Proceedings of 2000 USENIX Annual Technical Conference

San Diego, Cdlifornia, USA, June 18-23, 2000

PLUMBING AND OTHER UTILITIES

Rob Pike

USENIX

ssssssssssssssssssssssssssssssssss

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Plumbing and Other Utilities

Rob Pike

Bell Laboratories
Murray Hill, New Jersey 07974
rob@plan9.bell-l1abs.com

Abstract: Plumbing is a new mechanism for inter-
process communication in Plan 9, specifically the pass-
ing of messages between interactive programs as part
of the user interface. Although plumbing shares some
properties with familiar notions such as cut and paste,
it offers a more general data exchange mechanism
without imposing a particular user interface.

The core of the plumbing system is a program called
the plumber, which handles all messages and dis-
patches and reformats them according to configuration
rules written in a special-purpose language. This
approach allows the contents and context of a piece of
data to define how it is handled. Unlike with drag and
drop or cut and paste, the user doesn’t need to deliver
the data; the contents of a plumbing message, as inter-
preted by the plumbing rules, determine its destination.

The plumber has an unusual architecture: it is a
language-driven file server. This design has distinct
advantages. It makes plumbing easy to add to an exist-
ing, Unix-like command environment; it guarantees
uniform handling of inter-application messages; it off-
loads from those applications most of the work of
extracting and dispatching messages; and it works
transparently across a network.

1. Introduction

Data moves from program to program in myriad ways.
Command-line arguments, shell pipe lines, cut and
paste, drag and drop, and other user interface techniques
all provide some form of interprocess communication.
Then there are tricks associated with special domains,
such as HTML hyperlinks or the heuristics mail readers
use to highlight URLs embedded in mail messages.
Some systems provide implicit ways to automate the
attachment of program to data—the best known exam-
ples are probably the resource forks in MacOS and the
file name extension ‘associations in Microsoft
Windows—but in practice humans must too often carry
their data from program to program.

Why should a human do the work? Usually thereis one
obvious thing to do with a piece of data, and the data

itself suggests what thisis. Resource forks and associa-
tions speak to this issue directly, but statically and nar-
rowly and with little opportunity to control the behav-
ior. Mechanisms with more generality, such as cut and
paste or drag and drop, demand too much manipulation
by the user and are (therefore) too error-prone.

We want a system that, given a piece of data, handsit to
the appropriate application by default with little or no
human intervention, while still permitting the user to
override the defaults if desired.

The plumbing system is an attempt to address some of
these issues in a single, coherent, central way. It pro-
vides a mechanism for formatting and sending arbitrary
messages between applications, typicaly interactive
programs such as text editors, web browsers, and the
window system, under the control of a central
message-handling server called the plumber. Interac-
tive programs provide application-specific connections
to the plumber, triggering with minimal user action the
transfer of data or control to other programs. The result
is similar to a hypertext system in which al the links
are implicit, extracted automatically by examining the
data and the user’'s actions. It obviates cut and paste
and other such hand-driven interprocess communication
mechanisms. Plumbing delivers the goods to the right
place automatically.

2. Overview

The plumber is implemented as a Plan 9 file server
[Pike93]; programs send messages by writing them to
the plumber’s file / mt / pl unb/ send, and receive
messages by reading them from ports, which are other
plumber files in /mmt/plunb. For example,
/[mt/ pl unb/ edit is by convention the file from
which atext editor reads messages requesting it to open
and display afilefor editing. (See Figure 1.)

The plumber takes messages from the send file and
interprets their contents using rules defined by a
special-purpose pattern-action language. The language
specifies any rewriting of the message that isto be done
by the plumber and defines how to dispose of a mes-

ProgramA

) Browser
edit

send

ProgramB plumber

web

| mage Viewer

newnni |

ot

ProgramC

Faces

Figure 1. The plumber controls the flow of messages between applications. Programs write to the file send and
receive on ‘ports’ of various hames representing services such as edi t or web. Although the figure doesn’t
illustrate it, some programs may both send and receive messages, and some ports are read by multiple applica

tions.

sage, such as by sending it to a port or starting a new
process to handleit.

The behavior is best described by example. Imagine
that the user has, in a termina emulator window, just
run a compilation that has failed:

% nmake
cc -c rnstar.c
rnmstar.c:32: syntax error

The user points the typing cursor somewhere in the
string r st ar . ¢: 32: and executes the pl unb menu
entry. This causes the termina emulator to format a
plumbing message containing the entire string sur-
rounding the cursor, r nst ar : 32:, and to write it to
/ it/ pl unb/ send. The plumber receives this mes-
sage and compares it sequentially to the various pat-
terns in its configuration. Eventually, it will find one
that breaks the string into pieces, r nst ar . ¢, a colon,
32, and the final colon. Other associated patterns ver-
ify that r mst ar . c is afile in the current directory of
the program generating the message, and that 32 looks
like a line number within it. The plumber rewrites the
message, setting the data to the string r nst ar . ¢ and
attaching an indication that 32 is a line number to dis-
play. Finaly, it sends the resulting message to the
edi t port. Thetext editor picks up the message, opens

rist ar . ¢ (if it'snot already open) and highlightsline
32, the location of the syntax error.

From the user’s point of view, this process is simple:
the error message appears, it is ‘plumbed’, and the edi-
tor jumps to the problem.

Of course, there are many different ways to cause com-
piler messages to pop up the source of an error, but the
design of the plumber addresses more general issues
than the specific goal of shortening the
compile/debug/edit cycle. It facilitates the genera
exchange of data among programs, interactive or other-
wise, throughout the environment, and its
architecture—a central, language-driven file server—
although unusual, has distinct advantages. It makes
plumbing easy to add to an existing, Unix-like com-
mand environment; it guarantees uniform handling of
inter-application messages; it off-loads from those
applications most of the work of extracting and dis-
patching messages;, and it works transparently and
effortlessly across a network.

