;
nct x- >uc. uc_stack. ss_size = sk_size;
nct x- >uc. uc_stack. ss_flags = 0;
[* make new context */
makecont ext (& nct x- >uc),
sf_addr, 1, sf_arg);
return;
}

Unfortunately there are still lots of Unix platformswhere
this approach cannot be used, because the standard-
ized ucont ext (3) APl is not provided by the ven-
dor. Actualy the platform test results for GNU Pth
(see Table 2 below) showed that only 7 of 21 success-
fully tested Unix flavors provided the standardized API
(makecont ext (3), etc). On al other platforms, GNU
Pth was forced to use the fallback approach of imple-
menting the machine context as we will describe in the

following. Obvioudly this fallback approach has to use
the remaining technical possibilities (si gset | nmp(3),

etc).
Operating System Architecture(s) mesc | glj
FreeBSD 2.x/3.x Intel no yes
FreeBSD 3.x Intel, Alpha no yes
NetBSD 1.3/1.4 Intel, PPC, M68K no yes
OpenBSD 2.5/2.6 Intel, SPARC no yes
BSDI 4.0 Intel no yes
Linux 2.0.x glibc 1.x/2.0 Intel, SPARC, PPC | no yes
Linux 2.2.x glibc 2.0/2.1 Intel, Alpha, ARM no yes
Sun SunOS 4.1.x SPARC no yes
Sun Solaris 2.5/2.6/2.7 SPARC yes yes
SCO UnixWare 2.x/7.x Intel yes yes
SCO OpenServer 5.0.x Intel no yes
IBM AIX 4.1/4.2/4.3 RS6000, PPC yes yes
HP HPUX 9.10/10.20 HPPA no yes
HPHPUX 11.0 HPPA yes yes
SGI IRIX 5.3 MIPS 32/64 no yes
SGI IRIX 6.2/6.5 MIPS 32/64 yes yes
ISC4.0 Intel no yes
Apple MacOS X PPC no yes
DEC OSF1U/Tru64 4.0/5.0 | Alpha yes yes
SNI ReliantUNIX MIPS yes yes
AmigaOS M68K no yes
Table2: Summary of operating system support. The level and type

of support found on each tested operating system. ntsc:
functional makecont ext (3)/swi t chcont ext (3),
sjlj: functiona setjnmp(3)/I ongj np(3) or sig-
set | mp(3)/si gl ongj np(3). Seefile PORTI NGin GNU
Pth[25] for more details.

2.4 Remaining Possibilities

Our problem can be divided into two parts, an easy one
and adifficult one.

The Easy Part

That set j np(3) and | ongj np(3) can be used to im-
plement user-space threads is commonly known [24, 27,
28]. Mostly al older portable user-space threading li-
braries are based on them, although some problems are
known with these facilities (see below). So it becomes
clear that we also have to use these functions and base
our machine context (nct x t) on their j np_buf data
structure.

We immediately recognize that this way we have
a least solved the dispatching problem, because our
nct x_save, nttxrestore and nctx_switch
functions can be easily implemented with set j np(3)
and | ongj mp(3).

The Difficult Part

Nevertheless, the difficult problem of how to create the
machine context remains. Even knowing that our ma-
chinecontextisj np_buf basedisno advantageto us. A
j mp_buf hasto betreated by us as an opaque data struc-
ture — for portability reasons. The only operations we
canperformonitareset j np(3) andl ongj np(3) calls,

of course. Additionally, we are forced to use si gal t -
st ack(3) for our stack manipulations, because it is the
only portable function which actually deals with stacks.

So it is clear that our implementation for nct x -
creat e has to play a few tricks to use a j np_buf
for passing execution control to an arbitrary startup
routine. And our approach has to be careful to en-
sure that it does not suffer from unexpected side-
effects. It should be aso obvious that we can-
not again expect to find an easy solution (as for
nct x_save, nttx_restore and nctx_switch),
because set j np(3) and si gal t st ack(3) cannot be
trivially combined to formntt x cr eat e.

