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Abstract

Recent advances in I/O bus structures (e.g., PCI), high-
speed networks, and fast, cheap disks have signifi-
cantly expanded the I/O capacity of desktop-class sys-
tems. This paper describes a messaging system de-
signed to deliver the potential of these advances for
network storage systems including cluster file systems
and network memory. We describegmsnet, an RPC-
like kernel-kernel messaging system based on Trapeze,
a new firmware program for Myrinet network interfaces.
We show how the communication features of Trapeze
and gmsnet are used by the Global Memory Service
(GMS), a kernel-based network memory system.

The paper focuses on support for zero-copy page mi-
gration in GMS/Trapeze using two RPC variants im-
portant for peer-peer distributed services: (1)delegated
RPC in which a request is delegated to a third party,
and (2) nonblocking RPCin which replies are pro-
cessed from the Trapeze receive interrupt handler. We
present measurements of sequential file access from
network memory in the GMS/Trapeze prototype on a
Myrinet/Alpha cluster, showing the bandwidth effects
of file system interfaces and communication choices.
GMS/Trapeze delivers a peak read bandwidth of 96
MB/s using memory-mapped file I/O.

1 Introduction

Two recent hardware advances boost the potential of
cluster computing: switched cluster interconnects that
can carry 1Gb/s or more of point-to-point bandwidth,
and high-quality PCI bus implementations that can han-
dle data streams at gigabit speeds. We are develop-
ing system facilities to realize the potential for high-

�This work is supported by the National Science Foundation un-
der grants CCR-96-24857 and CDA-95-12356, equipment grants from
Intel Corporation and Myricom, and a software grant from the Open
Group.

speed data transfer over Myricom’s 1.28 Gb/s Myrinet
LAN [2], and harness it for cluster file systems, network
memory systems, and other distributed OS services that
cooperatively share data across the cluster. Our broad
goal is to use the power of the network to “cheat” the
I/O bottleneck for data-intensive computing on worksta-
tion clusters.

This paper describes use of the Trapeze messag-
ing system [27, 5] for high-speed data transfer in a
network memory system, the Global Memory Service
(GMS) [14, 18]. Trapeze is a firmware program for
Myrinet/PCI adapters, and an associated messaging li-
brary for DEC AlphaStations running Digital Unix 4.0
and Intel platforms running FreeBSD 2.2. Trapeze com-
munication delivers the performance of the underlying
I/O bus hardware, balancing low latency with high band-
width. Since the Myrinet firmware is customer-loadable,
any Myrinet network site with PCI-based machines can
use Trapeze.

GMS [14] is a Unix kernel facility that manages the
memories of cluster nodes as a shared, distributed page
cache. GMS supports remote paging [8, 15] and co-
operative caching [10] of file blocks and virtual mem-
ory pages, unified at a low level of the Digital Unix 4.0
kernel (a FreeBSD port is in progress). The purpose of
GMS is to exploit high-speed networks to improve per-
formance of data-intensive workloads by replacing disk
activity with memory-memory transfers across the net-
work whenever possible. The GMS mechanisms man-
age the movement of VM pages and file blocks between
each node’slocal page cache— the file buffer cache
and the set of resident virtual pages — and the network
memoryglobal page cache.

This paper deals with the communication mecha-
nisms and network performance of GMS systems us-
ing Trapeze/Myrinet, with particular focus on the sup-
port for zero-copy read-ahead and write-behind of se-
quentially accessed files. Cluster file systems that stripe
data across multiple servers are typically limited by



the bandwidth of the network and communication sys-
tem [23, 16, 1]. We measure synthetic bandwidth tests
that access files in network memory, in order to deter-
mine the maximum bandwidth achievable through the
file system interface by any network storage system us-
ing Trapeze. The current GMS/Trapeze prototype can
read files from network memory at 96 MB/s on an Al-
phaStation/Myrinet network. Since these speeds ap-
proach the physical limits of the hardware, unnecessary
overheads (e.g., copying) can have significant effects on
performance. These overheads can occur in the file ac-
cess interface as well as in the messaging system. We
evaluate three file access interfaces, including two that
use the Unixmmapsystem call to eliminate copying.

Central to GMS is an RPC-like messaging facility
(gmsnet) that works with the Trapeze interface to sup-
port the messaging patterns and block migration traffic
characteristic of GMS and other network storage ser-
vices. This includes a mix of asynchronous and re-
quest/response messaging (RPC) that ispeer-to-peerin
the sense that each “client” may also act as a “server”.
The support for RPC includes two variants important
for network storage: (1)delegated RPCsin which re-
quests are delegated to third parties, and (2)nonblock-
ing RPCin which the replies are processed bycontin-
uation procedures executing from an interrupt handler.
These features are important for peer-to-peer network
storage services: the first supports directory lookups for
fetched data, and the second supports lightweight asyn-
chronous calls, which are useful for prefetching. When
using these features, GMS andgmsnet cooperate with
Trapeze to unify buffering of migrated pages, eliminat-
ing all page copies by sending and receiving directly
from the file buffer cache and local VM page cache.

This paper is organized as follows. Section 2 gives an
overview of the Trapeze network interface and the fea-
tures relevant to GMS communication. Section 3 deals
with the gmsnet messaging layer for Trapeze, focus-
ing on the RPC variants and zero-copy handling of page
transfers. Section 4 presents performance results from
the GMS/Trapeze prototype. We conclude in Section 5.