This paper is organized bottom-up, beginning with the
format of the messages and proceeding through the
plumbing language, the handling of messages, and the
interactive user interface. The last sections discuss the
implications of the design and compare the plumbing
system to other environments that provide similar ser-
vices.

3. Format of messages

Since the language that controls the plumber is defined
in terms of the contents of plumbing messages, we
begin by describing their layout.

Plumbing messages have a fixed-format textual header
followed by afree-format data section. The header con-
sists of six lines of text, in set order, each specifying a
property of the message. Any line may be blank except
the last, which is the length of the data portion of the
message, as adecimal string. Thelinesare, in order:

The source application, the name of the program
generating the message.

The destination port, the name of the port to
which the messages should be sent.

The working directory in which the message was
generated.

The type of the data, analogous to a MIME type,
suchast ext ori mage/ gi f.

Attributes of the message, given as blank-
separated name=value pairs. The values may be
quoted to protect blanks or quotes; values may
not contain newlines.

The length of the data section, in bytes.

Here is a sample message, one that (conventionaly)
tells the editor to open the file
/fusr/rob/src/ mem c and display line 27 within
it:

pl unbt est
edit
[fusr/robl/src
t ext

addr =27

5

nmem ¢

Because in general it need not be text, the data section
of the message has no terminating newline.

A library interface simplifies the processing of mes-
sages by trandlating them to and from a data structure,
Pl unbnsg, defined like this:

Pl unmbattr Plunbattr;
Pl unbnsg Pl unbnsg;

typedef struct
typedef struct

struct

{

Pl unbrsg

char *src; /* source application */
char *dst; /* destination port */
char *wdir; /* working directory */
char *type; /* type of data */

Pl umbattr *attr; /* attribute [ist */
int ndata; /* #bytes of data */

char *dat a;

struct Plunbattr

{
char *nane;
char *val ue;
Pl unbattr *next;
b

The library also includes routines to send a message,
receive a message, manipulate the attribute list, and so
on.

4. The Language

An instance of the plumber runs for each user on each
terminal or workstation. It begins by reading its rules
from the file |'i b/ pl unbi ng in the user's home
directory, which in turn may use i ncl ude statements
to interpolate macro definitions and rules from standard
plumbing rule libraries stored in/ sys/ | i b/ pl unb.

The rules control the processing of messages. They are
written in a pattern-action language comprising a
sequence of blank-line-separated rule sets, each of
which contains one or more patterns followed by one
or more actions. Each incoming message is compared
against the rule setsin order. If all the patterns within a
rule set succeed, one of the associated actions is taken
and processing compl etes.

The syntax of the language is straightforward. Each
rule (pattern or action) has three components, separated
by white space: an object, a verb, and optiona argu-
ments. The object identifies a part of the message, such
as the source application (sr c), or the data portion of
the message (dat a), or the rule's own arguments
(ar g); or it is the keyword pl unb, which introduces
an action. The verb specifies an operation to perform
on the object, such as the word ‘i s’ to require precise
equality between the object and the argument, or
‘i sdi r’ to require that the object be the name of a
directory.

For instance, this rule set sends messages containing the
names of files ending in . gi f, .| pg, etc. to a pro-
gram, page, to display them; it is analogous to a Win-
dows association rule (here and in some later examples,
long patterns have been folded to fit):

image files go to page

type is text

data matches ’'[a-zA-Z0-9_ \-./]+

data matches ' ([a-zA-Z0-9 \-./]+)
\.(jpe?g|gif|bit|tiff]ppm’

arg isfile $0

plunb to i nage

plumb client page -w

(Lines beginning with # are commentary.) Consider
how this rule handles the following message, annotated
down the left column for clarity:

src pl unbt est

dst

wdir [usr/rob/pics
type t ext

attr

ndata 9

data hor se. gi f

The i s verb specifies a precise match, and the t ype
field of the message is the string t ext , so the first pat-
tern succeeds. The mat ches verb invokes a regular
expression pattern match of the object (here dat a)
against the argument pattern. Both mat ches patterns
in this rule set will succeed, and in the process set the
variables $0 to the matched string, $1 to the first
parenthesized submatch, and so on (analogousto &, \ 1,
etc. in ed’s regular expressions). The pattern ar g
i sfile $0 verifies that the named file, hor se. gi f,
is an actud file in the directory / usr/ r ob/ pi cs. If
all the patterns succeed, one of the actions will be exe-
cuted.

There are two actions in this rule set. The pl unb t o
rule specifiesi mage as the destination port of the mes-
sage. By convention, the plumber mounts its services
in the directory / mt / pl unb, so in this case if thefile
/ it/ pl unb/ i mage has been opened, the message
will be made available to the program reading from it.
Note that the message does not name a port, but the rule
set that matches the message does, and that is sufficient
to dispatch the message. If on the other hand a message
matches no rule but has an explicit port mentioned, that
too is sufficient.

If no client has opened the i mage port, that is, if the
program page is not aready running, the pl unb
cl i ent action gives the execution script to start the
application and send the message on its way; the - wi
arguments tell page to create a window and to receive
its initial arguments from the plumbing port. The pro-
cess by which the plumber starts a program is described
in more detail in the next section.