3 Implementation

As we have already discussed, our implementation con-
tains an easy part (htt x_save, ntt x_rest ore and
nct x_swi t ch) and a difficult part (nct x cr eat e).
Let us start with the easy part, whose implementation is
obvious (al error checks again omitted for better read-
ability):

/ * machine context data structure */
typedef struct nttx_st {

j mp_buf j b;
} nectx_t;

/* save machinecontext */

#define nctx_save(nctx) \
(void)setjnp((nctx)->jb)

[* restore machine context */
#define nctx_restore(nctx) \
l'ongj mp((nttx)-> b, 1)

/* switch machine context */
#define nctx_sw tch(nctx_ol d, nct x_new) \
if (setjnp((nttx_old)->jb) == 0) \
| ongj mp((nttx_new)->j b, 1)
/ * create machine context */
voi d nttx_creat e(
nctx_t *nct X,
void (*sf_addr)(void *), void *sf_arg,
voi d *sk_addr, size_t sk_size)

...initialization of ntt x to befilledin...

}

There is one subtle but important point we should men-
tion: The use of the C pre-processor #def i ne direc-
tive to implement ntt x_save, ntt x_restore and
nct x_swi t ch is intentional. For technical reasons
related to set j np(3) semantics and r et ur n related
stack behavior (which we will explain later in detail)
we cannotimplement these three functions (at least not
nct x_swi t ch) as C functions if we want to achieve
maximum portability across al platforms. Instead they
have to be implemented as pre-processor macros.

3.1 Algorithm Overview

The genera ideafor ntt x cr eat e isto configure the
givenstack asasigna stack viasi gal t st ack(2), send
the current process a signa to transfer execution con-
trol onto this stack, save the machine context there via
set j mp(3), get rid of the signal handler scope and boot-
strap into the startup routine.

The rea problem in this approach comes from the
signal handler scope which implies various restrictions
on Unix platforms (the signal handler scope often is just
aflag in the process control block (PCB) which various
system calls, like si gal t st ack(2), check before a-
lowing the operation — but because it is part of the pro-
cess state the kernel manages, the process cannot change
it itself). Aswewill see, we haveto perform afew tricks
to get rid of it. The second main problem is: how do we
prepare the calling of the start routine without immedi-
ately entering it?

3.2 Algorithm

Theinput to thentt x cr eat e function is the machine
context structure mctx which should be initialized, the
thread startup function address sf_addr, the thread startup
function argument sf arg and a chunk of memory start-
ing at skaddr and sksizebytes in size, which should
become the threads stack.

The following algorithm for ntt x cr eat e is di-
rectly modeled after the implemented algorithm one can
find in GNU Pth[25], which in turn was derived from
techniques originally found in rsthreadd 27]:

1. Preserve the current signal mask and block an ar-
bitrary worker signal (we use SI GUSR1, but any
signal can be used for this — even an aready used
one). This worker signal is later temporarily re-
quired for the trampoline step.

2. Preserve a possibly existing signal action for the
worker signal and configure a trampoline function
asthe new temporary signal action. The signal de-
livery is configured to occur on an aternate signal
stack (see next step).

3. Preserve a possibly active aternate signal stack
and configure the memory chunk starting at
skaddr as the new temporary aternate signal
stack of length sk.size

4. Save parameters for the trampoline step (mctx
sf.addr, sfarg, etc) in global variables, send the
current process the worker signal, temporarily un-
block it and thisway allow it to be delivered onthe
signal stack in order to transfer execution control
to the trampoline function.

10.

11

12.

13.

14.

. After the trampoline function asynchronously en-

tered, save its machine context in the mctx struc-
ture and immediately return from it to terminate
the signal handler scope.

. Restore the preserved alternate signal stack, pre-

served signal action and preserved signal mask for
worker signal. This way an existing application
configuration for the worker signal is restored.

. Save the current machine context of

nct x_cr eat e. This alows us to return to this
point after the next trampoline step.

. Restore the previously saved machine context of

the trampoline function (mctX to again transfer ex-
ecution control onto the alternate stack, but this
time without(!) signal handler scope.

. After reaching the trampoline function (mctX

again, immediately bootstrap into a clean stack
frame by just calling a second function.

Set the new signa mask to be the same as
the origina signal mask which was active when
nct x_creat e was caled. Thisis required be-
causein thefirst trampoline step we usually had at
least the worker signal blocked.