2 High-Speed Data Transfer with Trapeze

The Trapeze messaging system consists of two compo-
nents: a messaging library that is linked into programs
using the package, and a firmware program that runs on
the Myrinet network interface card (NIC). The Trapeze
firmware and the host interact by exchanging commands
and data through a block of memory on the NIC, which
is addressable in the host’s physical address space using
programmed I/O. The firmware defines the interface be-
tween the host CPU and the network device; it interprets
commands issued by the host and controls the movement

of data between the host and the network link. The host
accesses the network using macros and procedures in the
Trapeze library, which defines the lowest level API for
network communication across the Myrinet.
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Figure 1: Using Trapeze for TCP/IP and for kernel-
kernel messaging for network memory.

Like other network interfaces based on Myrinet (e.g.,
Hamlyn [4], VMMC-2 [13], Active Messages [9],
FM [21]), Trapeze can be used as a memory-mapped
network interface for user applications, e.g., parallel pro-
grams. However, Trapeze was designed primarily to
support fast kernel-to-kernel messaging alongside con-
ventional TCP/IP networking. The Trapeze distribu-
tion includes a network device driver that allows the
native TCP/IP protocol stack to use a Trapeze network
alongside thegmsnet layer. Figure 1 depicts this struc-
ture. The kernel-to-kernel messaging layer is intended
for GMS and other services that assume mutually trust-
ing kernels.

2.1 Trapeze Overview

Trapeze messages are shortcontrol messages(maximum
128 bytes) with optional attachedpayloadstypically
containing application data not interpreted by the mes-
sage system, e.g., a file block, a virtual memory page,
or a TCP segment. Each message can have at most one
payload attached to it. Separation of control messages
and bulk data transfer is common to a large number of
messaging systems since the V system [6].

A Trapeze control message and its payload (if any) are
sent as a single packet on the network. Since Myrinet has
no fixed maximum packet size (MTU), the maximum
payload size of a Trapeze network is configurable, and is
typically set to the virtual memory page size (4K or 8K).
The Trapeze MTU is the maximum control message size
plus the payload size.

Payloads are sent and received using DMA to/from
aligned buffers residing anywhere in host memory. The
host attaches a payload to an outgoing message using a
Trapeze macro that stores the payload’s DMA address
and length into designated fields of the send ring entry.
On the receiving side, Trapeze deposits the payload into
a host memory buffer before delivering the control mes-
sage.
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Figure 2: NIC Memory Structures for a Trapeze end-
point.

The data structures in NIC memory include anend-
pointstructure shared with the host. A Trapeze endpoint
(shown in Figure 2) includes two message rings, one for
sending and one for receiving. Each message ring is a
circular array of 128-byte control message buffers and
related state, managed as a producer/consumer queue.
From the perspective of a host CPU, the NIC produces
incoming messages in the receive ring and consumes
outgoing messages in the send ring. The host sends a
message by forming it in the next free send ring entry
and setting a bit to indicate that the message is ready
to send. When a message arrives from the network, the
firmware deposits it into the next free receive ring entry,
sets a bit to inform the host that the message is ready to
consume, and optionally signals the host with an inter-
rupt.

Handling of incoming messages is interrupt-driven
when Trapeze is used from within the kernel. Each ker-
nel protocol module using Trapeze (i.e.,gmsnetand the
IP network driver) registers a receiver interrupt handler
upcalled from the Trapeze interrupt handler.

Trapeze is designed to optimize handling of payloads
as well as to deliver good performance for small mes-
sages. In a network memory system, page fault stall
time is determined primarily by the time to transfer the
requested page on the network. On the other hand,
bursts of page transfers (e.g., for read-ahead for se-
quential access) require high bandwidth. The Trapeze
firmware employs a message pipelining technique called
cut-through delivery[27] to balance low payload latency
with high bandwidth under load. With this technique,
the one-way raw Trapeze latency for a 4K page trans-
fer is 70�s on 300MHz Pentium-II/440LX systems with
LANai 4.1 M2M-PCI32 Myrinet adapters. On these sys-
tems, Trapeze delivers 112 MB/s for a stream of 8K pay-
loads; with 64K payloads, Trapeze can use over 95% of
the peak bandwidth of the I/O bus, achieving 126 MB/s
of user-to-user point-to-point bandwidth.1

1These bandwidth numbers define a “megabyte” as one million

2.2 Unified Buffering for In-Kernel
Trapeze

All kernel-based Trapeze protocol modules share a com-
mon pool of receive buffers allocated from the virtual
memory page frame pool; the maximum payload size is
set to the virtual memory page size. Since Digital Unix
allocates its file block buffers from the virtual memory
page frame pool as well, this allows unified buffering
among the network, file, and VM systems. For example,
the system can send any virtual memory page or cached
file block out to the network by attaching it as a payload
to an outgoing message. Similarly, every incoming pay-
load is deposited in an aligned physical frame that can
mapped into a user process or hashed into the file cache.
Since file caching and virtual memory management are
reasonably unified, we often refer to the two subsystems
collectively as “the file/VM system”, and use the term
“page” to include file blocks.