It may seem odd that there are two mat ches rulesin
this example. The reason is related to the way the
plumber can use the rules themselves to refine the data
in the message, somewhat in the manner of Structural
Regular Expressions [Pike87a]. For example, consider
what happens if the cursor is at the last character of

% make ni ght mar e>hor se. gi f

and the user asks to plumb what the cursor is pointing
at. The program creating the plumbing message—in
this case the terminal emulator running the window—
can send the entire white-space-delimited string
ni ght mar e>hor se. gi f or even the entire line, and
the combination of mat ches rules can determine that

the user was referring to the string hor se. gi f. The
user could of course select the entire string
hor se. gi f, but it's more convenient just to point in
the general location and let the machine figure out what
should be done. The processisasfollows.

The application generating the message adds a special
attribute to the message, named cl i ck, whose numeri-
ca vaue is the offset of the cursor—the selection
point—within the data string. This attribute tells the
plumber two things: first, that the regular expressionsin
mat ches rules should be used to identify the relevant
data; and second, approximately where the relevant data
lies. The plumber will then use the first mat ches pat-
tern to identify the longest leftmost match that touches
the cursor, which will extract the string hor se. gi f,
and the second pattern will then verify that that names a
picture file. The rule set succeeds and the data is win-
nowed to the matching substring before being sent to its
destination.

Each mat ches pattern within a given rule set must
match the same portion of the string, which guarantees
that the rule set fails to match a string for which the sec-
ond pattern matches only a portion. For instance, our
example rule set should not execute if the data is the
string hor se. gi f t , and although the first pattern will
match horse. gi ft, the second will match only
hor se. gi f andtherule set will fail.

The same approach of multiple mat ches rules can be
used to exclude, for instance, a terminal period from a
file name or URL, so afile name or URL at the end of a
sentenceis recognized properly.

If aclick attribute is not specified, all patterns must
match the entire string, so the user has an option: he or
she may select exactly what data to send, or may
instead indicate where the data is by clicking the selec-
tion button on the mouse and letting the machine locate
the URL or image file name within the text. In other
words, the user can control the contents of the message
precisely when required, but the default, simplest action
in the user interface does the right thing most of the
time.

5. How Messages are Handled in the Plumber

An application creates a message header, fills in what-
ever fields it wishes to define, attaches the data, and
writes the result to the file send in the plumber’s ser-
vice directory, / mt / pl unb. The plumber receives
the message and applies the plumbing rules succes-
sively to it. When a rule set matches, the message is
dispatched as indicated by that rule set and processing
continues with the next message. If no rule set matches
the message, the plumber indicates this by returning a

write error to the application, that is, the write to
/ mt/ pl unb/ send fails, with the resulting error
string describing the failure. (Plan 9 uses strings rather
than pre-defined numbers to describe error conditions.)
Thus a program can discover whether a plumbing mes-
sage has been sent successfully.

After a matching rule set has been identified, the
plumber applies a series of rewriting steps to the mes-
sage. Some rewritings are defined by the rule set; oth-
ers are implicit. For example, if the message does not
specify a destination port, the outgoing message will be
rewritten to identify it. 1f the message does specify the
port, the rule set will only match if any pl unb to
action in the rule set names the same port. (If it
matches no rule sets, but mentions a port, it will be sent
there unmodified.)

The rule set may contain actions that explicitly rewrite
components of the message. These may modify the
attribute list or replace the data section of the message.
Here is a sample rule set that does both. It matches
strings of the form pl unb. h or pl unb. h: 27. If that
string identifies a file in the standard C include direc-
tory, / sys/i ncl ude, perhaps with an optiona line
number, the outgoing message is rewritten to contain
the full path name and an attribute, addr , to hold the
line number:

.h files found in /sys/include

are passed to edit

type is text

data matches ' ([a-zA-Z0-9] +\. h)
(:([0-9]4))?

arg isfile /sys/include/$1

data set /sys/include/$1

attr add addr=%3

plunb to edit

The dat a set rule replaces the contents of the data,
andtheat t r add rule adds a new attribute to the mes-
sage. The intent of this rule is to permit one to plumb
an include file namein a C program to trigger the open-
ing of that file, perhaps at a specified ling, in the text
editor. A variant of this rule, discussed below, tells the
editor how to interpret syntax errors from the compiler,
or the output of grep - n, both of which use a fixed
syntax file: line to identify aline of source.

The Plan 9 text editors interpret the addr attribute as
the definition of which portion of the file to display. In
fact, the real rule includes a richer definition of the
address syntax, so one may plumb strings such as
pl unb. h: / pl unbsend (using a regular expression
after the /) to pop up the declaration of a functionin a
C header file.

Another form of rewriting is that the plumber may mod-
ify the attribute list of the message to clarify how to

handle the message. The primary example of this
involves the treatment of the click attribute,
described in the previous section. |f the message con-
tainsacl i ck attribute and the matching rule set usesiit
to extract the matching substring from the data, the
plumber deletes the cl i ck attribute and replaces the
data with the matching substring.

Once the message is rewritten, the actions of the match-
ing rule set are examined. If the rule set contains a
plunb to action and the corresponding port is
open—that is, if a program is already reading from that
port—the message is delivered to the port. The applica
tion will receive the message and handle it as it seesfit.
If the port is not open, a pl unb start or pl unb
cl i ent action will start a new program to handle the

message.