Load the passed startup information (sf.addr,
sfarg) from nttx_create into local (stack-
based) variables. This is important because their
values haveto be preserved in machine context de-
pendent memory until the created machine context
isthefirst time restored by the application.

Save the current machine context for later restor-
ing by the calling application.

Restore the previously saved machine context of
nct x_cr eat e to transfer execution control back
toit.

Return to the calling application.

When the calling application now again switchesinto the
established machine context mctx the thread starts run-
ning at routine sf.addr with argument sf.arg. Figure 1
illustrates the algorithm (the numbers refer to the algo-
rithm steps listed above).

mctx_create mctx_create
n _trampoline|

gl 3
LN, N
)

Y

mctx_createboot

gl
-

main i | o addr(sf_arg)

l_ mctx_switch

! metx_swlitch | MO switen
D LY S P .>.

: mctx_switch

Figure 1. Illustration of the machine context creation procedure. The
thick solid lines and numeric marks correspond to the al-
gorithm steps as described in section 3.2. The thick dotted
lines show a possible further processing where a few con-
text switches are performed to dispatch between the main
thread and the new created thread.

sk_size

3.3 Source Code

The corresponding ANSI-C code, which implements
nct x_creat e, is a little bit more complicated. But
with the presented algorithm in mind, it is now straight-
forward.

static noctx_t nct x_cal |l er;
static sig_atomic_t nttx_called;

static noctx_t *nct x_creat;

static void
static void
static sigset_t

*nctx_creat _arg;
nct x_creat _si gs;

voi d nttx_creat e(
nctx_t *nct X,
void (*sf_addr)(void *), void *sf_arg,
voi d *sk_addr, size_t sk_size)

struct
struct

sigaction sa;

si gaction osa;
struct sigaltstack ss;
struct sigaltstack oss;
sigset _t osigs;

sigset _t sigs;

[* Stepl: */

si genpt yset (&si gs) ;

si gaddset (&si gs, SIGUSR1);

si gprocmask(SI G BLOCK, &si gs,

[* Step2: */
menset ((void *)&sa, O,

si zeof (struct sigaction));
sa.sa_handl er = nttx_create_tranpoline;
sa.sa_flags = SA ONSTACK;
si genpt yset (&a. sa_nask) ;
sigaction(SlI GUSRL, &sa, &osa);

&osi gs) ;

[* Step3: */
SS.SS_sp

SS.SS_sl ze
ss.ss_fl ags ;
si gal t stack(&ss, &oss);

sk_addr;
sk_si ze;

[* Stepd: */
nct x_cr eat
nct x_creat _func
nct x_creat_arg
nct x_creat _sigs
nct x_cal | ed FALSE;
kill (getpid(), SIGUSRL);
sigfillset(&sigs);
si gdel set (&si gs, SIGUSR1);
while (!nttx_call ed)

si gsuspend(&si gs) ;

nct x;

sf _addr;
sf _arg;
osi gs;

[* Step6: */
sigal tstack(NULL, &ss);
ss.ss_flags = SS_DI SABLE;
si gal tstack(&ss, NULL);
if (!(oss.ss_flags & SS_DI SABLE))
si gal t stack(&oss, NULL);
si gaction(SlI GUSRL, &osa, NULL);
si gprocrmask(SI G_SETMASK,
&0si gs, NULL);

[* Step7& Step8: */

nctx_swi tch(&nctx_cal l er, nttx);

/% Stepl4: */
return;

}

void nctx_create_tranpoline(int sig)

[* Step5: */

if (nttx_save(nttx_creat) == 0) {
nctx_cal l ed = TRUE;
return;

(*nttx_creat_func)(void *);

[* Step9: */
mct x_creat e_boot ();

voi d nttx_create_boot (voi d)

void (*nctx_start_func)(void *);
void *nctx_start_arg;

[* Step10: */
si gprocmask(SI G_SETMASK,

&ntt x_creat_sigs, NULL);
[* Stepll: */
nctx_start_func
nctx_start_arg

nct x_creat _func;
nct x_creat_arg;

/* Step128& Step13: */

nctx_switch(nctx_creat, &rctx_caller);

/* Thethread ‘‘magically’’ starts... */
nctx_start_func(nctx_start_arg);

/* NOTREACHED */
abort();

3.4 Run-time Penalty

After this discussion of the implementation details, an
obviously occuring question now is what the expected
run-time penalty is. That is, what does our presented
machine context implementation cost compared to a
ucont ext (3) based solution. From the already dis-
cussed details we can easily guess that our complex ma-
chine context creation procedure (ntt x cr eat e) will
be certainly noticeably slower than a solution based on a
ucont ext (3) facility.