The TCP/IP stack can also benefit from the unified
buffering of Trapeze payloads to reduce copying over-
head bypayload remapping(similar to [11, 3, 17]). On
a normal transmission, IP message data is copied from
a user memory buffer into an mbuf chain [20] on the
sending side; on the receiving side, the driver copies the
header into a small mbuf, points a BSD-style external
mbuf at the payload buffer, and passes the chain through
the IP stack to the socket layer, which copies the payload
into user memory and frees the kernel buffer. We have
modified the Digital Unix socket layer to avoid copying
when size and alignment properties allow. On the send-
ing side, the socket layer builds mbuf chains by pinning
the user buffer frames, marking them copy-on-write, ref-
erencing them with external mbufs, and passing them
through the TCP/IP stack to the network driver, which
attaches them to outgoing messages as payloads. On
the receiving side, the socket layer unmaps the frames
of the user buffer, replaces them with the kernel pay-
load buffer frames, and frees the user frames. With pay-
load remapping, AlphaStations running the standardnet-
perfTCP benchmark over Trapeze sustain point-to-point
bandwidth of 87 MB/s.2

Since outgoing payload frames attached to the send
ring may be owned by the file/VM system, they must
be protected from modification or reuse while a trans-
mit is in progress. Trapeze notifies the system that it is
safe to overwrite an outgoing frame by upcalling a spec-
ified transmit completion handlerroutine. For example,
when an IP send on a user frame completes, Trapeze up-
calls the completion routine, which unpins the frame and

bytes. All other bandwidth numbers in this paper define 1MB as
1024*1024 bytes.

2Measured Alcor (266 MHz AS 500) to Miata (500 MHz PWS
500au), 8320-byte MTU, 1M netperf transfers, socket buffers at 1M,
software TCP checksums disabled (hardware CRC only): 732 Mb/s.



releases its copy-on-write protection.
However, to reduce overhead Trapeze does not gener-

ate transmit-complete interrupts. Instead, Trapeze saves
the handler pointer in host memory and upcalls the han-
dler only when the send ring entry is reused for another
send. Since messages may be sent from interrupt han-
dlers, a completion routine could be called in the context
of an interrupt handler that happened to reuse the same
send ring entry as the original message. For this rea-
son, completion handlers must not block, and the struc-
tures they manipulate must be protected by disabling
interrupts. Since completion upcalls may be arbitrar-
ily delayed, the Trapeze API includes a routine to poll
all pending transmits and call their handlers if they have
completed.

2.3 Incoming Payload Table

The benefits of high-speed networking are easily over-
shadowed by processing costs and copying overhead
in the hosts. To support zero-copy communication, a
Trapeze receiver can designate a region of memory as
the receive buffer space for a specific incoming payload
identified by a tag field. When the message arrives, the
firmware recognizes the tag and deposits the payload di-
rectly into the waiting buffer. Handling of tagged pay-
loads is governed by a third structure in NIC memory,
the incoming payload table(IPT).

GMS uses the Trapeze IPT for copy-free handling of
fetched pages in RPC replies, as described in Section 3.
Ordinarily, Trapeze payloads are received into buffers
attached by the host to the receive ring entries; since the
firmware places messages in the ring in the order they
arrive, the host cannot know in advance which generic
buffer will be selected to receive any given payload, and
the payload may need to be copied within the host if it
cannot be remapped. Early demultiplexing with the IPT
avoids this copy.

To set up an IPT mapping, the host calls a Trapeze
API routine to allocate a free entry in the IPT, initialize it
with the DMA address of the designated payload buffer,
and return a tag value (payload token) consisting of an
IPT index and a protection key. The payload token is a
weak form of capability that can be passed in a message
to another node; any node that knows the token can use
it to tag a message and transmit a payload into the buffer.
When the firmware receives a tagged message from the
network, it validates the key against the indexed IPT en-
try before initiating a DMA into the designated receive
buffer. The receiving host may cancel the IPT entry at
any time (e.g., request timeout); similarly, the firmware
protects against dangling tokens and duplicate messages
by cancelling the entry when a matching message is re-
ceived. If the key is not valid, the NIC drops the payload

and delivers the control portion with a payload length of
zero, so the receive message handler can recognize and
handle the error.

At present, the IPT maps only a few megabytes of
host memory, enough for the reply payloads of all out-
standing requests (e.g., outstanding page fetches). This
is a modest approach that meets our needs, relative to
more ambitious approaches that indirect through TLB-
like structures on the NIC [13, 26, 7]. We have con-
sidered a larger IPT with support for multiple transfers
to the same buffer at different offsets, as in Hamlyn’s
sender-based memory management[4], but we have not
found a need for these features in our current uses of
Trapeze.

3 Page Transfers in GMS/Trapeze

This section outlines a Trapeze-based kernel-kernel
RPC-like messaging layer designed to support coop-
erative cluster services. The package is derived from
the original RPC package for the Global Memory Ser-
vice [14] (gmsnet), extended to use Trapeze and to sup-
port a richer set of communication styles, primarily for
asynchronous prefetching at high bandwidth [24]. Al-
though the package is generic, we draw on GMS exam-
ples to motivate its features and to illustrate their use.

Since many aspects of RPC and messaging systems
are well-understood, we focus on those aspects that ben-
efit from the Trapeze features discussed in the previ-
ous section. In particular, we explain the features for
transferring pages (or file blocks) efficiently within the
RPC framework, and their use by the protocol operations
most critical for GMS performance: page fetches (get-
page) from the global page cache to a local page cache,
and page pushes or evictions (putpageor movepage)
from a local cache to the global cache.