The pl unb st art action is the smpler: its argument
specifies a command to run instead of passing on the
message; the message is discarded. Here for instance is
arule that, given the process id (pid) of an existing pro-
cess, starts the aci d debugger [Wint94] in a new win-
dow to examine that process:

processes go to acid

(assuning strlen(pid) >= 2)
type is text

data matches '[a-zA-Z0-9.: \-/]+
data matches '[0-9][0-9] +

arg isdir /proc/$0

plunb start wi ndow acid $0

(Note the use of multiple mat ches rules to avoid
misfires from strings like party. 1999.) The arg
i sdi r rule checks that the pid represents a running
process (or broken one; Plan 9 does not create cor e
files but leaves broken processes around for debugging)
by checking that the process file system has a directory
for that pid [Kill84]. Using this rule, one may plumb
the pid string printed by the ps command or by the
operating system when the program breaks; the debug-
ger will then start automatically.

The other startup action, pl unb client, is used
when a program will read messages from the plumbing
port. For example, text editors can read files specified
as command arguments, so one could use a pl unb
st art ruleto begin editing afile. If, however, the edi-
tor will read messages from the edi t plumbing port,
letting it read the message from the port insures that it
uses other information in the message, such as the line
number to display. The pl unb client action is
therefore like pl unb st art, but keeps the message
around for delivery when the application opens the port.
Here is the full rule set to pass a regular file to the text
editor:

existing files,
type is text

possi bly tagged by address,

go to editor

data matches ' ([.a-zA-Z0-9_/\-]*[a-zA-Z0-9_/\-])(’ $addr’)?

arg isfile $1

data set $1

attr add addr=$3

plunb to edit

plumb client w ndow $editor

If the editor is already running, the pl unb to rule
causes it to receive the message on the port. If not, the
command ‘Wi ndow $edi t or’ will create a new win-
dow (using the Plan 9 program wi ndow) to run the edi-
tor, and once that startsit will open the edi t plumbing
port as usual and discover this first message already
waiting.

Thevariables $edi t or and $addr inthisrule set are
macros defined in the plumbing rules file; they specify
the name of the user’s favorite text editor and a regular
expression that matches that editor’'s address syntax,
such as line numbers and patterns. Thisrule set livesin
a library of shared plumbing rules that users private
rules can build on, so the rule set needs to be adaptable
to different editors and their address syntax. The macro
definitions for Acme and Sam [Pike94,Pike87b] ook
likethis:

edi t or =acne

or editor=sam

addrel eme’ ((#?[0-9] +) |
(/I[A-Za-z0-9 \" 1+ 2)|[.9%])’

addr=: ($addrel en([,; +\ -] $addrel em *)

Finally, the application reads the message from the
appropriate port, such as /mt/plunb/edit,
unpacksit, and goesto work.

6. Message Delivery

In summary, a message is delivered by writing it to the
send file and having the plumber, perhaps after some
rewriting, send it to the destination port or start a new
application to handle it. If no destination can be found
by the plumber, the original write to the send file will
fail, and the application will know the message could
not be delivered.

If multiple applications are reading from the destination
port, each will receive an identical copy of the message;
that is, the plumber implements fan-out. The number of
messages delivered is equal to the number of clients
that have opened the destination port. The plumber
gueues the messages and makes sure that each applica-
tion that opened the port before the message was writ-
ten gets exactly one copy.

This design minimizes blocking in the sending applica-
tions, since the write to the send file can complete as

soon as the message has been queued for the appropri-
ate port. If the plumber waited for the message to be
read by the recipient, the sender could block unneces-
sarily. Unfortunately, this design also means that there
is no way for a sender to know when the message has
been handled; in fact, there are cases when the message
will not be delivered at all, such as if the recipient exits
while there are still messages in the queue. Since the
plumber is part of a user interface, and not an
autonomous message delivery system, the decision was
made to give the non-blocking property priority over
reliability of message delivery. In practice, this tradeoff
has worked out well: applications almost always know
when a message has failed to be delivered (thewri t e
fails because no destination could be found), and those
occasions when the sender believes incorrectly that the
message has been ddlivered are both extremely rare and
easily recognized by the user—usually because the
recipient application has exited.

7. TheRulesFile

The plumber begins execution by reading the user's
startup plumbing rules file, | i b/ pl unbi ng. Since
the plumber is implemented as a file server, it can also
present its current rules as a dynamic file, a design that
provides an easily understood way to maintain the rules.

The file / mt / pl unb/ r ul es is the text of the rule
set the plumber is currently using, and it may be edited
like a regular file to update those rules. To clear the
rules, truncate that file; to add a new rule set, append to
it:

% echo "type is text

data is self-destruct

plunb start rm-rf $HOVE >>
/[mt/ pl unb/rul es

This rule set will take effect immediately. If it has a
syntax error, the write will fail with an error message
from the plumber, such as ‘maformed rule or
"undefined verb’.

To restore the plumber to its startup configuration,

% cp /usr/$user/lib/plunmbing \
/[mt / pl unb/ rul es

For more sophisticated changes, one can of course use a
regular text editor to modify / rmt / pl unb/ r ul es.

This simple way of maintaining an active service could
profitably be adopted by other systems. It avoids the
need to reboot, to update registries with special tools, or
to send asynchronous signals to critical programs.

8. TheUser Interface

One unusual property of the plumbing system isthat the
user interface that programs provide to access it can
vary considerably, yet the result is nonetheless a unify-
ing force in the environment. Shells talk to editors,
image viewers, and web browsers; debuggers talk to
editors; editors talk to themselves; and the window sys-
tem talks to everybody.

The plumber grew out of some of the ideas of the Acme
editor/window-system/user interface [Pike94], in partic-
ular its ‘acquisition’ feature. With a three-button
mouse, clicking the right button in Acme on a piece of
text tells Acme to get the thing being pointed to. If it is
a file name, open the file; if it is a directory, open a
viewer for its contents; if a line number, go to that line;
if a regular expression, search for it. This one-click
access to anything describable textually was very pow-
erful but had several limitations, of which the most
important were that Acme's rules for interpreting the
text (that is, the implicit hyperlinks) were hard-wired
and inflexible, and that they only applied to and within
Acme itself. One could not, for example, use Acme's
power to open an image file, since Acme is a text-only
system.