But a wild guess is not sufficing for a reason-
able statement. So we have written a Simple Ma
chine Context Benchma(&MCB [32]) which was used
to compare run-time costs of the ntt x creat e and
nct x_swi t ch functions if once implemented through
the POSIXmakecont ext (3)/swapcont ext (3) func-
tions (as shown in section 2.3), and once imple-
mented with our based fallback implementation (for
convenience reasons we directly used si gj np buf,
sigsetj mp(3) and si gl ongj np(3) in the bench-
mark, because all tested platforms provided this). The
results are shown Table 3 below.

As one can derive from these evaluations, our sig-
nal stack trick to implement ntct x _cr eat e in practice
is approximately 15 times slower than the nakecon-
t ext (3) based variant. This cost should not be ne-
glected. On the other hand, the si gset j mp(3)/ si g-
I ongj np(3) based ntt x swi t ch performs about as
good astheswapcont ext (3) based variant (the reason
why on most of the tested platforms it is even dlightly
faster is not known — but we guess it is related to a
greater management overhead in the ucont ext (3) fa-

cility, whichisasuperset of the functionality werequire).
Or inshort: our presented fallback approach costs notice-
able extra CPU cycles on thread creation time, but is as
fast as the standardized sol ution under thread dispatching
time.

10000 x mctx_context (in seconds):
Platform mcsc glj | overhead
Sun Solaris 2.6 (SPARC) 0.076 | 1.268 16.7
DEC Tru64 5.0 (Alpha) 0.019 | 0.235 124
SGI IRIX 6.5 (MIPS) 0.105 | 1.523 145
SCO UnixWare 7.0 (Intel) | 0.204 | 3.827 18.8
HP HP/UX 11.0 (HPPA) 0.057 | 0.667 11.8
Average: 14.8
10000 x mctx-switch (in seconds):
Platform mcsc glj | overhead
Sun Solaris 2.6 (SPARC) 0.137 | 0.210 15
DEC Tru64 5.0 (Alpha) 0.034 | 0.022 0.6
SGI IRIX 6.5 (MIPS) 0.235 | 0.190 0.8
SCO UnixWare 7.0 (Intel) | 0.440 | 0.398 0.9
HP HP/UX 11.0 (HPPA) 0.106 | 0.065 0.6
Average: 0.9

Table3: Summary of Simple Machine Context Benchmg@&MVCB,
[32]). The speed of machine context creation and switching
found on each tested operating system. mcsc: functional
makecont ext (3)/sw t chcont ext (3), §lj: functional
si gsetj np(3)/si gl ongj np(3). overhead: the over-
head of using glj instead of mcsc.

3.5 Remaining Issues

The presented algorithm and source code can be directly
used in practice for implementing a minimal threading
system or the concept of co-routines. Its big advantage
isthat if the operating system providesthe required stan-
dardized primitives, we do not need to know anything at
all about the machine we are running on — everything
just works. Nevertheless, there remain a few specid is-
sues we still have to discuss.

The Waggly longjmp(3) after Return

On some platforms, | ongj np(3) may not be called af-
ter the function which called the set j nmp(3) returned.
When this is done, the stack frame situation is not guar-
anteed to be in a clean and consistent state. But thisis
exactly the mechanism we use in order to get rid of the
signal handler scopein step 5.

Theonly aternativewould beto leave the signal han-
dler vial ongj np(3), but then we would have another
problem, as experience showed. For instance, ROBERT
S. THAU's Really Simple Threadgsthread3 [27] was
ported to several platforms and was used to run an exper-
imental multithreaded version of the Apache webserver.
THAU’s approach was similar to ours, but differed signif-
icantly in the way the signal handler isleft. In particular,
in an attempt to avoid the unsafe stack frame, it used a
| ongj nmp(3) call to leave the signal handler, rather than

returning from it. But this approach does not work on
some Sys\iderived kernels, as we already mentioned.