Section 3.2 discusses the zero-copy handling of
fetched pages using the Trapeze incoming payload ta-
ble (IPT); Sections 3.3 and 3.4 extend the zero-copy re-
ply scheme to delegated and nonblocking RPC variants
useful in GMS and other peer-to-peer network services.
We illustrate use of nonblocking RPC to extend standard
read-ahead for files and virtual memory to GMS; this al-
lows processes to access data from network memory or
storage servers at close to network bandwidth.

3.1 Basic Mechanisms

Thegmsnetmessaging layer includes basic support for
typed messages, stub procedures, dispatching to ser-
vice procedures based on message types, and matching
replies with requests. The Trapeze receiver interrupt
handler directs incoming messages togmsnet by up-
calling a registered service routine; the service routine



hands off incoming requests to a server thread. How-
ever,gmsnetit is not a true RPC system: many protocol
messages do not produce replies, and there is no sup-
port for automatic stub generation. The package is best
thought of as a library of procedures and macros used by
the messaging stubs to build and decode messages and
to direct their flow through the system. It is designed for
messages with relatively simple arguments and bulk data
payloads (e.g., file blocks) that are not interpreted by the
message handlers themselves.

To send a message, a stub allocates a message buffer
with gmsnet makebuf, calls routines and macros to
build the message, e.g., by pushing data items into the
message, and sends the message to a destination with
gmsnet sendto. In Trapeze,gmsnet makebufreturns a
pointer to a send ring entry, andgmsnet sendtoreleases
it. Messages are typed by an operation code and a re-
quest/reply bit. Incoming requests are dispatched by us-
ing the operation code to index into a vector of registered
server-side stubs. Incoming replies are handled directly
by the receiver interrupt handler, either by waking up a
waiting thread or by calling a reply continuation proce-
dure as described in Section 3.4.

An important function of the RPC layer is to match in-
coming replies with requests. If a reply is expected, the
caller makes an entry in acall record table before send-
ing the request message, and places areply tokencon-
taining a unique call record ID into the outgoing request
message. After sending the request, the calling thread
or process may block on the call record entry. When the
server side generates a reply, it places a copy of the reply
token in the reply message. When the reply arrives, the
receiver interrupt handler decodes the reply token and
retrieves the call record. The call record includes all in-
formation needed to process the reply, e.g., by awaken-
ing the calling thread or process.

To transfer a page or file block in a request or re-
ply, the stub attaches the memory frame to the mes-
sage buffer as a payload. The system is inhibited from
reusing the frame or overwriting it until the frame con-
tents have been transferred to the network adapter using
DMA (Section 2.2). On the receiving side, Trapeze uses
DMA to deposit each received payload into a memory
frame designated by the receiver.

3.2 Zero-Copy Reply Handling

GMS performance depends on efficient handling ofget-
pagereplies containing page payloads. When the virtual
memory system or file system initiates a page fetch, it
first selects the target page frame according to its poli-
cies for page replacement and other factors such as page
coloring. The goal of the GMSgetpageclient stub is
to arrange to transfer the incoming page directly to the

waiting frame using DMA.
The RPC system uses the Trapeze incoming payload

table (IPT) described in Section 2.3 for this purpose. The
client-sidegetpagestub calls Trapeze to allocate an IPT
entry and obtain a payload token, which is added to the
reply token for the call. When the server-sidegetpage
stub generates a reply, it attaches the frame containing
the requested page as a payload, extracts the Trapeze
payload token, and tags the outgoing reply message by
placing the token in its Trapeze header. Back on the
client side, the Trapeze firmware recognizes the tag in
the message header as the reply payload begins to arrive
on the adapter; once the tag is decoded and validated,
the firmware initiates DMA of the message payload into
the waiting frame.
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Figure 3: GMSgetpageoperation through a directory
site using a delegated RPC.

3.3 Delegated RPC

Unlike traditional RPC, some GMS protocol operations
involve more than one server. To fetch a remote page,
for example, thegetpageoperation must first locate the
page’s caching site. To keep track of pages, GMS uses a
distributed hash directory for pages potentially sharable
by multiple nodes [14]. A requesting node locates a
page’s directory site by applying a globally replicated
hash function to a unique page identifier. It then issues
a getpageRPC to the directory site, which looks up the
page in its portion of the directory, and forwards the re-
quest to the caching site. The caching site completes the
three-way RPC by returning the page directly to the re-
quester. We call this type of operation adelegated RPC.

The key idea behind delegated RPC is to allow the re-
ply token to be passed from node to node until the call is
complete; the last node in the RPC sequence then uses
the reply token to complete the RPC and reply to the
original requester. The delegation is transparent to the
requester, which creates its reply token and includes it
in the request message exactly as for an ordinary RPC.



With delegated RPC, however, a remote procedure can
either return a reply or delegate the request to another
peer by generating a new request message with a copy
of the original reply token. Each node has the same op-
tion of either replying to the original requester or del-
egating the request to yet another peer. Note that each
delegation call is unlike a normal RPC in that the dele-
gated procedure never replies to its immediate caller; it
either forwards the request again or replies directly to the
node that initiated the delegated RPC. Most importantly,
the zero-copy reply handling scheme is preserved, since
the Trapeze payload token is embedded within the re-
ply token, and so is available to the node that ultimately
generates the reply.