The plumber addresses these limitations, even with
Acme itself: Acme now uses the plumber to interpret
the right button clicks for it. When the right button is
clicked on some text, Acme constructs a plumbing mes-
sage much as described above, using the cli ck
attribute and the white-space-delimited text surrounding
the click. It then writes the message to the plumber; if
the write succeeds, all iswell. If not, it falls back to its
original, interna rules, which will result in a context
search for the word within the current document.

If the message is sent successfully, the recipient is
likely to be Acme itself, of course: the request may be
to open afile, for example. Thus Acme has turned the
plumber into an external component of its own opera-
tion, while expanding the possibilities; the operation
might be to start an image viewer to open a picture file,
something Acme cannot do itself. The plumber
expands the power of Acme's original user interface.

Traditional menu-driven programs such as the text edi-
tor Sam [Pike87b] and the default shell window of the

window system 8% [Pike91] cannot dedicate a mouse
button solely to plumbing, but they can certainly dedi-
cate amenu entry. The editing menu for such programs
now contains an entry, pl unb, that creates a plumbing
message using the current selection. (Acme manages to
send a message by clicking on the text with one button;
other programs require a click with the select button
and then a menu operation.) For example, after this
happensin a shell window:

% make
cc -c¢ shaney.c

shaney. c: 232: i undefined

one can click anywhere on the string shaney. c: 232,
execute the pl umb menu entry, and have line 232
appear in the text editor, be it Sam or Acme—
whichever has the edi t port open. (If this were an
Acme shell window, it would be sufficient to right-click
on the string.)

[An interesting side line is how the window system
knows what directory the shell is running in; in other
words, what value to place in the wdi r field of the
plumb message. Recall that 8% is, like many Plan 9
programs, a file server. It now serves a new file,
[dev/ wdi r, that is private to each window. Pro-
grams, in particular the Plan 9 shell, r ¢, can write that
file to inform the window system of its current direc-
tory. When acd command is executed in an interactive
shell, r ¢ updates the contents of / dev/wdi r and
plumbing can proceed with local file names.]

Of course, users can plumb image file names, process
ids, URLs, and other items—any string whose syntax
and disposition are defined in the plumbing rules file.
An example of how the pieces fit together is the way
Plan 9 now handles mail, particularly MIME-encoded

mMessages.

When a new mail message arrives, the mail receiver
process sends a plumbing message to the newmsi |

port, which notifies any interested process that new mail
is here. The plumbing message contains information
about the mail, including its sender, date, and current
location in the file system. The interested processes
include a program, f aces, that gives a graphical dis-
play of the mail box using faces to represent the senders
of messages [PiPr85], as well as interactive mail pro-
grams such as the Acme mail viewer [Pike94]. The
user can then click on the face that appears, and the
f aces program will send another plumbing message,
this time to the showmai | port. Here is the rule for
that port:

%ls -1 /mil/fs/nbox/25
d-r-xr-xr-x M 20 rob rob
d-r-xr-xr-x M 20 rob rob
--r--r--r--
--r--r--r-- M20 rob rob
% mai |

25 nessages

. 25

From presotto

Date: Sun Nov 21 13:05:51 EST 1999
To: rob

Check this out.

===> 2/ (image/jpeg) [inline]
/' mai | / fs/ nbox/ 25/ 2/ f abi 0. j pg

0 Nov 21 13:06 /nmmil/fs/nmbox/25/1

0 Nov 21 13:06 /nmail/fs/ nbox/25/2

M 20 rob rob 28678 Nov 21 13:06 /mail/fs/ nmbox/ 25/ body
0 Nov 21 13:06 /mail/fs/nmbox/25/cc

Figure 2. A terminal session illustrating the mail file system.

faces -> new nail w ndow for

type is text

data matches '[a-zA-Z0-9_ \-./]+

data matches '/mail/fs/[a-zA-Z0-9/]+
/[0-9]+

plunb to shownrai l

plunb start w ndow ednai |

message

-s $0

If a program, such as the Acme mail reader, is reading
that port, it will open a new window in which to display
the message. If not, the pl unb st art rulewill create
a new window and run ednmai | , a conventional mail
reading process, to examine it. Notice how the plumb-
ing connects the components of the interface together
the same way regardless of which components are actu-
ally being used to view mail.

There is more to the mail story. Naturally, mail boxes
in Plan 9 are treated as little file systems, which are syn-
thesized on demand by a special-purpose file server that
takes a flat mail box file and converts it into a set of
directories, one per message, with component files con-
taining the header, body, MIME information, and so on.
Multi-part MIME messages are unpacked into multi-
level directories as shown in Figure 2.

Since the components are all (synthetic) files, the user
can plumb the pieces to view embedded pictures,
URLs, and so on. Note that the mail program can
plumb the contents of i nl i ne attachments automati-
cally, without user interaction; in other words, plumb-
ing lets the mailer handle multimedia data without itself
interpreting it.