The problem is that these kernels do not “believe”
that the code is out of the signal-handling context, un-
til the signal handler has returned — and accordingly,
refuse to alow readjustment of the signal stack until it
has. But with the rsthreadsapproach, the signal han-
dler that created the first thread never returns, and when
rsthreadswvantsto create the second thread, these kernels
refuse to readjust the signal stack, and we are stuck. So
with portability in mind, we decided that it is better to get
rid of the signal handler scope with the straight-forward
“return” and instead fight the mentioned (simpler)
problem of an unsafe stack frame.

Fortunately, in practice this is not as problematic as
it seems, because evaluations (for GNU Pth on a wide
range of current Unix platforms showed that one can
reach a safe stack frame again by just calling a function.
That is the reason why our agorithm enters the second
trampoline functionin step 9.

The Uncooper ative longimp(3)

Even on operating systems which have working POSIX
functions, our approach may theoretically still not work,
because | ongj nmp(3) does not cooperate. For in-
stance, on some platformsthe standard libc | ongj np(3)
branchesto error-handling codeif it detectsthat the caller
triesto jump upthe stack, i.e., into astack frame that has
aready returned.

This is usualy implemented by comparing the cur-
rent stack pointer to the one in the j np buf structure.
That is why it is important for our algorithm to return
from the signal handler and thisway enter the (different)
stack of the parent thread. In practice, the implemen-
tation in GNU Pthshowed that then one no longer suf-
fersfrom those uncooperativel ongj np(3) implementa:
tions, but one should keep this point in mind when reach-
ing even more uncooperative variants on esoteric Unix
platforms. If it still occurs, one can only try to resumethe
operation by using a possibly existing platform-specific
error handling hook.

Garbage at Bottom of Stacks

Thereisasubtle side-effect of our implementation: there
remains some garbage at the bottom of each thread stack.
The reason is that if a signal is delivered, the operat-
ing system pushes some state onto the stack, which is
restored later, when the signal handler returns. But al-
though we return from the signal handler, we jump in
again, and this time we enter not directly at the bottom
of the stack, because of theset j nmp(3) inthetrampoline
function.

Since the operating system has to capture all CPU
registers (including those that are ordinarily scratch reg-
isters or caller-save registers), there can be a fair amount

of memory at the bottom of the established thread stack.
For some systems this can be even up to 1 KB of garbage
[27]. But except for the additional memory consumption
it does not hurt.

We just have to keep in mind this additional stack
consumption when deciding the stack size (sksizg. A
reasonable stack size usually is between 16 and 32 KB.
Less is neither reasonable nor aways allowed (current
Unix platforms usually require a stack to be at least 16
KB insize).

Stack Overflows

There is a noticeable difference between the initial
mai n() thread and the explicitly spawned threads. the
initial thread runs on the standard process stack. This
stack automatically can grow under Unix, while the
stacks of the spawned threads are fixed in size. So stack
overflows can occur for the spawned threads. Thisim-
plies that the parent has to make a reasonable guess of
the threads stack space requirement already at spawning
time.

And thereis no really portable solution to this prob-
lem, because even if the thread library’s scheduler can
detect the stack overflow, it cannot easily resize the stack.
The reason is simply that the stack initialization goes
hand in hand with the initialization of the start routine,
as we discussed before. And this start routine has to be
areal C function in order to call. But once the thread is
running, there no longer exists such an entry point. So,
even if the scheduler would be able to give the thread
a new enlarged stack, there is no chance to restart the
thread on this new stack.

Or more correct, there is no portableway to achieve
it. Aswith the previous problems, thereis anon-portable
solution. That is why our implementation did not deal
with this issue. Instead in practice one usualy lets the
scheduler just detect the stack overflow and terminate the
thread. Thisis done by using ared zone at the top of the
stack which is marked with a magic value the scheduler
checks between thread dispatching operations.