Figure 3 shows how GMSgetpageuses delegated
RPC. The directory site for the requested page delegates
the request to the caching site, forwarding the original
request parameters and reply token. The caching site
generates a reply, attaches the requested page as a pay-
load, and tags the message with the payload token, as
described in the previous section. It then sends the reply
directly to the original requester, where it is handled in
the same way as a direct reply.

3.4 Read-Ahead with Nonblocking RPC

Most file system implementations implement read-ahead
to prefetch file data before it is requested. This signif-
icantly improves bandwidth for sequential file access,
which is easy to detect and exploit [20]. We have ex-
tended GMS to support read-ahead in order to meet our
goal of delivering files from network memory at full net-
work bandwidth. GMS read-ahead hides fetch latency
and delivers peak bandwidth by pipelining the network
with a continuous stream of page fetches.

3.4.1 Nonblocking RPC

Any form of prefetching imposes new demands on the
communication layer and is highly dependent on its per-
formance. In particular, prefetching requests are RPC
calls that generate replies, but the replies must be han-
dled asynchronously and outside of the issuing thread
context, so as not to block the issuing thread while the re-
quest is pending. NFS client implementations typically
solve this problem by handing off read-ahead calls to a
systemI/O daemonthat can wait for RPC replies with-
out affecting user processes [22]. This solution requires
a context switch to the I/O daemon for each request and
response.

To reduce context switching overhead, GMS/Trapeze
implements read-ahead and prefetching usingnonblock-
ing RPCs. To implement nonblocking RPC,gmsnet
supplements the call record with support forcontinua-

tion procedures invoked directly from the receiver in-
terrupt handler to process the reply. These continua-
tions are similar to Draves et. al. [12], but they ex-
ecute at interrupt time with no associated thread con-
text. Also, each nonblocking RPC call may have sev-
eral continuations; the issuing stub pushes pointers to
these continuation procedures and their arguments onto
acontinuation stacklinked to the call record returned by
gmsnet makebuf. When the reply arrives, thegmsnet
receiver interrupt handler locates the call record for the
reply as before, pops the continuations from the stack,
and calls them in order with their arguments. Like other
interrupt handling code, continuation procedures are not
permitted to sleep.

Continuations ingmsnet nonblocking RPC are re-
lated to callbacks in Rover’s QRPC [19]. In Rover, asyn-
chronous RPC calls are used to allow applications to tol-
erate slow and unreliable mobile networks, whereas in
GMS/Trapeze their purpose is to support pipelined RPC
operations (e.g., prefetching) on a fast and reliable clus-
ter interconnect.

3.4.2 Read-Ahead from Network Memory

GMS/Trapeze activates sequential read-ahead when the
file/VM system determines that accesses are sequential,
and that subsequent pages are resident in the global
cache but not in the local cache. It issues nonblock-
ing RPCs to prefetch the nextN pages for some config-
urable depthN ; these requests are issued in the context
of the user process accessing the data. Each prefetch re-
quest is an ordinarygetpageoperation; to the receiver,
they are indistinguishable from synchronous fetch re-
quests. The caller allocates the target page frame be-
fore the prefetch, maps it through the IPT as described
in Section 3.2, and includes a reply token in the message.
The server generates a reply as described in Section 3.2,
possibly delegating the request to a peer as described in
Section 3.3.

A record of each pending prefetch request is hashed
into the local page directory so that the frame can be lo-
cated if a process references the page before the prefetch
completes. If a process references a page with a pending
prefetch, the process is put to sleep on a call record until
the read-ahead catches up. If no process blocks await-
ing completion, nonblocking RPCs do not have specific
timeouts. However, call records for nonblocking RPCs
are maintained as an LRU cache, so each call record
eventually reports failure and is reused if no reply ar-
rives.

When each prefetch reply arrives, Trapeze transfers
the payload into the waiting frame and interrupts the
host. The interrupt handler uses the reply token to locate
the call record, which holds a pointer to the continuation



handler for asynchronous prefetch. The interrupt han-
dler invokes the continuation, which “injects” (hashes)
the frame into the local page cache, and enters it into
other structures as required, e.g., an LRU list. Note that
prefetched pages are not copied.

3.4.3 Deferred Continuations

Since continuations execute from the receiver interrupt
handler, they must be synchronized with any kernel code
that accesses the same data structures. For example, a
file prefetch “inject” continuation could corrupt the in-
ternal file/VM data structures if it interrupts a process
that was operating on those structures in kernel mode.
An obvious solution is to disable receive interrupts for
every operation on any data structure that is shared with
a continuation procedure, but this would require signifi-
cant reengineering of existing kernel code that does not
expect to be interrupted.

We use an optimistic approach that defers execution
of continuations in the rare instances when races occur.
Continuation procedures are boolean functions that val-
idate their preconditions by probing the state of relevant
kernel locks before executing. If any needed locks are
held, this indicates that an operation was in progress
when the interrupt was delivered, and the continuation
cannot execute. In this case, the continuation returns
false with no side effects, and is placed on adeferred
continuationsqueue serviced by a kernel daemon thread.
Deferred continuations incur higher latency and over-
head, but they execute safely. This technique is similar
to optimistic active messages [25].