At a more mundane level, a shell command, pl unb,
can be used to send messages:

% cd /usr/rob/src
% pl unb nemc

will send the appropriate message to the edi t port. A
surprising use of the pl unb command is in actions

within the plumbing rules file. In our lab, we com-
monly receive Microsoft Word documents by mail, but
we do not run Microsoft operating systems on our
machines so we cannot view them without at least
rebooting. Therefore, when a Word document arrives
in mail, we could plumb the . doc file but the text edi-
tor could not decode it. However, we have a program,
doc2t xt , that decodes the Word file format to extract
and format the embedded text. The solution is to use
pl unb inapl unb st art actiontoinvokedoc2t xt
on. doc filesand synthesize a plain text file:

rule set for MS Wrd docunents

type is text
data matches '[a-zA-Z0-9_ \-./]+
data matches ' ([a-zA-Z0-9_\-./]+)\.doc’
arg isfile $0
plunmb start doc2txt $data | \
plunb -i -d edit \
-a action=showdata \
-a fil enane=%$0

The arguments to pl unb tell it to take standard input
as its data rather than the text of the arguments (- i),
define the destination port (- d edi t), and set a con-
ventional attribute so the editor knows to show the mes-
sage data itself rather than interpret it asafile name (- a
action=showdat a) and provide the origina file
name (- a fi | ename=$0). Now when a user plumbs
a. doc file the plumbing rules run a process to extract
the text and send it as a temporary file to the editor for
viewing. It's imperfect, but it's easy and it beats
rebooting.

Another smple example is a rule that turns man pages
into hypertext. Manua page entries of the form
pl unber (1) can be clicked on to pop up a window
containing the formatted ‘man page’. That man page
will in turn contain more such citations, which will also

be clickable. Theruleis alittle like that for Word doc-
uments:

man i ndex entries are synthesized
type is text
data matches ' ([a-zA-Z0-9 \-./]+)
V(([0-9])\)°
plunb start man $2 $1 | \
plumb -i -d edit \
-a action=showdata \
-a fil enanme=/ man/ $1($2)

There are many other inventive uses of plumbing. One
more should give some of the flavor. We have a shell
script, sr ¢, that takes as argument the name of an exe-
cutable binary file. It examines the symbol table of the
binary to find the source file from which it was com-
piled. Since the Plan 9 compilers place full source path
names in the symbol table, sr ¢ can discover the com-
plete file name. That is then passed to pl unb, com-
plete with the line number to find the symbol nai n.
For example,

% src plunb

isal it takes to pop up an editor window on the mai n
routine of the pl unb command, beginning at line 39 of
/ sys/ src/ cmd/ pl unb/ pl unb. c. Like most uses
of plumbing, thisis not a breakthrough in functionality,
but it isagreat convenience.

9. Why This Architecture?

The design of the plumbing system is peculiar: a cen-
tralized language-based file server does most of the
work, while compared to other systems the applications
themselves contribute relatively little. This architecture
is deliberate, of course.

That the plumber’ s behavior is derived from alinguistic
description gives the system great flexibility and
dynamism—rules can be added and changed at will,
without rebooting—but the existence of a central library
of rules ensures that, for most users, the environment
behaves in well-established ways.

That the plumber is a file server is perhaps the most
unusual aspect of its design, but is also one of the most
important. Messages are passed by regular 1/0 opera-
tions on files, so no extra technology such as remote
procedure call or request brokers needs to be provided;
messages are transmitted by familiar means. Almost
every service in Plan 9 is a file server, so services can
be exported trivially using the system’s remote file sys-
tem operations [Pike93]. The plumber is no exception;
plumbing messages pass routinely across the network to
remote applications without any special provision, in
contrast to some commercial IPC mechanisms that
become significantly more complex when they involve

multiple machines. As | write this, my window system
is talking to applications running on three different
machines, but they al share a single instance of the
plumber and so can interoperate to integrate my envi-
ronment. Plan 9 uses a shared file name space to com-
bine multiple networked machines—compute servers,
file servers, and interactive workstations—into a single
computing environment; plumbing’s design as a file
server is a natural by-product of, and contributor to, the
overall system architecture [Pike92].

The centrality of the plumber is also unusual. Other
systems tend to let the applications determine where
messages will go; consider mail readers that recognize
and highlight URLs in the messages. Why should just
the mail readers do this, and why should they just do it
for URLsS? (Acme was guilty of similar crimes.) The
plumber, by removing such decisions to a central
authority, guarantees that all applications behave the
same and simultaneously frees them all from figuring
out what's important. The ability for the plumber to
excerpt useful data from within a message is critical to
the success of this model.

The entire system is remarkably small. The plumber
itself is only about two thousand lines of C code. Most
applications work fine in a plumbing environment with-
out knowing about it at all; some need trivial changes
such as to standardize their error output; a few need to
generate and receive plumbing messages. But even to
add the ahility to send and receive messages in a pro-
gram such as text editor is short work, involving typi-
cally afew dozen lines of code. Plumbing fits well into
the existing environment.

But plumbing is new and it hasn't been pushed far
enough yet. Most of the work so far has been with tex-
tual messages, although the underlying system is capa-
ble of handling general data. We plan to reimplement
some of the existing data movement operations, such as
cut and paste or drag and drop, to use plumbing as their
exchange mechanism. Since the plumber is a central
message handler, it is an obvious place to store the
‘clipboard’. The clipboard could be built as a special
port that holds onto messages rather than deleting them
after delivery. Since the clipboard would then be hold-
ing a plumbing message rather than plain text, asin the
current Plan 9 environment, it would become possible
to cut and paste arbitrary data without providing new
mechanism. In effect, we would be providing a new
user interface to the existing plumbing facilities.

Another possible extension is the ability to override
plumbing operations interactively. Originally, the plan
was to provide a mechanism, perhaps a pop-up menu,
that one could use to direct messages, for example to

send a PostScript file to the editor rather than the
PostScript viewer by naming an explicit destination in
the message. Although this deficiency should one day
be addressed, it should be done without complicating
the interface for invoking the default behavior. Mean-
while, in practice the default behavior seems to work
very well in practice—as it must if plumbing is to be
successful—so the lack of overridesis not keenly felt.