Resizing solutions are only possible in semi-portable
ways. One approach is to place the thread stacks into a
memory mapped area (see mmap(2)) of the process ad-
dress space and let the scheduler catch SI GSEGV sig-
nals. When such a signal occurs, because of a stack
overflow in this area, the scheduler explicitly resizes
the memory mapped area. This resizing can be done
either by copying the stack contents into a new larger
area which is then re-mapped to the old address or via
an even more elegant way, as the vendor threading li-
braries of Sun Solaris FreeBSDand DEC Tru64do it:
the thread stacks are alocated inside memory mapped
areas which are already initially a fev MB in (virtual)
size and then one just relies on the virtual memory sys-

tem’s feature that only the actually consumed memory
space is mapped.

Startup Routine Termination

There is a cruel abort (3) cal a the end of our
nct x_creat e_.boot function. This means, if the
startup routine would return, the processis aborted. That
is obviously not reasonable, so why have we written it
thisway?

If thethread returnsfrom the startup routine, it should
be cleanly terminated. But it cannot terminate itself (for
instance, because it cannot free its own stack while run-
ning on it, etc). So the termination handling actualy
is the task of the thread library scheduler. As a conse-
quence, the thread spawning function of athread library
should be not directly ntt x cr eat e.

Instead the thread spawning function should use an
additional trampoline function as the higher-level startup
routine. And this trampoline function performsa context
switch back into the thread library scheduler before the
lower-level startup routine would return. The scheduler
then can safely remove the thread and its machine con-
text. That iswhy the abor t (3) call is never reached in
practice (more details can be found in the implementa-
tions of pt h_spawn andpt hexit inpth.lib. c of
GNU Pth[25])

The sigstack(2) Fallback Situation

Not al platforms provide the standardized si gal t -
st ack(2). Instead they at least provide the 4.2BSDan-
cestor function si gst ack(2). But one cannot trivialy
replacesi gal t st ack(2) by si gst ack(2) in thissit-
uation, becausein contrasttosi gal t st ack(2), theold
si gst ack(2) does not automatically handle the ma-
chine dependent direction of stack growth.

Instead, the caller has to know the direction and
aways cal sigstack(2) with the address of the
bottom of the stack. So, in a real-world imple-
mentation one first has to determine the direction of
stack growth in order to use si gst ack(2) as a re-
placement for si gal t stack(2). Fortunately this
is easier than it seems on the first look (for de-
tails see the macros AC_CHECK_STACKGROWIH and
AC_CHECK_STACKSETUP in file acl ocal . m4 from
GNU Pth[25]). Alternatively if one can afford to waste
memory, one can use an elegant trick: to set up a stack
of size IV, one allocates a chunk of memory (starting at
address A) of size N x 2 and then calls si gst ack(2)
with the parameters sk.addr=A4 + (N) and sksize=N,
i.e., one specifies the middle of the memory chunk as the
stack base.

The Blind Alley of Brain-Dead Platforms

The world would not be as funny as it is, if redly all
Unix platforms would be fair to us. Instead, currently

at least one platform exists which plays unfair: unfortu-
nately, ancient versions of the popular GNU/Linux Al-
though we will discover that it both providessi gal t -
st ack(2) andsi gst ack(2), our approach won't work
on Linux kernels prior to version 2.2 and glibc prior to
version 2.1.

Why? Because its libc provides only stubs of these
functions which always return just - 1 with er r no set
to ENOSYS. So, this definitely means that our nifty al-
gorithm is useless there, because its central point is
si gal t st ack(2)/si gst ack(2). Nevertheless we do
not need to give up. At least not, if we, for asingle brain-
dead platform, accept to break our general goa of not
using any platform dependent code.

So, what can we actually do here? All we haveto do,
isto fiddle around alittle bit with the machine-dependent
j mp_buf ingredients (by poking around in set j np. h
or by disassembling | ongj np(3) in the debugger). Usu-
ally onejust hastodoaset j mp(3) to get aniinitial state
inthej np_buf structure and then manually adjust two
of its fields: the program counter (usually a structure
member with “pc” in the name) and the stack pointer
(usually a structure member with “sp” in the name).

That is all and can be acceptable for areal-world im-
plementation which really wantsto cover mostly all plat-
forms— at least aslong as the special treatment is needed
just for one or two platforms. But one has to keep in
mind that it at least breaks one of the initial goals and
hasto be treated as a last chance solution.