4 Performance

This section presents performance measurements
of gmsnet and sequential file access using the
GMS/Trapeze prototype in Digital Unix 4.0. We
measure all the RPC variants presented in order to
illustrate the costs and benefits of thegmsnet and
Trapeze mechanisms discussed in the previous sections.
The file access tests are intended to show the rate at
which a GMS/Trapeze client can source and sink data
to network storage servers using these communication
mechanisms for payload transfer and asynchronous
read-ahead. A secondary goal is to show the effect of
the operating system kernel interface chosen to read or
write file data at these speeds, which are close to the
limits of the hardware.

The systems used for these measurements are Al-
cor and Miata, two DEC Alpha platforms based on the
21164 CPU. Our Alcors (AlphaStation 500 and 600) are
clocked at 266 MHz, and use a CIA host-PCI bridge
(ASIC pass 2). Miata (PWS 500au) is a newer 500

MHz machine with a Pyxis bridge (ASIC pass 257). All
systems are equipped with M2F-PCI32 Myrinet LAN
adapters connected through an 8-port switch (M2F-
SW8). Both the CIA and Pyxis I/O bridges deliver
almost the full bandwidth of the 32-bit 33MHz PCI
standard (132 MB/s) in one direction; however, Al-
cor receives at half-bandwidth and Miata sends at half-
bandwidth. Most of the experiments in this section in-
volve a one-way high-volume data transfer: to circum-
vent the bridge bottlenecks Alcor is always the sender
and Miata is always the receiver. Release of the im-
proved Miata-II is imminent, but it is not yet available
at the time of this writing.

4.1 RPC Microbenchmarks

Table 1 shows latency and bandwidth results from
kernel-kernel RPC microbenchmarks using 16-byte con-
trol messages and payload sizes of 0 bytes, 4K bytes,
and 8K bytes. In these experiments the request message
is a 16-byte control message that generates a reply with
an attached payload. The client is a Miata; the server(s)
are Alcors. For these experiments, Trapeze was config-
ured to use DMA for control messages in order to reduce
overhead at the cost of higher latency.

The table presents measurements for ordinary re-
quest/response RPC (2-way) and delegated (3-way)
RPC, for three reply-handling variants: traditional
blocked caller (wait), nonblocking continuation (cont),
and deferred continuation (defer). For the replies car-
rying payloads, we measured the effect of three payload
handling schemes: (1) “solicited” payloads received into
frames mapped by the Trapeze IPT, (2) “unsolicited”
payloads received into a generic payload buffer attached
to the receive ring entry (as for a received GMSputpage
or movepage), and (3) “unsolicited with copy”, in which
the received payload is copied from a generic payload
buffer into a reply buffer not mapped through the IPT.
The third variant is intended to demonstrate the value of
the IPT for copy-free reply handling.

What is important here is the low incremental cost and
high bandwidth of pagesize payloads, and the effects of
the payload handling techniques presented in Sections 2
and 3. For example, we can determine from the2-way
wait numbers that the marginal transfer latency of a so-
licited payload is about 54�s for 4K and 92�s for 8K, in-
cluding the cost to map the receiving frame through the
IPT. With nonblocking RPCs and continuations,gmsnet
preserves 87% of the 88 MB/s of bandwidth that raw
Trapeze provides with 4K payloads on this platform, and
over 92% of the 105 MB/s of raw Trapeze bandwidth
using 8K payloads. Interestingly, at most 7% of the re-
maining throughput is sacrificed by copying the payload
at the receiver; this reflects the excellent memory system



Msg/Payload 16/0 16/4096 16/8192
Latency Bandwidth Latency Bandwidth Latency Bandwidth
(�sec) (msgs/sec) (�sec) (MB/sec) (�sec) (MB/sec)

Solicited 127.6 32.1 165.9 48.8
Wait 73.7 13600 Unsolicited 134.0 30.6 169.6 48.0

Unsol+Copy 167.4 24.5 217.2 37.5
Solicited 125.8 78.9 163.5 95.1

2-way Cont 69.0 64500 Unsolicited 128.0 79.2 166.7 97.4
Unsol+Copy 160.8 69.7 210.8 90.5

Solicited 131.6 76.9 169.8 94.9
Defer 73.1 64500 Unsolicited 135.2 70.7 170.5 96.7

Unsol+Copy 170.0 50.4 218.3 92.9

Solicited 163.4 25.1 201.9 40.3
Wait 109.5 9150 Unsolicited 168.8 24.3 205.9 39.7

Unsol+Copy 201.8 20.3 254.0 32.2
Solicited 162.6 79.4 199.5 94.7

3-way Cont 104.6 64600 Unsolicited 163.6 78.8 202.3 97.1
Unsol+Copy 195.2 63.6 246.4 91.3

Solicited 166.6 77.6 205.7 95.5
Defer 108.9 64500 Unsolicited 169.6 65.7 206.1 96.3

Unsol+Copy 204.0 47.9 254.4 88.1

Table 1: RPC microbenchmark results forgmsneton an AlphaStation/Myrinet network.

bandwidth of the Pyxis-based Miata (this is also appar-
ent on our Intel platforms using the new 440LX chipset).

Several other points are worthy of note. Nonblocking
RPCs show a modest improvement in latency because
there is no process context switch to handle the reply;
however, that benefit is more than lost if the continuation
must be deferred. Delegated (3-way) RPCs — which are
common for shared file accesses in GMS — exact a high
price in latency, but have little effect on bandwidth. So-
licited payloads are even cheaper than unsolicited pay-
loads, despite the need to set up and tear down an IPT
entry; this is apparently due to the cost of returning the
received buffer to the VM page frame pool, and allocat-
ing a new one to replace the buffer frame lost from the
receive ring entry.