10. Comparison with Other Systems

The ideas of the plumbing system grew from an attempt
to generalize the way Acme acquires files and data.
Systems further from that lineage also share some prop-
erties with plumbing. Most, however, require explicit
linking or message passing rather than plumbing's
implicit, context-based pattern matching, and none has
the plumber’ s design of alanguage-based file server.

Reiss's FIELD system [Reis95] probably comes the
closest to providing the facilities of the plumber. It has
a central message-passing mechanism that connects
applications together through a combination of alibrary
and a pattern-matching central message dispatcher that
handles message send and reply. The main differences
between FIELD’s message dispatcher and the plumber
are first that the plumber is based on a special-purpose
language while the FIELD system uses an object-
oriented library, second that the plumber has no concept
of areply to a message, and finally that the FIELD sys-
tem has no concept of port. But the key distinction is
probably in the level of use. In FIELD, the message
dispatcher is a critical integrating force of the underly-
ing programming environment, handling everything
from debugging events to changing the working direc-
tory of a program. Plumbing, by contrast, is intended
primarily for integrating the user interface of existing
tools; it is more modest and very much simpler. The
central advantage of the plumber is its convenience and
dynamism; the FIELD system does not share the ease
with which message dispatch rules can be added or
modified.

The inspiration for Acme was the user interface to the
object-oriented Oberon system [WiGu92]. Oberon’s
user interface interprets mouse clicks on strings such as
bj . net h to invoke calls to the method net h of the
object Cbj . This was the starting point for Acme's
middle-button execution [Pike94], but nothing in
Oberon is much like Acme's right-button ‘acquisition’,
which was the starting point for the plumber. Oberon’s
implicit method-based linking is not nearly as genera
as the pattern-matched linking of the plumber, nor does
its style of user-triggered method call correspond well
to the more general idea of inter-application communi-
cation of plumbing messages.

Microsoft's OLE interface is another relative. It allows
one application to embed its own data within another’s,
for example to place an Excel spreadsheet within a
Frame document; when Frame needs to format the
page, it will start Excel itself, or at least some of its
DLLs, to format the spreadsheet. OLE data can only be
understood by the application that created it; plumbing
messages, by contrast, contain arbitrary data with a
rigidly formatted header that will be interpreted by the
pattern matcher and the destination application. The
plumber's simplified message format may limit its
flexibility but makes messages easy and efficient to dis-
patch and to interpret. At least for the cut-and-paste
style of exchange OLE encourages, plumbing gives up
some power in return for simplicity, while avoiding the
need to invoke a vestigial program (if Excel can be
called avestige) every time the pasted data is examined.
Plumbing is also better suited to other styles of data
exchange, such as connecting compiler errors to the text
editor.

The Hyperbole [Wein] package for Emacs adds hyper-
text facilities to existing documents. It includes explicit
links and, like plumbing, a rule-driven way to form
implicit links. Since Emacs is purely textual, like
Acme, Hyperbole does not easily extend to driving
graphical applications, nor does it provide a genera
interprocess communication method. For instance,
although Hyperbole provides some integration for mail
applications, it cannot provide the glue that allows a
click on a face icon in an external program to open a
mail message within the viewer. Moreover, since it is
not implemented as a file server, Hyperbole does not
share the advantages of that architecture.

Henry’s er r or program in 4BSD echoes a small but
common use of plumbing. It takes the error messages
produced by a compiler and drives atext editor through
the steps of looking at each one in turn; the notion is to
quicken the compile/edit/debug cycle. Similar results
are achieved in EMACS by writing special M-LISP
macros to parse the error messages from various com-
pilers. Although for this particular purpose they may be
more convenient than plumbing, these are specific solu-
tions to a specific problem and lack plumbing’s general-
ity.

Of course, the resource forks in MacOS and the associa-
tion rules for file name extensions in Windows also pro-
vide some of the functionality of the plumber, although
again without the generality or dynamic nature.

Closer to home, Ousterhout’s Tcl (Tool Command Lan-
guage) [Oust90] was originally designed to embed alit-
tle command interpreter in each application to control
interprocess communication and provide a level of inte-

gration. Plumbing, on the other hand, provides minimal
support within the application, offloading most of the
message handling and all the command execution to the
central plumber.

The most obvious relative to plumbing is perhaps the
hypertext links of a web browser. Plumbing differs by
synthesizing the links on demand. Rather than con-
structing links within a document as in HTML, plumb-
ing uses the context of a button click to derive what it
should link to. That the rules for this decision can be
modified dynamically gives it a more fluid feel than a
standard web browsing world. One possibility for
future work is to adapt a web browser to use plumbing
as its link-following engine, much as Acme used
plumbing to offload its acquisition rules. This would
connect the web browser to the existing tools, rather
than the current trend in most systems of replacing the
tools by a browser.

Each of these prior systems—and there are others, e.g.
[Pasa93, Free93]—addresses a particular need or subset
of the issues of system integration. Plumbing differs
because its particular choices were different. It focuses
on two key issues: centralizing and automating the han-
dling of interprocess communication among interactive
programs, and maximizing the convenience (or mini-
mizing the trouble) for the human user of its services.
Moreover, the plumber's implementation as a file
server, with messages passed over files it controls, per-
mits the architecture to work transparently across a net-
work. None of the other systems discussed here inte-
grates distributed systems as smoothly as local ones
without the addition of significant extratechnology.