Functions sigsetjmp(3) and siglongjmp(3)

One certainly wants the POSIX thread semantics
where a thread has its own signal mask. As a-
ready mentioned, on some platforms set j mp(3) and
| ongj np(3) do not provide this and instead one has
to explicitly cal si gset j np(3) and si gl ongj np(3)
instead. There is only one snare: on some plat-
forms si gset j mp(3)/si gl ongj np(3) save adso in-
formation about the alternate signals stack. So here
one has to make sure that athough the thread dis-
patching later uses si gset j mp(3)/si gl ongj mp(3),
the thread creation step in ntt x create dill uses
plain setj nmp(3)/l ongj np(3) cals for the trampo-
line trick. One just has to be careful because the
j mp_buf andsi gj np_buf structures cannot be mixed
between calls to the si gset j mp(3)/si gl ongj np(3)
and set j np(3)/l ongj mp(3).

More Machine Context I ngredients

Finally, for a real-world threading implementation one
usually want to put more state into the machine con-
text structure nctx_t. For instance to fulfill more
POSIXthreading semantics, it is reasonable to also save
and restore the global errno variable. All this can
be easily achieved by extending the ntt x t structure

with additional fields and by making the ntt x save,
nct x_restore and nct x_swi t ch functions to be
aware of them.

3.6 Reated Work

Beside GNU Pth [25], there are other multithreading
libraries which use variants of the presented approach
for implementing machine contexts in user-space. Most
notably there are ROBERT S. THAU’'s Really Simple
Threaddrsthreads[27]) packagewhich usessi gal t -
st ack(2) in avery similar way for thread creation, and
Kota ABE’sPortable Thread LibrarfPTL, [24]) which
uses a si gst ack(2) approach. But because their ap-
proaches handlethe signal handler scopedifferently, they
are not able to achieve the same amount of portability
and this way do not work for instance on some System-
V-derived platforms.

3.7 Summary & Availability

We have presented a pragmatic and mostly portable fall-
back approach for implementing the machine context for
user-space threads, based entirely on Unix system and
ANSI-C language facilities. The approach was success-
fully tested in practice on a wide range of Unix flavors
by GNU Pthand should also adapt to the remaining Unix
platformsaslong asthey adhereto therelevant standards.

The GNU Pth package is distributed under the
GNU Library General Public License (LGPL 2.1) and
freely available from http://www.gnu.org/software/pth/
and ftp://ftp.gnu.org/gnu/pth/

3.8 Acknowledgements

| would liketo thank ROBERT S. THAU, DAVID BUTEN-
HOF, MARTIN KRAEMER, ERIC NEWTON and BRUNO
HAIBLE for their comments which helped to write the
initial version of this paper. Additionaly, credit has to
be given to CHRISTOPHER SMALL and the USENIX re-
viewers for their invaluable feedback which allowed this
paper to be extended, cleaned up and finaly published
at the USENIX Annual Technical Conference 2000. Fi-
nally, thanks go to all users of GNU Pthfor their feed-
back on the implementation, which helped in fine-tuning
the presented approach. [rse]

References
[1] POSIX 1003.1c ThreadingEEE POSIX 1003.1¢-1995,
1SO/IEC 9945-1:1996

[2] M.E. CoNwAY: Design of a separable transition-
diagram compiler.Comm. ACM 6:7, 1963, p.396-408

(3]

(4]

(5]

(6]

(7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(19]

(16]

(17]

E.W. DI STRA: Co-operating sequential processéas
F. Genuys (Ed.), Programming LanguageNATO Ad-
vanced Study Institute, Academic Press, London, 1965,
p.42-112.