4.2 GMS/Trapeze File Access Speed

We now present the performance of sequential file ac-
cess on the GMS/Trapeze prototype. In these experi-
ments, the servers are GMS network memory servers
with sufficient aggregate memory to hold all the data
accessed by the benchmark. Thus all disk access is re-
moved from the critical path, reflecting the “cheating”
theme of this paper. The purpose is to view the file sys-
tem as an extension of the network protocol stack, and
measure the bandwidth achievable through the file sys-
tem interface.

For these experiments, the file system partition where

the benchmark files reside is configured to use two vari-
ants of the GMS caching policies to improve delivered
bandwidth. First, blocks from these files arestickyin the
global cache: reads of these blocks from network mem-
ory are nondestructive, so that each block fetched by a
client will occupy memory on both the client and the
caching site. This policy uses network memory less effi-
ciently, but duplicated blocks need not be written back to
network memory when they are evicted from the client,
assuming they are clean. Second, the partition is config-
ured as ascratchfile system that uses network memory
as awritebackcache: dirty blocks demoted from local
memory to global memory are not immediately written
to disk. The writeback policy is unsafe in that file data
may not survive failure of a caching site, but it allows
file writes to proceed at network speeds, so it serves as
a measure of the rate at which a Trapeze client can sink
dirty data to a server over Myrinet.

Our results report overhead as well as I/O bandwidth.
At Myrinet network speeds, file access overhead is as
important as raw I/O bandwidth: it is of limited value
to read files at 90 MB/s if overheads consume all of the
CPU cycles or memory system bandwidth, leaving the
application no resources to process the data. Many of
our techniques are targeted at reducing overhead (e.g.,
by avoiding copies) rather than increasing bandwidth di-
rectly.

In fact, there is a complex relationship between over-
head and bandwidth. One measure of overhead is system



CPU utilization — the percentage of CPU time spent in
the kernel. System CPU utilization grows with I/O band-
width due to fixed overheads for handling each page of
data. For typical applications, user CPU utilization also
grows with bandwidth, since the application spends time
handling each page as well. As the combined effects of
user and system processing push the CPU toward satura-
tion, the user program and the system begin to issue I/O
requests more slowly, and bandwidth begins to drop.

4.2.1 File Access Interfaces

Our highest bandwidths and lowest overheads are
achieved using the file mappingmmap system call,
rather than the traditional read/write interface. Differ-
ences among these interfaces have a negligible effect
on delivered bandwidth at disk speeds, but the effect is
substantial at gigabit-per-second network speeds. This
is true even on modern platforms whose memory sys-
tems have sufficient bandwidth to serve the CPU and the
I/O system simultaneously (e.g., Alpha Miata or Intel
Pentium-II/440LX). The effect can be dramatic on plat-
forms with lower memory system bandwidth (e.g., Al-
cor).

The experiments use three different file access
schemes. Thestreamoption usesread and write sys-
tem calls. Themmapexperiments use a singlemmap
system call to map the entire file into virtual memory,
avoiding the copying inherent in thereadandwrite inter-
face. Thememory-mapped block(MMB) experiments
use a hybrid scheme that combines the benefits of the
streamand whole-filemmapaccess policies. MMB is an
an attractive interface for high-volume file access when
performance is important and the uniform addressing of
whole-filemmapis not required.

MMB uses themmapsystem call in a block-oriented
fashion, repeatedly mappingN regions of virtual mem-
ory of sizeB to different ranges of offsets in the file. Our
MMB experiments useB = 256K andN = 2 (dou-
ble buffering). Like whole-filemmap, MMB is a zero-
copy file access scheme; it incurs slightly higher system
call overhead thanmmap, but our results show that this
is insignificant with sufficiently lowN and sufficiently
largeB, and is overshadowed by other benefits. Like
stream, MMB allows the application to explicitly spec-
ify its accesses to the kernel. This information can be
exploited by the kernel to improve performance for ap-
plications that use MMB. Moreover, MMB is an asyn-
chronous interface, allowing the application to specify
accesses early in order to overlap file access with com-
putation.

We have modified our Digital Unix kernels to detect
MMB accesses and respond with the following policies:

� When an MMBmmapcall is issued, the kernel im-

mediately initiates an asynchronous prefetch of all
pages in the newly mapped region, superseding the
usual read-ahead policy.

� The memory frames that previously backed the
remapped region are released, discarding the
mapped-over file blocks from the local file cache,
and pushing them to the network if necessary. This
allows the application to control the local cache re-
placement policy by selecting the region to remap,
and reduces the overhead of the paging daemon and
LRU eviction code.

� We have extended themmap interface with a
MAP OVERWRITE flag that allows the applica-
tion to specify that the mapped file region will be
overwritten without reading it; in this case, the ker-
nel may simply leave the existing frames mapped,
but change their identity in the file cache. The new
flag fixes an inherent flaw inmmap: when a pro-
cess references a page in a mapped region, the ker-
nel does not know if the process will read from that
page, so it must initialize the frame by zeroing it or
reading it from the file. Our approach will expose
corrupt data to a process that mistakenly reads from
a region mapped with MAPOVERWRITE, but it
will never violate security by leaking data belong-
ing to another process.