11. Discussion

There were a few surprises during the development of
plumbing. The first version of plumbing was done for
the Inferno system [Dorw97a,Dorw97b], using its file-
to-channel mechanism to mediate the IPC. Although it
was very simple to build, it encountered difficulties
because the plumber was too disconnected from its
clients; in particular, there was no way to discover
whether a port was in use. When plumbing was imple-
mented afresh for Plan 9, it was provided through a true
file server. Although this was much more work, it paid
off handsomely. The plumber now knows whether a
port is open, which makes it easy to decide whether a
new program must be started to handle a message, and
the ability to edit the rules file dynamically is a major
advantage. Other advantages arise from the file-server
design, such as the ease of exporting plumbing ports
across the network to remote machines and the implicit
security model a file-based interface provides. no one
has permission to open my private plumbing files.

On the other hand, Inferno was an all-new environment
and the user interface for plumbing was able to be made
uniform for all applications. This was impractical for
Plan 9, so more ad hoc interfaces had to be provided for
that environment. Yet even in Plan 9 the advantages of
efficient, convenient, dynamic interprocess communica
tion outweigh the variability of the user interface. In
fact, it is perhaps a telling point that the system works
well for a variety of interfaces; the provision of a cen-
tral, convenient message-passing service is a good idea
regardless of how the programs use it.

Plumbing’s rule language uses only regular expressions
and a few special rules such asi sfi | e for matching
text. There is much more that could be done. For
example, in the current system a JPEG file can be rec-
ognized by a. j pg suffix but not by its contents, since
the plumbing language has no facility for examining the
contents of files named in its messages. To address this
issue without adding more specia rules requires
rethinking the language itself. Although the current
system seems a good balance of complexity and func-
tionality, perhaps a richer, more genera-purpose lan-
guage would permit more exotic applications of the
plumbing model.

In conclusion, plumbing adds an effective, easy-to-use
inter-application communication mechanism to the Plan
9 user interface. Its unusual design as a language-
driven file server makes it easy to add context-
dependent, dynamically interpreted, general-purpose
hyperlinks to the desktop, for both existing tools and
new ones.

12. Acknowledgements

Dave Presotto wrote the mail file system and ednai | .
He, Russ Cox, Sape Mullender, and Cliff Young
influenced the design, offered useful suggestions, and
suffered early versions of the software. They also made
helpful comments on this paper, as did Dennis Ritchie
and Brian Kernighan.

13. References

[Dorw97a] Sean Dorward, Rob Pike, David Leo Pre-
sotto, Dennis M. Ritchie, Howard W. Trickey, and Phi-
lip Winterbottom, ‘‘Inferno’’, Proceedings of the IEEE
Compcon 97 Conference, San Jose, 1997, pp. 241-244.

[Dorw97b] Sean Dorward, Rob Pike, David Leo Pre-
sotto, Dennis M. Ritchie, Howard W. Trickey, and Phi-
lip Winterbottom, ‘‘The Inferno Operating System’’,
Bell Labs Technical Journal, 2, 1, Winter, 1997.

[Free93] FreeBSD, Sysdlog configuration file manual
syslog.conf(0).

[Kill84] T. J. Killian, ‘‘Processes as Files'’, Proceed-
ings of the Summer 1984 USENIX Conference, Salt
Lake City, 1984, pp. 203-207.

[Oust90] John K. Qusterhout, ‘‘Tcl: An Embeddable
Command Languages’, Proceedings of the Winter
1990 USENIX Conference, Washington, 1990, pp.
133-146.

[Pasa93] Vern Paxson and Chris Saltmarsh, "Glish: A
User-Level Software Bus for Loosely-Coupled Dis-
tributed Systems" , Proceedings of the Winter 1993
USENIX Conference, San Diego, 1993, pp. 141-155.

[Pike87a] Rob Pike, ‘‘ Structural Regular Expressions’’,
EUUG Spring 1987 Conference Proceedings, Helsinki,
May 1987, pp. 21-28.

[Pike87b] Rob Pike, ‘‘ The Text Editor sam’’, Software
- Practice and Experience, 17, 5, Nov. 1987, pp. 813-
845.

[Pike91] Rob Pike, ‘8%, the Plan 9 Window System’’,
Proceedings of the Summer 1991 USENIX Conference,
Nashville, 1991, pp. 257-265.

[Pike93] Rob Pike, Dave Presotto, Ken Thompson,
Howard Trickey, and Phil Winterbottom, ‘‘ The Use of
Name Spaces in Plan 9'’, Operating Systems Review,
27, 2, April 1993, pp. 72-76.

[Pike94] Rob Pike, ‘*Acme: A User Interface for Pro-
grammers’, Proceedings of the Winter 1994 USENIX
Conference, San Francisco, 1994, pp. 223-234.

[PiPr85] Rob Pike and Dave Presotto, ‘‘Face the
Nation'’, Proceedings of the USENIX Summer 1985
Conference, Portland, 1985, pg. 81.

[Reis95] Steven P. Reiss, The FIELD Programming
Environment: A Friendly Integrated Environment for
Learning and Development, Kluwer, Boston, 1995.

[Wein] Bob Weiner, Hyperbole User Manual,
http://ww. cs. i ndi ana. edu/ el i sp/
hyper bol e/ hyperbole_1. htmi .

[Wint94] Philip Winterbottom, ‘*ACID: A Debugger
based on a Language'’, Proceedings of the USENIX
Winter Conference, San Francisco, CA, 1993.

[WiGu92] Niklaus Wirth and Jurg Gutknecht, Project
Oberon; The Design of an Operating System and Com-
pilers, Addison-Wesley, Reading, 1992.