B. NicHoLs, D. BUTTLAR, J.P. FARREL: Pthreads
Programming - A POSIX Standard for Better Multipro-
cessing O’ Reilly, 1996; ISBN 1-56592-115-1

B. LEwis, D. J. BERG: Threads Primer - A Guide To
Multithreaded ProgrammingPrentice Hall, 1996; ISBN
0-13-443698-9

S. J. NORTON, M. D. DIPASQUALE: Thread Time - The
Multithreaded Programming Guid@rentice Hall, 1997,
ISBN 0-13-190067-6

D. R. BUTENHOF: Programming with POSIX Threads
Addison Wesley, 1997; ISBN 0-201-63392-2

S. PRAsAD: Multithreading Programming Techniques
McGraw-Hill, 1996; ISBN 0-079-12250-7

S. KLEINMAN, B. SMALDERS, D. SHAH: Program-
ming with ThreadsPrentice Hall, 1995; ISBN 0-131-
72389-8

C.J. NORTHRUP: Programming With Unix Threads
John Wiley & Sons, 1996; ISBN 0-471-13751-0

P. BARTON-DAVIS, D. MCNAMEE, R. VASWANI, E.
LazowskA: Adding Scheduler Activations to Mach 3.0
University of Washington, 1992; Technical Report 92-
08-03

D. STEIN, D. SHAH: Implementing Lightwight Threagds
SunSoft Inc., 1992 (published at USENIX’ 92).

W.R.STEVENS: Advanced Programming in the Unix
Environment Addison-Wesley, 1992; ISBN 0-201-
56317-7

D. LEwWINE: POSIX Programmer’s Guide: Writing
Portable Unix ProgramsO’Reilly & Associates,Inc.,
1994; ISBN 0-937175-73-0

BRYAN O’ SULLIVAN: Frequently
questions for comp.os.reseaych
http://www.serpentine.com/™ bos/os-fag/,
ftp://rtfm.mit.edu/pub/usenet/comp.os.research/

asked
1995;

SUN MICROSYSTEMS, INC: Threads Frequently Asked
Questions 1995, http://www.sun.com/workshop/-
threads/fag.html

BRYAN O’SULLIVAN: Frequently asked ques-
tions for comp.programming.threads 1997,
http://www.serpentine.com/™ bos/threads-fag/.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

BiL LEwIs: Frequently asked questions for
comp.programming.threagds 1999; http://-

www.lambdacs.com/newsgroup/FAQ.html

NUMERIC QUEST INC: Multithreading - Defini-
tions and Guidelines 1998; http://www.numeric-
quest.com/lang/multi-frame.html

THE OPEN GRoOuUP: The Single Unix Specification,
Version 2 - Threads 1997; http://www.opengroup-
.org/onlinepubs/007908799/xsh/threads.html

SUN MICROSYSTEMS INC: SMI Thread Resources
http://www.sun.com/workshop/threads

FRANK MUELLER: FSU pthreads 1997; http://www-
.cs.fsu.edu/” mueller/pthreads/

CHRIS PROVENZANO: MIT pthreads
http://www.mit.edu/people/proven/pthreads.html
(old), http://www.humanfactor.com/pthreads/mit-
pthreads.html (updated)

KoTa ABE: Portable Threading Library(PTL); 1999;
http://www.media.osaka-cu.ac.jp/~ k-abe/PTL/

RALF S. ENGELSCHALL: GNU Portable ThreadgPth);
1999; http://www.gnu.org/software/pth/, ftp://ftp.gnu-
.org/gnu/pth/

MICHAEL T. PETERSON: POSIX and DCE Threads
For Linux (PCThreads); 1995; http://members.aa-
.net/~ mtp/PCthreads.html

ROBERT S. THAU: Really Simple Threadgsthreads);
1996; ftp://ftp.ai.mit.edu/pub/rst/

JOHN BIRRELL: FreeBSD uthreads
ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-
current/src/lib/libc_r/uthread/

XAVIER LEROY: The LinuxThreads library 1999;
http://pauillac.inriafr/~ xleroy/linuxthreads/

1993;

1998;

IBM: AIX Version 4.3 General Programming Concepts:
Writing and Debugging Programs; Understanding
Threads 1998; http://www.rs6000.ibm.com/doc._link/-
en_US/a_doc_lib/aixprggd/genprogc/understanding-
_threads.htm

Netscape Portable Runtime (NSPR);
www.mozilla.org/docs/refList/refNSPR/,
Ixr.mozilla.org/seamonkey/source/nsprpub/

http://-
http://-

RALF S. ENGELSCHALL: Simple Machine Context
Benchmark 2000; http://www.gnu.org/software/pth-
/smcb.tar.gz