We emphasize that with the exception of the new flag,
these policies do not change thesemanticsof the stan-
dardmmapinterface, but only its performance. We leave
a detailed study of the MMB interface and its usage to
future work.

4.2.2 Sequential Benchmark Results

Figure 4 compares bandwidths delivered to a user pro-
cess reading and writing files sequentially through the
stream, mmap, and MMB interfaces. To show the effect
of user program activity, we report bandwidths and CPU
utilizations as the test program touches varying amounts
of the data on each page. The benchmark repeatedly ac-
cesses a file that overflows the local file cache, varying
the size read or written for each page from one word
up to the 8K page size. We averaged ten iterations with
120,000 page accesses, moving just under a gigabyte of
data to or from the process for each test. Variance is
negligible for all tests.

The read tests show that bandwidth starts high and de-
creases as the test program accesses more of the data.
The highest bandwidths are delivered at the left end of
the graph; these are sparse read tests in which the ap-
plication reads and loads only one word of each fetched
page. Given the excellent memory system bandwidth on
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Figure 4: File access bandwidths for sequential read and write tests.
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Figure 5: System CPU utilization (%) and total CPU utilization (%) for the read and write tests.

the Miata, the three interfaces deliver the same band-
width (96 MB/s) until about half the data is touched.
Until this point, every access stalls waiting for data to ar-
rive and interface overheads are masked by read-ahead.
In comparison, NFS reads from server memory at 13.5
MB/s on the same platform (using standard Myrinet
firmware and sufficient I/O daemons); GMS with read-
ahead enabled delivers 25 MB/s using IP/Myrinet with
the standard firmware rather than Trapeze.

Figure 5 shows CPU utilizations for the same experi-
ments. The system overhead ofstreamrises quickly as
the program touches more of its data and the read and
write system calls copy more data in and out of the user
process. In contrast,mmapand MMB avoid the copy,
and the system overhead stays relatively flat (the hump
at 3-5KB appears to be due to the combined effects of
high bandwidth and memory system contention from the
user process). In the dense read experiments at the right
end of the graphs, bandwidth delivered throughstream
drops to 68 MB/s, as the saturated 500 MHz Alpha CPU
spends 80% of its time executing I/O code in the kernel.
In contrast, under MMB GMS/Trapeze still delivers al-
most 84 MB/s, leaving 59% of the CPU time free for the
application to process the data. However, simply loading
each word up to the CPU saturates the system at these
speeds, due to memory system delays. For all three in-
terfaces this experiment is limited by CPU and memory
bandwidth rather than the network.

We ran the write tests with Alcor as the client, since
its I/O system delivers full send bandwidth. While all
tests benefit from zero-copy asynchronous writes (write-
behind), file write bandwidths are much lower than read
bandwidths for three reasons. First, in the partial-write
tests, the kernel must fetch each page (or zero it) be-
fore modifying it. Second, these reads do not benefit
from read-ahead, since partial sequential writes are rare
in practice. Third, Alcor has a slower CPU, its I/O sys-
tem can receive at only 66 MB/s, and its memory sys-
tem exacerbates overheads: an Alcor transmitting at full
speed delivers less than 25% of its memory system band-
width to the CPU. Using raw Trapeze, an Alcor can send
raw 8KB payloads at 105 MB/s, but the bandwidth drops
to 58 MB/s if the sender overwrites each payload buffer
before sending it.

For partial writes, MMB delivers the highest band-
width because it prefetches implicitly on each block ac-
cess. The bandwidth/overhead spike for the dense write
tests at the right end of the graphs occurs because the test
program overwrites all of the data, and it is no longer
necessary to read each page before writing it. While
streamand MMB (using the MAPOVERWRITE flag)
recognize this case,mmapcannot detect the full-block
write in advance, and continues to read before writ-
ing. Streamdelivers 26 MB/s for dense writes on Alcor,
while MMB delivers the peak of 46 MB/s (79% of the
platform maximum for this test) since it does not copy



the data and also avoids fetching or zeroing the pages
before they are overwritten.

5 Conclusion

This paper focuses on features of the Trapeze messaging
system that support data-intensive cluster OS services,
and their use in the GMS network memory system. The
paper makes three contributions:

� It describes useful techniques for copy-free han-
dling of page and block transfers in a network stor-
age system, including anincoming payload table
(IPT) on the NIC, RPC stub support for zero-copy
replies using the IPT, and unified buffering in the
network, file, and virtual memory subsystems.

� It shows how to implement useful RPC variants
for peer-peer OS services, including delegated RPC
and nonblocking RPC using continuations.

� It illustrates use of these techniques in a net-
work memory system that meets aggressive per-
formance goals on a gigabit Myrinet network, us-
ing the file system interface to source and sink
data at close to network and I/O bus speeds. The
GMS/Trapeze prototype features integrated support
for high-speed network storage at three levels of
the system: (1) the network interface firmware, (2)
file/VM and networking subsystems, and (3) the
system call interface, with optimizations for the
memory-mapped block file access scheme.
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7 Availability

Trapeze is free software, and a GMS/Trapeze port to
FreeBSD is in progress. For information about avail-
ability see the Trapeze web site:

http://www.cs.duke.edu/ari/trapeze
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